HOOTS99 Preliminary Version

Imprecise Exceptions, Co-Inductively

Andrew Moran

Oregon Graduate Institute
moran@cse.ogi.edu

Sgren B. Lassen
University of Cambridge
Soeren.Lassen@cl.cam.ac.uk
Simon Peyton Jones

Microsoft Research Ltd., Cambridge
simonpj@microsoft.com

Abstract

In a recent paper, Peyton Jones et al. proposed a design for imprecise exceptions in
the lazy functional programming language Haskell [PJRH"99]. The main contribu-
tion of the design was that it allowed the language to continue to enjoy its current
rich algebra of transformations. However, the denotational semantics used to for-
malise the design does not combine easily with other extensions, most notably that
of concurrency. We present an alternative semantics for a lazy functional language
with imprecise exceptions which is entirely operational in nature, and combines well
with other extensions, such as I/O and concurrency. The semantics is based upon
a convergence relation, which describes evaluation, and an exceptional convergence
relation, which describes the raising of exceptions. Convergence and exceptional
convergence lead naturally to a simple notion of refinement, where a term M is re-
fined by NV whenever they have identical convergent behaviour, and any exception
raised by N can also be raised by M. We are able to validate many call-by-name
equivalences and standard program transformations, including the ubiquitous strict-
ness transformation.

1 Introduction

In an earlier paper [PJRH"99] we showed how to add exceptions to a lazy,
purely-functional programming language, such as Haskell. There were three
key ideas.

The first was to treat an exception as a wvalue rather than as a change
of control flow. This idea is fairly standard; for example, the IEEE floating

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

point standard uses it for NaNs. The second idea addressed the question of
what meaning to assign to expressions like:

(raiseer) + (raise e).

Does this expression deliver the exception e;, or e;? The conventional ap-
proach is to fix the evaluation order, thus determining which of the two ex-
ceptions is delivered. This works well for languages whose evaluation order
is already highly constrained because of other effects, such as assignment or
input/output. For languages like Haskell, however, code motion that changes
evaluation order is a key transformation, and fixing the evaluation order would
be a major blow. The alternative we advocated in [PJRH99] is to say that
the meaning of the expression is a set of two exceptions, e; and e,. If the
order of the operands to + is reversed, the meaning is unchanged.

The third idea is that to catch an exception is to make a non-deterministic
choice among the set of exceptions in an exceptional value. To avoid making
the entire language non-deterministic, catching an exception is regarded as
an input/output operation in Haskell’s I/O monad. This makes our proposal
a little less expressive than (say) ML exceptions; the payoff is that program
transformations are almost entirely unaffected, with no side conditions.

Our slogan, therefore is: We want to add exceptions to a lazy language,
without losing any useful program transformations. The earlier paper for-
malised this claim by using a denotational semantics. In this paper we present
an alternative formalisation, by providing an operational semantics for a call-
by-name language augmented with raise. There are two reasons for taking this
approach:

* Compilers for languages like Haskell take great care to use call by need,
rather than call by name. The two are denotationally indistinguishable,
but operationally they may differ dramatically. Despite this, not much
theoretical work has been done to make this distinction precise. In separate
earlier work we have therefore developed operational techniques to reason
about improvement (i.e. optimisation) in call-by-need languages [MS99].
We wanted to be able to extend these techniques to a language including
exceptions.

 Haskell includes a monadic form of input/output [PJW93], and an extend-
ed version of Haskell supports concurrent threads [PJGF96]. We believe
that an operational semantics in the style of a process calculus is more suit-
ed to describing the semantics of these extensions than is a denotational
semantics.

Our goal, then, is to develop a layered operational theory that encompass-
es input/output, concurrency, exceptions (including asynchronous exceptions
such as inter-thread signals), and call-by-need. In the purely functional sub-
language it should be no harder to prove equivalences than it is in simpler
calculi; but these equivalences should be proven to hold in the more complex

setting in which new kinds of observation are possible.

