
HOOTS99 Preliminary Version

Impre
ise Ex
eptions, Co-Indu
tively

Andrew Moran

Oregon Graduate Institute

moran�
se.ogi.edu

S�ren B. Lassen

University of Cambridge

Soeren.Lassen�
l.
am.a
.uk

Simon Peyton Jones

Mi
rosoft Resear
h Ltd., Cambridge

simonpj�mi
rosoft.
om

Abstra
t

In a re
ent paper, Peyton Jones et al. proposed a design for impre
ise ex
eptions in

the lazy fun
tional programming language Haskell [PJRH

+

99℄. The main
ontribu-

tion of the design was that it allowed the language to
ontinue to enjoy its
urrent

ri
h algebra of transformations. However, the denotational semanti
s used to for-

malise the design does not
ombine easily with other extensions, most notably that

of
on
urren
y. We present an alternative semanti
s for a lazy fun
tional language

with impre
ise ex
eptions whi
h is entirely operational in nature, and
ombines well

with other extensions, su
h as I/O and
on
urren
y. The semanti
s is based upon

a
onvergen
e relation, whi
h des
ribes evaluation, and an ex
eptional
onvergen
e

relation, whi
h des
ribes the raising of ex
eptions. Convergen
e and ex
eptional

onvergen
e lead naturally to a simple notion of re�nement, where a term M is re-

�ned by N whenever they have identi
al
onvergent behaviour, and any ex
eption

raised by N
an also be raised by M . We are able to validate many
all-by-name

equivalen
es and standard program transformations, in
luding the ubiquitous stri
t-

ness transformation.

1 Introdu
tion

In an earlier paper [PJRH

+

99℄ we showed how to add ex
eptions to a lazy,

purely-fun
tional programming language, su
h as Haskell. There were three

key ideas.

The �rst was to treat an ex
eption as a value rather than as a
hange

of
ontrol
ow. This idea is fairly standard; for example, the IEEE
oating

This is a preliminary version. The �nal version will be published in

Ele
troni
 Notes in Theoreti
al Computer S
ien
e

URL: www.elsevier.nl/lo
ate/ent
s

point standard uses it for NaNs. The se
ond idea addressed the question of

what meaning to assign to expressions like:

(raise e

1

) + (raise e

2

):

Does this expression deliver the ex
eption e

1

, or e

2

? The
onventional ap-

proa
h is to �x the evaluation order, thus determining whi
h of the two ex-

eptions is delivered. This works well for languages whose evaluation order

is already highly
onstrained be
ause of other e�e
ts, su
h as assignment or

input/output. For languages like Haskell, however,
ode motion that
hanges

evaluation order is a key transformation, and �xing the evaluation order would

be a major blow. The alternative we advo
ated in [PJRH

+

99℄ is to say that

the meaning of the expression is a set of two ex
eptions, e

1

and e

2

. If the

order of the operands to + is reversed, the meaning is un
hanged.

The third idea is that to
at
h an ex
eption is to make a non-deterministi

hoi
e among the set of ex
eptions in an ex
eptional value. To avoid making

the entire language non-deterministi
,
at
hing an ex
eption is regarded as

an input/output operation in Haskell's I/O monad. This makes our proposal

a little less expressive than (say) ML ex
eptions; the payo� is that program

transformations are almost entirely una�e
ted, with no side
onditions.

Our slogan, therefore is: We want to add ex
eptions to a lazy language,

without losing any useful program transformations. The earlier paper for-

malised this
laim by using a denotational semanti
s. In this paper we present

an alternative formalisation, by providing an operational semanti
s for a
all-

by-name language augmented with raise. There are two reasons for taking this

approa
h:

�

Compilers for languages like Haskell take great
are to use
all by need,

rather than
all by name. The two are denotationally indistinguishable,

but operationally they may di�er dramati
ally. Despite this, not mu
h

theoreti
al work has been done to make this distin
tion pre
ise. In separate

earlier work we have therefore developed operational te
hniques to reason

about improvement (i.e. optimisation) in
all-by-need languages [MS99℄.

We wanted to be able to extend these te
hniques to a language in
luding

ex
eptions.

�

Haskell in
ludes a monadi
 form of input/output [PJW93℄, and an extend-

ed version of Haskell supports
on
urrent threads [PJGF96℄. We believe

that an operational semanti
s in the style of a pro
ess
al
ulus is more suit-

ed to des
ribing the semanti
s of these extensions than is a denotational

semanti
s.

Our goal, then, is to develop a layered operational theory that en
ompass-

es input/output,
on
urren
y, ex
eptions (in
luding asyn
hronous ex
eptions

su
h as inter-thread signals), and
all-by-need. In the purely fun
tional sub-

language it should be no harder to prove equivalen
es than it is in simpler

al
uli; but these equivalen
es should be proven to hold in the more
omplex

setting in whi
h new kinds of observation are possible.

This paper ta
kles a small part of that goal. We treat only the purely-

fun
tional part, in whi
h one
an raise an ex
eption, but not
at
h it. We give

a formal operational semanti
s for this language, and prove several equational

laws that
orrespond
losely to the standard theorems for a
all-by-name
al-

ulus [Plo75℄, thus formalising the e�e
t of adding ex
eptions on the theory.

We study
all by name semanti
s only, leaving the extension to
all by need

for further work, and we only brie
y sket
h the extensions to handle I/O and

on
urren
y.

The operational semanti
s presents a novelty in that ex
eptional behaviour

is de�ned
o-indu
tively to
apture the idea from [PJRH

+

99℄ that diverging

expressions
an raise any ex
eption. Based on this operational semanti
s we

de�ne suitable Morris-style
ontextual equivalen
e and re�nement relations

between terms. As a tool to reason about these, we introdu
e a form of

appli
ative simulation taking impre
ise ex
eptions into a

ount. We show

that the resulting bisimulation equivalen
e is a
ongruen
e, using Howe's
on-

gruen
e proof method [How96℄, and thus that it
oin
ides with
ontextual

equivalen
e.