This paper tackles a small part of that goal. We treat only the purely-
functional part, in which one can raise an exception, but not catch it. We give
a formal operational semantics for this language, and prove several equational
laws that correspond closely to the standard theorems for a call-by-name cal-
culus [Plo75], thus formalising the effect of adding exceptions on the theory.
We study call by name semantics only, leaving the extension to call by need
for further work, and we only briefly sketch the extensions to handle I/O and
concurrency.

The operational semantics presents a novelty in that exceptional behaviour
is defined co-inductively to capture the idea from [PJRH"99] that diverging
expressions can raise any exception. Based on this operational semantics we
define suitable Morris-style contextual equivalence and refinement relations
between terms. As a tool to reason about these, we introduce a form of
applicative simulation taking imprecise exceptions into account. We show
that the resulting bisimulation equivalence is a congruence, using Howe’s con-
gruence proof method [How96|, and thus that it coincides with contextual
equivalence.

The rest of the paper is organised as follows. Section 2 surveys related
work. Section 3 presents the language and its operational semantics in the
form of natural semantics rules for normal convergence and exceptional con-
vergence relations. The next two sections examine two kinds of preorders,
based upon the operational semantics. Section 4 presents a Morris-style con-
textual refinement preorder, where M is refined by N if they have identical
convergent behaviour, and any exceptional behaviour exhibited by N is also
present in M. We prove that contextual refinement coincides with an applica-
tive simulation preorder, enabling us to establish the validity of beta-laws and
the strictness transformation. Extensions to the simple functional language,
like case expressions, I/O, exception handling, and concurrency, are then de-
scribed briefly in section 6. We conclude in section 7.

2 Related Work

The imprecise exception mechanism was introduced in [PJRH"99] where it is
related to other approaches to exception handling in functional languages.

Co-inductively defined operational semantics have appeared before (see
e.g. [CC91,HM95]), but there it has usually been used to define divergence or
non-termination predicates. Our use of co-induction to define an exceptional
convergence relation appears to be new.

There is not much prior work on equational reasoning about exceptions. In
[Gor94, §6.7] Gordon considers a small call-by-name language with a (deter-
ministic) monadic exception mechanism, rather different from our imprecise
exceptions, for which he also develops an operational theory of applicative
bisimulation using Howe’s method [How96].

In [PJRHT99] we give a denotational semantics for imprecise exceptions
which is carefully engineered to preserve many equational laws from the pure
functional language. The operationally-based notion of equivalence relation
in the present paper is basically an operational rendering of equality in this
denotational model. The refinement preorder that we introduce is inspired
by our earlier work on operational theories for non-deterministic functional
languages [Las98,Mor98,MSC99]; our adaptation of Howe’s congruence proof
to deal with non-deterministic exceptions also uses techniques from [Las98].

3 Operational Semantics

In this section, we describe the behaviour of terms in an untyped, call-by-
name lambda calculus extended with a data type of exceptions and a means
of raising exceptions, called raise. The syntax of the language is:

M,N == x| x.M|MN |lett z=M in N |raise M |e,

let! =DM in N denotes a strict let expression, with the obvious intended
semantics. It is included mainly to allow us to easily express the strictness
transformation in section 5. Exceptions may be raised with raise M, and e
ranges over values of the Exception datatype:

data Exception = TypeError | UserError Sitring---

The language is untyped. The TypeError exception is used to signal type
errors arising from applying exceptions or raising functions. UserError is
self-explanatory and may be used to help define the standard Haskell function
error:

error msg = raise (UserError msg)

Other exceptions, like DivideByZero, or OverFlow may easily be added as
the need arises. Throughout, U and V' will range over all values (i.e. lambda
expressions or elements of Exception).

We define two forms of convergence: normal convergence, where evalu-
ation terminates without an exception being raised, and exceptional conver-
gence, where evaluation is brought to an abrupt halt due to the raising of an
exception.

3.1 Normal Convergence

We define convergence in the functional core via a standard inductively-defined
convergence relation:

My \o.M' M'[INLJYV
MN|V

VIV (Valuey) (Appy)

MUYU NULLV
let! =M in N |V

(Strict Lety)

where M || V should be read as “closed term M converges to closed value
V”. Lambda expressions and elements of the Exception datatype converge
immediately. Applications are evaluated in normal order, and strict lets are
evaluated eagerly. Note that raise has no rule. This is as it should be: the
raising of an exception is certainly not normal convergence!