The rest of the paper is organised as follows. Se
tion 2 surveys related

work. Se
tion 3 presents the language and its operational semanti
s in the

form of natural semanti
s rules for normal
onvergen
e and ex
eptional
on-

vergen
e relations. The next two se
tions examine two kinds of preorders,

based upon the operational semanti
s. Se
tion 4 presents a Morris-style
on-

textual re�nement preorder, where M is re�ned by N if they have identi
al

onvergent behaviour, and any ex
eptional behaviour exhibited by N is also

present in M . We prove that
ontextual re�nement
oin
ides with an appli
a-

tive simulation preorder, enabling us to establish the validity of beta-laws and

the stri
tness transformation. Extensions to the simple fun
tional language,

like
ase expressions, I/O, ex
eption handling, and
on
urren
y, are then de-

s
ribed brie
y in se
tion 6. We
on
lude in se
tion 7.

2 Related Work

The impre
ise ex
eption me
hanism was introdu
ed in [PJRH

+

99℄ where it is

related to other approa
hes to ex
eption handling in fun
tional languages.

Co-indu
tively de�ned operational semanti
s have appeared before (see

e.g. [CC91,HM95℄), but there it has usually been used to de�ne divergen
e or

non-termination predi
ates. Our use of
o-indu
tion to de�ne an ex
eptional

onvergen
e relation appears to be new.

There is not mu
h prior work on equational reasoning about ex
eptions. In

[Gor94, x6.7℄ Gordon
onsiders a small
all-by-name language with a (deter-

ministi
) monadi
 ex
eption me
hanism, rather di�erent from our impre
ise

ex
eptions, for whi
h he also develops an operational theory of appli
ative

bisimulation using Howe's method [How96℄.

In [PJRH

+

99℄ we give a denotational semanti
s for impre
ise ex
eptions

whi
h is
arefully engineered to preserve many equational laws from the pure

fun
tional language. The operationally-based notion of equivalen
e relation

in the present paper is basi
ally an operational rendering of equality in this

denotational model. The re�nement preorder that we introdu
e is inspired

by our earlier work on operational theories for non-deterministi
 fun
tional

languages [Las98,Mor98,MSC99℄; our adaptation of Howe's
ongruen
e proof

to deal with non-deterministi
 ex
eptions also uses te
hniques from [Las98℄.

3 Operational Semanti
s

In this se
tion, we des
ribe the behaviour of terms in an untyped,
all-by-

name lambda
al
ulus extended with a data type of ex
eptions and a means

of raising ex
eptions,
alled raise. The syntax of the language is:

M;N ::= x j �x:M jM N j let! x=M in N j raiseM j e;

let! x=M in N denotes a stri
t let expression, with the obvious intended

semanti
s. It is in
luded mainly to allow us to easily express the stri
tness

transformation in se
tion 5. Ex
eptions may be raised with raiseM , and e

ranges over values of the Ex
eption datatype:

data Ex
eption = TypeError j UserError String � � �

The language is untyped. The TypeError ex
eption is used to signal type

errors arising from applying ex
eptions or raising fun
tions. UserError is

self-explanatory and may be used to help de�ne the standard Haskell fun
tion

error:

error msg = raise (UserError msg)

Other ex
eptions, like DivideByZero, or OverFlow may easily be added as

the need arises. Throughout, U and V will range over all values (i.e. lambda

expressions or elements of Ex
eption).

We de�ne two forms of
onvergen
e: normal
onvergen
e, where evalu-

ation terminates without an ex
eption being raised, and ex
eptional
onver-

gen
e, where evaluation is brought to an abrupt halt due to the raising of an

ex
eption.

3.1 Normal Convergen
e

We de�ne
onvergen
e in the fun
tional
ore via a standard indu
tively-de�ned

onvergen
e relation:

V + V (Value

+

)

M + �x:M

0

M

0

[

N

=

x

℄ + V

M N + V

(App

+

)

M + U N [

U

=

x

℄ + V

let! x=M in N + V

(Stri
t Let

+

)

where M + V should be read as \
losed term M
onverges to
losed value

V ". Lambda expressions and elements of the Ex
eption datatype
onverge

immediately. Appli
ations are evaluated in normal order, and stri
t lets are

evaluated eagerly. Note that raise has no rule. This is as it should be: the

raising of an ex
eption is
ertainly not normal
onvergen
e!

3.2 Ex
eptional Convergen
e

We will write M " e to mean that
losed term M
onverges ex
eptionally

with, or raises, ex
eption e. Unusually, " is de�ned
o-indu
tively. The rules

are labelled with \�" to indi
ate this fa
t.

We are now able to give a semanti
s to raise:

M + e

raiseM " e

�

(Raise

"

1

)

M " e

raiseM " e

�

(Raise

"

2

)

raise
an only
onverge ex
eptionally, but may do so in more than one way. For

example, raiseM will either raise the ex
eption to whi
h M evaluates, or raise

any ex
eption that arises during the evaluation of M . This latter behaviour

is
ommon to any stri
t fun
tion or
onstru
tor.

Type errors are signalled by the TypeError ex
eption:

M + �x:N

raiseM " TypeError

� (Raise

"

0

)

M + e

M N " TypeError

� (App

"

0

)

An appli
ation may raise an ex
eption if its fun
tion does, or an ex
eption

is raised after substitution:

M " e

M N " e

�

(App

"

1

)

M + �x:M

0

M

0

[

N

=

x

℄ " e

M N " e

�

(App

"

2

)

This is not the whole story; we are aiming for
exibility. One of the most

ru
ial transformations in any
ompiler for a lazy, fun
tional language is the

stri
tness transformation, in whi
h f N is transformed to

let! x=N in f x

when f is dis
overed to be stri
t|in this
ontext we de�ne stri
t to mean

that f (raise e)
an raise e, for every ex
eption e. Therefore, our notion of

ex
eptional
onvergen
e must allow di�erent evaluation orders: in M N , N

may be evaluated before M ! This motivates the �nal rule for appli
ation:

M 6+ N " e

M N " e

�

(App

"

3

)

where M 6+ is short for :9V:M + V . Note that we only allow ex
eptional

onvergen
e in the argument to lead to ex
eptional
onvergen
e in the ap-

pli
ation as a whole when the fun
tion also
onverges ex
eptionally. This

prevents erroneous
on
lusions su
h as

(�x:3) (raise e) " e:

Stri
t lets are similar to appli
ations. The �rst two rules are analogous.

M " e

let! x=M in N " e

�
(Stri
t Let

"

1

)

M + V N [

V

=

x

℄ " e

let! x=M in N " e

�

(Stri
t Let

"

2

)

We need to be a bit
lever for the analogue of the third rule. Consider the stri
t

let expression let! x=M in N . If M has ex
eptional behaviour, then we must

allow any ex
eptional behaviour in the body of let, by analogy with (App

"

3

).

The problem is that x may o

ur free in N , but sin
e M hasn't
onverged

we have nothing to whi
h to bind x. We need some way of dis
overing the

ex
eptional behaviours of N that are independent of x.

Our solution follows an idea from [PJRH

+

99℄. We bind x to an auxiliary

term 0 with no behaviour: it neither evaluates to any value or raises any

ex
eptions

1

. Now, if N [

0

=

x

℄ raises an ex
eption, it does so independent of the

behaviour of x.

M 6+ N [

0

=

x

℄ " e

let! x=M in N " e

�

(Stri
t Let

"

3

)

Formally, we now read the M + V and M " e judgements as de�ned on
losed

terms M drawn from an extended term grammar whi
h in
ludes the 0 term.

Divergen
e is Ex
eptional Convergen
e.

The rules for ex
eptional
onvergen
e have a non-trivial indu
tive inter-

pretation: the behaviour of terms whi
h
an raise ex
eptions after a �nite

amount of
omputation, like let! x= raise e in M or let! x=V in raise e. In-

deed, any set of rules like those above may be interpreted either indu
tively

or
o-indu
tively. So why take the
o-indu
tive reading in this
ase?

1

Had we not
hosen to let attempts to raise non-ex
eptions result in TypeError being

raised in rule (Raise

"

0

), we
ould have de�ned 0 to be the term raise (�x:x).

By
hoosing the
o-indu
tive interpretation, we in
lude all divergent terms,

like

def

= (�x:x x) (�x:x x), and terms whose divergen
e depends upon ex
ep-

tional behaviour, like (raise e)
. The
o-indu
tive interpretation stipulates

that su
h divergent terms may raise any ex
eption e, as we
annot refute

that a divergent term raises e. This operational semanti
s models the inter-

pretation of divergen
e in the denotational semanti
s of impre
ise ex
eptions

in [PJRH

+

99℄. It represents the idea often used in programming language

semanti
s that divergen
e in
ludes all erroneous behaviours.

This motivates the following de�nition of when
losed term M diverges,

written M *:

M *

def

= 8e:M " e:

3.3 Determinism and Ex
lusivity

An important property of normal
onvergen
e is that it is deterministi
. That

is

M + U ^M + V =) U � V:

But if an expression raises an ex
eption, the semanti
s is deliberately vague

about whi
h ex
eption may be raised. That is, it is entirely possible that

M " e

1

and M " e

2

but e

1

6� e

2

. It is this impre
ision that validates many

useful program transformations.

Moreover, when restri
ted to terms not
ontaining 0, normal
onvergen
e

is mutually ex
lusive with ex
eptional
onvergen
e, as stated by the following

theorem.

Theorem 3.1 For any given
losed term M not
ontaining 0, exa
tly one of

the following statements is true:

(i) 9V:M + V; (ii) 9e:M " e:

We
an prove

M + V =) :9e:M " e; (3.1)

for arbitrary terms M and values V , by rule indu
tion on M + V . It then

remains to prove that

M 6+ =) 9e:M " e: (3.2)

for all
losed 0-free M . This is harder be
ause the existential quanti�
ation

prevents us from arguing by rule
o-indu
tion on M " e. We en
ounter this

kind of diÆ
ulty with
o-indu
tive reasoning about the " relation elsewhere

in the sequel. We over
ome this diÆ
ulty, by introdu
ing an auxiliary, indu
-

tively de�ned ex
eption relation, %, between terms M and �nite non-empty

0% fg (Stu
k

%

)

M + e

M N % fTypeErrorg

(App

%

0

)

M % S N + V

M N % S

(App

%

1

)

M + �x:M

0

M

0

[

N

=

x

℄% S

M N % S

(App

%

2

)

M % S

1

N % S

2

M N % S

1

[S

2

(App

%

3

)

M + �x:N

raiseM % fTypeErrorg

(Raise

%

0

)

M + e

raiseM % feg

(Raise

%

1

)

M % S

raiseM % S

(Raise

%

2

)

M % S N [

0

=

x

℄ + V

let! x=M in N % S

(Stri
t Let

%

1

)

M + V N [

V

=

x

℄% S

let! x=M in N % S

(Stri
t Let

%

2

)

M % S

1

N [

0

=

x

℄% S

2

let! x=M in N % S

1

[S

2

(Stri
t Let

%

3

)

Fig. 1. The rules de�ning %.

sets S of raised ex
eptions. The meaning of the judgement M % S is that M

raises the ex
eptions in S andM doesn't diverge. It is de�ned by the following

set of rules. This relation also plays a fundamental rôle in the development of

the operational theory of appli
ative simulation in se
tion 4.

Lemma 3.2 For all
losed terms M ,

M " e () (9S 3 e:M % S) _M *:

Proof. The forward impli
ation is equivalent to:

M " e ^ :(9S 3 e:M % S) =) 8e

0

:M " e

0

:

This we prove by rule
o-indu
tion on M " e

0

.

For the reverse impli
ation it suÆ
es to show that M % S =) 8e 2

S:M " e; whi
h we prove by rule indu
tion on M % S. 2

Now we see that (3.2) is equivalent to M 6+ ^:(9S:M % S) =) 8e:M "

e; for all
losed 0-free terms M , and this
an be proved by rule
o-indu
tion

on M " e. The proof uses the easily established fa
t that, whenever M + V ,

if M doesn't
ontain 0, the same is true of V .