3.2 Exceptional Convergence

We will write M 1 e to mean that closed term A converges exceptionally
with, or raises, exception e. Unusually, 1 is defined co-inductively. The rules
are labelled with “—” to indicate this fact.

We are now able to give a semantics to raise:

Ml e
raise M T e

M7Te

— (Raiser,) raise M T e

— (Raisey,)
raise can only converge exceptionally, but may do so in more than one way. For
example, raise M will either raise the exception to which M evaluates, or raise
any exception that arises during the evaluation of M. This latter behaviour
is common to any strict function or constructor.

Type errors are signalled by the TypeError exception:

M| \x.N
raise M 1 TypeError

Mle _ 4)
M N 1 TypeError PPt

— (Raiseyq,)

An application may raise an exception if its function does, or an exception
is raised after substitution:

M1te M dz. M M'[N/]te
NN Te Arey) MN Te .

- (APPTQ)

This is not the whole story; we are aiming for flexibility. One of the most
crucial transformations in any compiler for a lazy, functional language is the
strictness transformation, in which f N is transformed to

let! =N in fx

when f is discovered to be strict—in this context we define strict to mean
that f (raisee) can raise e, for every exception e. Therefore, our notion of
exceptional convergence must allow different evaluation orders: in M N, N
may be evaluated before M! This motivates the final rule for application:

M N
- ()

where M | is short for =3V.M || V. Note that we only allow exceptional
convergence in the argument to lead to exceptional convergence in the ap-
plication as a whole when the function also converges exceptionally. This
prevents erroneous conclusions such as

(Az.3) (raisee) 1 e.

Strict lets are similar to applications. The first two rules are analogous.

M7Te
let! t=M in N T e

My V NVi]te
let! t=M in N Te

— (Strict Lety,) — (Strict Lety,)

We need to be a bit clever for the analogue of the third rule. Consider the strict
let expression let! x = M in N. If M has exceptional behaviour, then we must
allow any exceptional behaviour in the body of let, by analogy with (AppTS).
The problem is that z may occur free in N, but since M hasn’t converged
we have nothing to which to bind x. We need some way of discovering the
exceptional behaviours of N that are independent of x.

Our solution follows an idea from [PJRH*99]. We bind z to an auxiliary
term O with no behaviour: it neither evaluates to any value or raises any
exceptions ' . Now, if N[0/,] raises an exception, it does so independent of the
behaviour of x.

MY NOWYC (spriet Lety)
let! z=Min N Te 3

Formally, we now read the M || V and M 1 e judgements as defined on closed
terms M drawn from an extended term grammar which includes the 0 term.

Divergence is Exceptional Convergence.

The rules for exceptional convergence have a non-trivial inductive inter-
pretation: the behaviour of terms which can raise exceptions after a finite
amount of computation, like let! z =raisee in M or let! x =V in raisee. In-
deed, any set of rules like those above may be interpreted either inductively
or co-inductively. So why take the co-inductive reading in this case?

1 Had we not chosen to let attempts to raise non-exceptions result in TypeError being
raised in rule (Raisey,), we could have defined 0 to be the term raise (Az.x).

By choosing the co-inductive interpretation, we include all divergent terms,
like Q@ = (\z.z z) (Az.z), and terms whose divergence depends upon excep-
tional behaviour, like (raisee) 2. The co-inductive interpretation stipulates
that such divergent terms may raise any exception e, as we cannot refute
that a divergent term raises e. This operational semantics models the inter-
pretation of divergence in the denotational semantics of imprecise exceptions
in [PJRH'99]. It represents the idea often used in programming language
semantics that divergence includes all erroneous behaviours.

This motivates the following definition of when closed term M diverges,
written M 1):

def

M A% Ye.M te.

3.8 Determinism and Fxclusivity

An important property of normal convergence is that it is deterministic. That
is

MYUAMUJV = U=V.