4 Re�nement and Equivalen
e

The pre
eding se
tion spe
i�ed the meaning of program terms. However,

ompilers work by transforming one term into a semanti
ally equivalent, but

perhaps more eÆ
ient one, so we need to know pre
isely what equivalen
e

means, and we need usable te
hniques to prove that two terms are equivalent.

In pra
ti
e, pre
ise equivalen
e is over-restri
tive. Suppose a term
an raise

either of the ex
eptions e

1

or e

2

. Arguably, it would be �ne for a
ompiler to

repla
e it with an expression that
an raise only e

1

, espe
ially if the latter was

more eÆ
ient. The new program doesn't have exa
tly the same meaning as

the old one, but we argue that the
hange is legitimate. Why? Be
ause the

only way that we provide to
at
h an ex
eption is to make a non-deterministi

hoi
e from the set, so the new program will exhibit behaviour that is always

possible from the old program. (The new program will never deliver e

2

, but

the old one need never deliver e

2

, depending on how the non-deterministi

hoi
e goes.)

In short, to give maximum freedom to the
ompiler (a good thing, sin
e

it may enable it to generate better
ode) we want to let it re�ne a program;

that is, to transform it to a new program that re�nes, but is not ne
essarily

equivalent to, the original program. A term M is re�ned by N , written M

�

�

N , if they have identi
al
onvergent behaviours, and any ex
eptional behaviour

exhibited by N
an be mimi
ked by M . In this se
tion we make this de�nition

pre
ise, and we explain how to prove su
h a relationship.

To this end, we �rst formalise this idea of re�nement as a suitable Morris-

style
ontextual re�nement preorder. This
onstitutes the prior notion of

re�nement: it's what we really mean by re�nement. The main result of this

se
tion allows us to establish
ontextual re�nement by showing a mu
h simpler

relationship,
alled re�nement similarity. This is justi�ed be
ause re�nement

similarity is a pre
ongruen
e. We sket
h the proof of the pre
ongruen
e of

re�nement similarity via the nigh-standard method due to Howe [How96℄.

We
lose with examples of the use of re�nement simulation. We establish

the validity of beta-laws and the stri
tness transformation for our language.

4.1 Contextual Re�nement and Equivalen
e

Program
ontexts are usually introdu
ed as \programs with holes", the inten-

tion being that a
losed expression is to be \plugged into" all of the holes in

the
ontext. We will use
ontexts of the form

C;D ::= x j �x:C j CD j let! x=C in D j raiseC j e j 0:

Conventionally, the prior notion of observational equivalen
e is de�ned
on-

textually; we say M is equivalent to N whenever, for all program
ontexts C

su
h that both C[M ℄ and C[N ℄ are
losed,

C[M ℄+ () C[N ℄+

where the notation M+ means that there exists some value V su
h that M +

V .

In the presen
e of impre
ise ex
eptions, this is only half the story. The

above de�nition would identify all terms that raise any kind of ex
eption, e.g.

 would be identi�ed with raise (UserError "No su
h element"). In other

words, a theory based upon the
onventional de�nition would be oblivious to

ex
eptions; we might as well not have added impre
ise ex
eptions at all!

We de�ne
ontextual re�nement in su
h a way that it in
ludes the above

de�nition, but is also sensitive to ex
eptional behaviour.

De�nition 4.1 M is
ontextually re�ned by N , written M

�

�

N , if, for all

program
ontexts C su
h that both C[M ℄ and C[N ℄ are
losed,

C[M ℄ + () C[N ℄ +

^ 8e:C[N ℄ " e =) C[M ℄ " e:

Contextual equivalen
e, denoted

�

=

, is mutual
ontextual re�nement.

Remember that we intend that if M

�

�

N , then it is legitimate for a

ompiler to repla
e M by N . Intuitively, a term is
ontextually re�ned by

another if the latter has identi
al
onvergent behaviour to the former and the

latter does not introdu
e ex
eptional behaviours not already present in the

former. Another way of looking at it is that non-determinism (derived from

possible ex
eptional behaviour) is not in
reased when moving upwards in a

�

�

-

hain. This de�nition allows an implementation to de
rease non-determinism

by making
hoi
es. For instan
e, we shall see that by this de�nition M

�

�

raise e if M " e, regardless of whether M
an also raise other ex
eptions.

4.2 Re�nement Similarity and Bisimilarity

In the operational te
hniques
ommunity, one typi
ally presents similarities

and bisimilarities in terms of simulation fun
tionals and other auxiliary rela-

tional operators. We will �rst present re�nement similarity and bisimilarity in

a dire
t fashion, deferring the more standard de�nitions (involving auxiliary

relational operators) until se
tion 4.3. We then state the main result of this

se
tion, that re�nement similarity and bisimilarity
oin
ide with
ontextual

re�nement and
ontextual equivalen
e.

Given a relation R between
losed terms, its open extension, written R

o

,

is the relation between arbitrary terms M and M

0

su
h that M� R M

0

� for

every
losing substitution � for the free variables in M and M

0

.

We de�ne re�nement similarity, written ., as the greatest relation satis-

fying the following rule:

8M

0

:M + �x:M

0

=) 9N

0

:N + �x:N

0

^M

0

.

o

N

0

8N

0

:N + �x:N

0

=) 9M

0

:M + �x:M

0

^N

0

.

o

M

0

8e:M + e () N + e

8e:N " e =) M " e

M . N

�

(Ref Sim Def)

(Again, the � indi
ates that this is a
o-indu
tive de�nition.) It says that if

all
onvergent behaviours of M are related by . to
onvergent behaviours of

N (and vi
e versa), and if all ex
eptional behaviours of N
an be mat
hed

by ex
eptional behaviours of M , then M . N . It is a simple matter to

onvin
e oneself that . and .

o

are re
exive and transitive. Also, terms whose

behaviour depends upon 0 are identi�ed by ., sin
e all of the premises of

(Ref Sim Def) hold trivially for them.

Bisimilarity, written �

o

, is mutual re�nement similarity.

A given relation R is
ompatible if whenever M R N , we have that C[M ℄ R

C[N ℄ for all
ontexts C. (We will give an equivalent de�nition of
ompatibility

in se
tion 4.3.) Any
ompatible equivalen
e is a
ongruen
e; any
ompatible

preorder is a pre
ongruen
e.

An important property of .

o

is that it is
ompatible.

Lemma 4.2 .

o

is
ompatible.

This in turn leads to the main result of this se
tion: we
an use .

o

to

establish
ontextual re�nement and �

o

to establish
ontextual equivalen
e.

Theorem 4.3 (i) M

�

�

N () M .

o

N .

(ii) M

�

=

N () M �

o

N .

Proof. It suÆ
es to prove (i); (ii) is then immediate.

Suppose M .

o

N . We must show M

�

�

N . Sin
e .

o

is
ompatible, we

know that for any
ontext C for whi
h C[M ℄ and C[N ℄ are
losed, C[M ℄ .

C[N ℄. Therefore, if C[N ℄ + then C[M ℄ +, and vi
e versa, and if C[N ℄ " e then

C[M ℄ " e. This is exa
tly the de�nition of

�

�

. Hen
e .

o

�

�

�

.

The reverse in
lusion,

�

�

� .

o

, is proved
o-indu
tively by showing that

�

�

is an appli
ative error simulation and that the re
ipro
al relation,

�

�

op

, is

an appli
ative
onvergen
e simulation. The proofs make use of the beta-laws

in se
tion 5 whi
h, by the above in
lusion .

o

�

�

�

,
an be established for

�

�

by via re�nement similarity. 2

4.3 Compatibility of Re�nement Similarity

In order to enable us to prove its
ompatibility, re�nement similarity will be

de
omposed in terms of two appli
ative similarities. The �rst is essentially the

same as the appli
ative similarity of [Abr90,How96℄. The se
ond is obtained

from the �rst by adding an extra
lause for ex
eptional behaviour. First, we

de�ne a useful auxiliary notion.

4.3.1 Compatible Re�nement

We use the notion of the
ompatible re�nement of a given relation to de�ne

what it means for a relation on open terms to be a
ongruen
e. It is also used

to de�ne the simulation fun
tional upon whi
h our notion of similarity will be

based. If R is a binary relation over terms, then its
ompatible re�nement,

b

R,

is de�ned by the rules:

x

b

R x e

b

R e 0

b

R 0

M R N

�x:M

b

R �x:N

M R M

0

N R N

0

M N

b

R M

0

N

0

M R M

0

N R N

0

let! x=M in N

b

R let! x=M

0

in N

0

M R N

raiseM

b

R raiseN

Compatible re�nement will be used in the de�nition of simulation below as a

way of testing values, but it also provides a simple
hara
terisation of
om-

patibility. We
an easily show that R is
ompatible when

b

R � R.

4.3.2 Appli
ative Convergen
e Similarity

The appli
ative
onvergen
e simulation fun
tional, is de�ned as follows.

De�nition 4.4 Given relation R, de�ne [R℄

+

thus

M [R℄

+

N

def

= 8U:M + U =) 9V:N + V ^ U

b

R V:

An appli
ative
onvergen
e simulation is a relation that is dense with re-

spe
t to [�℄

o

+

, i.e. R � [R℄

o

+

. De�ne appli
ative
onvergen
e similarity, .

o

+

, as

the largest appli
ative
onvergen
e simulation.

Lemma 4.5 .

o

+

is
ompatible.

We elide the proof of the
ompatibility of .

o

+

. It is a simple instan
e of

that found in [How96℄.

4.3.3 Appli
ative Error Similarity

The appli
ative error simulation fun
tional, is de�ned as follows.

De�nition 4.6 Given relation R, de�ne [R℄

"

thus

M [R℄

"

N

def

= 8U:M + U =) 9V:N + V ^ U

b

R V

^ 8e:N " e =) M " e:

An appli
ative error simulation is a relation that is dense with respe
t to

[�℄

o

"

. Appli
ative error similarity,.

o

"

, is the largest appli
ative error simulation.

Lemma 4.7 .

o

"

is
ompatible.

In order to prove this, we will de�ne a
andidate pre
ongruen
e whi
h by

de�nition will be
ompatible and
ontain appli
ative error similarity. Then

we will show that the
andidate is an appli
ative error simulation. This will

imply the desired result: that appli
ative error similarity is
ompatible.

The
andidate
ongruen
e, written .

�

"

, is the least relation satisfying

M

.

�

"

M

0

M

0

.

o

"

N

M .

�

"

N

(4.1)

This relation
an easily be shown to have the following properties.

Lemma 4.8 (i) .

�

"

is
ompatible.

(ii) .

o

"

� .

�

"

.

(iii) .

�

"

;.

o

"

� .

�

"

.

(iv) .

�

"

is substitutive: M .

�

"

M

0

^N .

�

"

N

0

=) M [

M

0

=

x

℄ .

�

"

N [

N

0

=

x

℄.

This lemma states that .

�

"

is indeed an appli
ative error simulation.

Lemma 4.9 .

�

"

� [.

�

"

℄

o

"

.

Proof. Sin
e .

�

"

is re
exive (be
ause it is
ompatible) and substitutive, it

suÆ
es to prove that M .

�

"

N implies M [.

�

"

℄

"

N for all
losed M and N .

There are two parts to the proof,
orresponding to the two
lauses in the

de�nition of [�℄

"

.

(1) We are required to prove:

M .

�

"

N ^M + U =) 9V:N + V ^ U

.

�

"

V: (4.2)

This follows by rule indu
tion over the judgement M + U . We elide the

proof (it is in fa
t the
ru
ial lemma for showing the appli
ative
onvergen
e

similarity is
ompatible).

(2) We are required to prove

M .