But if an expression raises an exception, the semantics is deliberately vague
about which exception may be raised. That is, it is entirely possible that
M 1 e; and M 1 ey but e; # es. It is this imprecision that validates many
useful program transformations.

Moreover, when restricted to terms not containing 0, normal convergence
is mutually exclusive with exceptional convergence, as stated by the following
theorem.

Theorem 3.1 For any given closed term M not containing 0, exactly one of
the following statements is true:

(1) V.M |V, (17) Je.M T e.
We can prove
M|V = —de.M te, (3.1)

for arbitrary terms M and values V', by rule induction on M || V. It then
remains to prove that

MY = Je.M te. (3.2)

for all closed O-free M. This is harder because the existential quantification
prevents us from arguing by rule co-induction on M 1 e. We encounter this
kind of difficulty with co-inductive reasoning about the 1 relation elsewhere
in the sequel. We overcome this difficulty, by introducing an auxiliary, induc-
tively defined exception relation, *, between terms M and finite non-empty

Ml e

0.1 (Stuck) M N {TypeError} (App 7,)
Agii;%;*gjii;fQ (App ;) raseﬂzyifiiigiérror} (Raise »,)
T (i) IS i)

M S N[OV
letlz =M in N S

MYV NV s
letl =M in N S

M8 NOL /S,
|et!$:MinN/‘51U52

Fig. 1. The rules defining .

(Strict Let ») (Strict Let)

(Strict Let)

sets S of raised exceptions. The meaning of the judgement M 7 S is that M
raises the exceptions in S and M doesn’t diverge. It is defined by the following
set of rules. This relation also plays a fundamental role in the development of
the operational theory of applicative simulation in section 4.

Lemma 3.2 For all closed terms M,
Mte < (3S3eM /S)V M.
Proof. The forward implication is equivalent to:
MteAn=(AS>eM /S) = Ve'.M 1€

This we prove by rule co-induction on M 1 €.
For the reverse implication it suffices to show that M S — Ve €
S.M 1 e, which we prove by rule induction on M 7 S. O

Now we see that (3.2) is equivalent to M f A-(IS. M N"S) = Ve.M 1
e, for all closed O-free terms M, and this can be proved by rule co-induction
on M 1 e. The proof uses the easily established fact that, whenever M || V/,
if M doesn’t contain O, the same is true of V.

4 Refinement and Equivalence

The preceding section specified the meaning of program terms. However,
compilers work by transforming one term into a semantically equivalent, but
perhaps more efficient one, so we need to know precisely what equivalence
means, and we need usable techniques to prove that two terms are equivalent.

In practice, precise equivalence is over-restrictive. Suppose a term can raise
either of the exceptions e; or es. Arguably, it would be fine for a compiler to

replace it with an expression that can raise only ey, especially if the latter was
more efficient. The new program doesn’t have exactly the same meaning as
the old one, but we argue that the change is legitimate. Why? Because the
only way that we provide to catch an exception is to make a non-deterministic
choice from the set, so the new program will exhibit behaviour that is always
possible from the old program. (The new program will never deliver ey, but
the old one need never deliver ey, depending on how the non-deterministic
choice goes.)

In short, to give maximum freedom to the compiler (a good thing, since
it may enable it to generate better code) we want to let it refine a program;
that is, to transform it to a new program that refines, but is not necessarily
equivalent to, the original program. A term M is refined by N, written M T
N, if they have identical convergent behaviours, and any exceptional behaviour
exhibited by N can be mimicked by M. In this section we make this definition
precise, and we explain how to prove such a relationship.

To this end, we first formalise this idea of refinement as a suitable Morris-
style contextual refinement preorder. This constitutes the prior notion of
refinement: it’s what we really mean by refinement. The main result of this
section allows us to establish contextual refinement by showing a much simpler
relationship, called refinement similarity. This is justified because refinement
similarity is a precongruence. We sketch the proof of the precongruence of
refinement similarity via the nigh-standard method due to Howe [How96].