�

"

N ^N " e =) M " e: (4.3)

However, it will be suÆ
ient to prove

M .

�

"

N ^M % S =) 9T :N % T ^ T � S: (4.4)

sin
e if M *, then (4.3) follows trivially, and if M + then N + also, by (4.2),

and in that
ase (4.3) holds trivially.

Suppose M .

�

"

N and M % S. We pro
eed via rule indu
tion on the

judgement M % S. We give the appli
ation
ases only. Here M � M

1

M

2

and, sin
eM .

�

"

N , we know there exists anM

0

�M

0

1

M

0

2

su
h thatM

i

.

�

"

M

0

i

for i = 1; 2, and M

0

.

o

"

N . We may assume that M

0

is
losed (otherwise,

any
losed instan
e of M

0

�ts the bill, by the re
exivity and substitutivity

properties of .

�

"

and by the de�nition of .

o

by open extension). There are

four sub-
ases; we give two only.

(App

%

0

) M

1

+ e, and M % fTypeErrorg. Then by (4.2), M

0

1

+ e also, so

M

0

% fTypeErrorg. Sin
e M

0

.

o

"

N , we know that any ex
eption that N

an raise must be
ontained in this set, so we are done.

(App

%

2

) M

1

+ �x:M

0

and M

0

[

M

2

=

x

℄ % S. By (4.2), M

0

1

+ �x:M

0

0

where

M

0

.

�

"

M

0

0

. By substitutivity, M

0

[

M

2

=

x

℄ .

�

"

M

0

0

[

M

0

2

=

x

℄, so by the indu
tive

hypothesis, M

0

0

[

M

0

2

=

x

℄ % T for some T � S. Therefore M

0

% T , and the

result follows sin
e M

0

.

o

"

N . 2

Proof of Lemma 4.7. .

o

"

is
ompatible.

Proof. .

o

"

is by de�nition the greatest (open) appli
ative error simulation.

Therefore, sin
e .

�

"

is an appli
ative error simulation, by lemma 4.9, .

�

"

�

.

o

"

. But .

o

"

� .

�

"

, by lemma 4.8(ii), so .

o

"

= .

�

"

. .

�

"

is
ompatible, by

lemma 4.8(i), so .

o

"

is also. 2

4.3.4 Compatibility of Re�nement Similarity

We are now in a position to de
ompose re�nement similarity into appli
ative

onvergen
e similarity and appli
ative error similarity.

Lemma 4.10 M .

o

N () N .

o

+

M ^M .

o

"

N .

A similar lemma holds for bisimilarity.

Proof of Lemma 4.2. .

o

is
ompatible.

Proof. Sin
e its
omponent parts are
ompatible, .

o

is
ompatible. 2

5 The payo�: examples of equivalen
es

So mu
h for the underlying theory. It is time to return to the
laim we made

in the introdu
tion, namely that we have added ex
eptions to a lazy language

without losing any useful program transformations. Have we met that goal?

We don't know how to prove it in general. What we do instead in this se
tion

is to take several pra
ti
ally-useful equivalen
es in the ordinary
all-by-name

al
ulus, and prove that they remain valid in our extended language.

5.1 Simple laws

The following inferen
es are valid for all
losed terms M by (3.1) and the

soundness of . and �:

M + V

M

�

=

V

(+)

M " e

M

�

�

raise e

(")

M 6+

M

�

�

0

(0)

The �rst also depends upon the deterministi
 nature of +. Two simple beta-

laws are easily shown to be valid:

(�x:M)N

�

=

M [

N

=

x

℄ (�)

let! x=V in M

�

=

M [

V

=

x

℄ (let!-�)

For example, whenever (�x:M)N + V so does M [

N

=

x

℄ by (App

+

), and vi
e

versa. Furthermore, whenever (�x:M)N " e, so doesM [

N

=

x

℄, by (App

"

2

), and

vi
e versa. Therefore, (�x:M)N � M [

N

=

x

℄, and we have that (�x:M)N �

M [

N

=

x

℄, when (�x:M)N and M [

N

=

x

℄ are
losed. This extends to open terms

sin
e � is substitutive, and the result follows.

As a result of (�) we get that

�

=

is substitutive:

M

�

=

M

0

^N

�

=

N

0

=) (�x:M)N

�

=

(�x:M

0

)N

0

ongruen
e

=) M [

N

=

x

℄

�

=

M

0

[

N

0

=

x

℄ (�)

This is also true of

�

�

, by similar reasoning.

5.2 Commuting independent evaluations

The next example is more substantial. It
aptures the essen
e of the
ommu-

tativity of the + example from the introdu
tion.

Proposition 5.1 Provided x and y are distin
t and do not o

ur free in either

M or N ,

let! x=M in let! y=N in P

�

=

let! y=N in let! x=M in P:

Proof. Let LHS and RHS refer to the two expressions we are equating. As

was the
ase for the beta-laws, it is enough to prove the equation when LHS

and RHS are
losed. Then M and N are also
losed. We pro
eed via a
ase

analysis of the
onvergen
e behaviour of M and N . There are four
ases; we

give two only.

�

M + U , and N + V , for some U and V . Then

LHS

�

=

let! x=U in let! y=V in P (+);
ongruen
e

�

=

P [

U

=

x

℄[

V

=

y

℄ (let!-�)� 2

� P [

V

=

y

℄[

U

=

x

℄ U , V are
losed and

x, y are distin
t

�

=

let! y=V in let! x=U in P (let!-�)� 2

�

=

RHS (+);
ongruen
e

�

M 6+ and N 6+. Then LHS 6+ and RHS 6+ too. Thus it suÆ
es to show that

LHS " e () RHS " e; (5.1)

for all ex
eptions e. By the rules de�ning the ex
eptional
onvergen
e rela-

tion for stri
t let, we see that LHS " e holds if and only if one of

(i) M " e,

(ii) N " e, or

(iii) P [

0

=

x

℄[

0

=

y

℄ " e

holds. But the same is true of RHS , so we
on
lude (5.1), as required. 2

5.3 Transforming
all by name into
all by value

Our �nal appli
ation involves the stri
tness transformation. It says that trans-

forming
all-by-name (or need) into
all-by-value is a re�nement whenever the

ontext involved is stri
t in the sense of the premise. This transformation is

one of the most
ommonly applied in fun
tional language
ompilers, and it is

important that it remains valid.

Proposition 5.2 For all M and N , then the following is a valid inferen
e

rule:

8e:M [

raise e

=

x

℄ " e

M [

N

=

x

℄

�

=

let! x=N in M

The premise says that M is stri
t in x; that is, if x is repla
ed by raise e in

M , the resulting term is sure to be able to raise e. The bottom line says that

a
all-by-name binding of x to an arbitrary term N (denoted by substitution)

is equivalent to a
all-by-value binding (denoted by let!).

Proof. Assume M [

raise e

=

x

℄ " e for all e, and
onsider N . Again, it is enough

to prove the result when both M [

N

=

x

℄ and let! x=N in M are
losed, sin
e

�

�

and

�

=

are substitutive. Then N must be
losed. We split the argument into

two
ases:

�

N + V , for some V . Then

let! x=N in M

�

=

let! x=V in M (+);
ongruen
e

�

=

M [

V

=

x

℄ (let!-�)

�

=

M [

N

=

x

℄ substitutivity,

as required.

�

N 6+. We prove that M [

N

=

x

℄ and let! x=N in M are mutual re�nements.

First, we show thatM [

N

=

x

℄

�

�

let! x=N inM . Suppose let! x=N inM "

e. This is derived either by (Stri
t Let

"

1

) be
ause N " e, or by (Stri
t Let

"

3

)

be
ause M [

0

=

x

℄ " e. In the �rst
ase, M [

N

=

x

℄ " e is immediate from the

stri
tness assumption. In the se
ond
ase, we use that by (0) we have

that N

�

�

0. Therefore, M [

N

=

x

℄

�

�

M [

0

=

x

℄. Hen
e M [

0

=

x

℄ " e implies that

M [

N

=

x

℄ " e, and we are done.

Next, we show that let! x=N in M

�

�

M [

N

=

x

℄. This dire
tion is harder.

We need two fa
ts:

M [

N

=

x

℄ + V =) 9U: V = U [

N

=

x

℄^

8N

0

:M [

N

0

=

x

℄ + U [

N

0

=

x

℄;

(5.2)

M [

N

=

x

℄ " e ^ :(N " e) =) M [

0

=

x

℄ " e: (5.3)

We establish these fa
ts for arbitrary terms M ; (5.2) by rule indu
tion on

M [

N

=

x

℄ + V , and (5.3) by rule
o-indu
tion on M [

0

=

x

℄ " e. From (5.2), the

stri
tness assumption and (3.1) we
on
lude that M [

N

=

x

℄ 6+, so it suÆ
es to

show that M [

N

=

x

℄ " e implies let! x=N in M " e for all e. But this follows

easily from (5.3), (Stri
t Let

"

1

) and (Stri
t Let

"

3

), and we are done. 2

6 Extensions

The language des
ribed thus far is not parti
ularly expressive (it la
ks data

onstru
tors,
ase expressions, integers, and primitives among other things).

It is also not so useful: we
an raise ex
eptions with ease, but
annot
at
h

them! In this se
tion, we sket
h how the language and its semanti
s may

be extended to allow for more realisti
 language
onstru
ts, I/O operations,

at
hing and handling of ex
eptions, and primitives for
on
urren
y. The

details of these extensions may be found in a forth
oming longer version of

this paper.

6.1 Data Constru
tors, et
.

We
an easily add the following synta
ti

onstru
ts to the language:

� � � j
M

1

� � �M

n

j
ase M of f

i

~x

i

�N

i

g j piq jM opN j �xM

where
 ranges over a set of
onstru
tor names (not renameable and disjoint

from variable names), piq is a distinguished value
orresponding to integer i,

and op ranges over a set of primitive operators. �x is expli
it re
ursion, and

ase allows us to mat
h on
onstru
tors.

The normal
onvergen
e semanti
s rules for these
onstru
ts are standard,

and the ex
eptional
onvergen
e semanti
s rules are straightforward adaptions

of those that were presented in se
tion 3. For example, the three rules des
rib-

ing the ex
eptional behaviour of
ase expressions are very similar to those for

stri
t let expressions; this is the analogue of (Stri
t Let

"

3

):

M 6+ N

j

[

~

0

=

~x

j

℄ " e

ase M of f

i

~x

i

�N

i

g " e

�

(Case

"

3

)

The proofs in se
tion 4
an also be extended to take the new
onstru
ts into

a

ount in a straightforward manner.

6.2 The I/O Monad

We
an add the I/O monad to the language by extending the latter with the

following
onstru
ts:

� � � j returnM jM >>=N j getChar j putCharM j raiseIOM:

raiseIOM represents a
omputation that when performed will raise the ex
ep-

tion indi
ated by M . External interrupts (su
h as the user typing Control-C)

are represented by raiseIO, but the programmer may also use it. Any other

desired I/O operations may be added similarly. I/O
omputations are left

almost untou
hed by the evaluation semanti
s, sin
e they are treated as
on-

stru
tors. Following [PJGF96℄, we give a transition style semanti
s to the I/O

operations. Two example axioms of the monadi
 transition semanti
s are

(returnM)>>=N �!N M

(raiseIOM)>>=N �!raiseIOM:

All transitions take pla
e within evaluation
ontexts of the following form:

E ::= [�℄ j E>>=M:

An external interrupt repla
es the
urrent
omputation with a raiseIO:

E[M ℄

 e

�! E[raiseIO e℄

where E is the maximal evaluation
ontext of E[M ℄ (i.e. M is not of the

form M

1

>>=M

2

). We have labelled the transition with e to indi
ate that

an aysn
hronous ex
eption has o

urred. We are still unable to
at
h any

ex
eptions at this point, but now that we have the I/O monad, help is at

hand.

6.3 Cat
hing and Handling Ex
eptions

We add two new operations to the I/O monad:

� � � j getEx
eptionM j getEx
eptionIOM:

The former
at
hes and rei�es ex
eptions that are raised during normal evalu-

ation (like division by zero), while the latter
at
hes and rei�es I/O ex
eptions

and external interrupts. Here's how getEx
eption works:

M + V

getEx
eptionM �!return (OkV)

M " e

getEx
eptionM �!return (Bad e)

where Ok and Bad are tags that may be inspe
ted by ex
eption handlers.

getEx
eptionIO is similar. We also need to extend evaluation
ontexts:

E ::= [�℄ j E>>=M j getEx
eptionIOE:

6.4 Con
urrent Haskell with Ex
eptions

It is also relatively simple to
ombine ex
eptions with Con
urrent Haskell

[PJGF96℄. Add the following I/O operations:

� � � j forkIOM j newMVarM j takeMVarM j putMVarM N j signalIOM N:

forkIO spawns a new pro
ess,
ontaining I/O
omputation M , and returns a

thread identi�er. newMVar, takeMVar, and putMVar
on
ern shared, syn
hro-

nised variables. The new feature relative to [PJGF96℄ is signalIO, whi
h allows

one thread to raise an ex
eption in another.

Now we
an extend the transition system given above to work on pro
esses

of the following form:

P;Q ::= 0 j hhMii

t

j hi

n

j hMi

n

j �x:P j P jjQ;

omprising a nil pro
ess, a thread of
omputation named t, empty and full

MVars, restri
tion, and parallel
omposition. For example, here is the transi-

tion for forkIO:

hhE[forkIOM ℄ii

t

�!�u:hhE[return u℄ii

t

jjhhMii

u

; u =2 fn (E;M):

7 Con
lusions and Future Work

We have built an operational theory for impre
ise ex
eptions that
orresponds

very
losely to the denotational semanti
s of [PJRH

+

99℄. By showing that re-

�nement similarity, a simple and e�e
tive means of establishing re�nement and

equivalen
e based upon appli
ative simulation,
oin
ides with respe
t to
on-

textual re�nement, we were able to verify most of the standard
all-by-name

equations. The advantage of having an operationally-based theory is that we

an more readily extend the language; in parti
ular, adding
on
urren
y is

easy.

One short
oming of the present theory is that the Ex
eption type is
at:

ex
eptions have no stru
ture. Allowing ex
eptions to be arbitrarily
omplex

doesn't appear to pose any signi�
ant problems, and is
ertainly something

that should be pursued.

We have only dis
ussed
all by name in this paper, although part of our

motivation for using an operational semanti
s is to make it possible to be

pre
ise about
all by need, following [MS99℄. However, giving an operational

semanti
s for impre
ise ex
eptions and
all-by-need is not a trivial matter,

sin
e
are must be taken to ensure that presen
e of sharing doesn't interfere

with the non-determinism inherent in impre
ise ex
eptions. Another diÆ
ulty

is the fa
t that there is no known
ongruent appli
ative bisimilarity for
all-

by-need, so perhaps the theory would need to be developed via an abstra
t

ma
hine instead (along the lines of [MS99℄).

A
knowledgements.

The �rst author gratefully a
knowledges the hospitality of the Mi
rosoft

Resear
h Lab (Cambridge), where this work was begun, and the Oregon Grad-

uate Institute, where this work was
ompleted.

Referen
es

[Abr90℄ S. Abramsky, The lazy lambda
al
ulus, Resear
h Topi
s in Fun
tional

Programming (D. Turner, ed.), Addison-Wesley, 1990.

[CC91℄ P. Cousot and R. Cousot, Indu
tive de�nitions, semanti
s and abstra
t

interpretation, Pro
. POPL'91, ACM Press, January 1991.

[Gor94℄ A. D. Gordon, Fun
tional programming and input/output, Distinguished

Dissertations in Computer S
ien
e, Cambridge University Press, 1994.

[HM95℄ J. Hughes and A. K. Moran, Making
hoi
es lazily, Pro
. FPCA'95,

ACM Press, June 1995, pp. 108{119.

[How96℄ D. Howe, Proving
ongruen
e of bisimulation in fun
tional

programming, Information and Computation 124 (1996), no. 2, 103{

112.

[Las98℄ S. B. Lassen, Relational reasoning about fun
tions and nondeterminism,

Ph.D. thesis, Department of Computer S
ien
e, University of Aarhus,

De
ember 1998, BRICS Dissertation Series DS-98-2.

[Mor98℄ A. K. Moran, Call-by-name,
all-by-need, and M
Carthy's Amb, Ph.D.

thesis, Department of Computing S
ien
e, Chalmers University of

Te
hnology, September 1998.

[MS99℄ A. K. Moran and D. Sands, Improvement in a lazy
ontext: An

operational theory for
all-by-need, Pro
. POPL'99, ACM, 1999.

[MSC99℄ A. K. Moran, D. Sands, and M. Carlsson, Errati
 Fudgets: A semanti

theory for an embedded
oordination language, Coordination '99, LNCS

1594, Springer-Verlag, 1999.

[PJGF96℄ S. L. Peyton Jones, A. D. Gordon, and S. Finne, Con
urrent Haskell,

Pro
. POPL'96, ACM Press, 1996, pp. 295{308.

[PJRH

+

99℄ S. L. Peyton Jones, A. Reid, C. A. R. Hoare, S. Marlow, and

F. Henderson, A semanti
s for impre
ise ex
eptions, ACM SIGPLAN

Noti
es 34 (1999), no. 5, 25{36, Pro
. of PLDI'99.

[PJW93℄ S. L. Peyton Jones and P. Wadler, Imperative fun
tional programming,

Pro
. POPL'93, ACM Press, 1993, pp. 71{84.

[Plo75℄ G. D. Plotkin, Call-by-name,
all-by-value and the �-
al
ulus,

Theoreti
al Computer S
ien
e 1 (1975), 125{159.