We close with examples of the use of refinement simulation. We establish
the validity of beta-laws and the strictness transformation for our language.

4.1 Contertual Refinement and Equivalence

Program contexts are usually introduced as “programs with holes”, the inten-
tion being that a closed expression is to be “plugged into” all of the holes in
the context. We will use contexts of the form

C,D == x| x.C|CD|lettz=Cin D |raiseC|e|0.

Conventionally, the prior notion of observational equivalence is defined con-
textually; we say M is equivalent to N whenever, for all program contexts C
such that both C[M] and C[N] are closed,

CIM]} <= C[N]J

where the notation M| means that there exists some value V' such that M |
V.

In the presence of imprecise exceptions, this is only half the story. The
above definition would identify all terms that raise any kind of exception, e.g.
Q would be identified with raise (UserError "No such element"). In other
words, a theory based upon the conventional definition would be oblivious to
exceptions; we might as well not have added imprecise exceptions at all!

We define contextual refinement in such a way that it includes the above
definition, but is also sensitive to exceptional behaviour.

Definition 4.1 M is conteztually refined by N, written M T N, if, for all
program contexts C such that both C[M] and C[N] are closed,

CIM] § < C[NT{
AVe.C[N]Te = C[M]Te.

Conteztual equivalence, denoted =2, is mutual contextual refinement.

Remember that we intend that if M C N, then it is legitimate for a
compiler to replace M by N. Intuitively, a term is contextually refined by
another if the latter has identical convergent behaviour to the former and the
latter does not introduce exceptional behaviours not already present in the
former. Another way of looking at it is that non-determinism (derived from
possible exceptional behaviour) is not increased when moving upwards in a C-
chain. This definition allows an implementation to decrease non-determinism
by making choices. For instance, we shall see that by this definition M L
raise e if M 1 e, regardless of whether M can also raise other exceptions.

4.2 Refinement Similarity and Bisimilarity

In the operational techniques community, one typically presents similarities
and bisimilarities in terms of simulation functionals and other auxiliary rela-
tional operators. We will first present refinement similarity and bisimilarity in
a direct fashion, deferring the more standard definitions (involving auxiliary
relational operators) until section 4.3. We then state the main result of this
section, that refinement similarity and bisimilarity coincide with contextual
refinement and contextual equivalence.

Given a relation R between closed terms, its open extension, written R°,
is the relation between arbitrary terms M and M’ such that Mo R M'c for
every closing substitution o for the free variables in M and M’.

We define refinement similarity, written <, as the greatest relation satis-
fying the following rule:

VMo.M | Ax. My = INy.N | A\x.No A My <S° N
VNo.N | Ax.Ny = IMy.M || Ax. My A Ny <° My
VeM e < N |e (Ref Sim Def)
Ve.N e = Mte
M <N

(Again, the — indicates that this is a co-inductive definition.) It says that if
all convergent behaviours of M are related by < to convergent behaviours of

N (and wvice versa), and if all exceptional behaviours of N can be matched
by exceptional behaviours of M, then M < N. It is a simple matter to
convince oneself that < and < are reflexive and transitive. Also, terms whose
behaviour depends upon 0 are identified by <, since all of the premises of
(Ref Sim Def) hold trivially for them.

Bisimilarity, written ~°, is mutual refinement similarity.

A given relation R is compatible if whenever M R N, we have that C[M| R
C[N] for all contexts C. (We will give an equivalent definition of compatibility
in section 4.3.) Any compatible equivalence is a congruence; any compatible
preorder is a precongruence.

An important property of <° is that it is compatible.

Lemma 4.2 <° is compatible.

This in turn leads to the main result of this section: we can use <° to
establish contextual refinement and ~° to establish contextual equivalence.

Theorem 4.3 (i) MC N <= M <°N.
(ii) M =2 N <= M ~° N.

Proof. It suffices to prove (i); (ii) is then immediate.

Suppose M <° N. We must show M T N. Since <° is compatible, we
know that for any context C for which C[M] and C[N] are closed, C[M] <
C[N]. Therefore, if C[N] || then C[M] |}, and vice versa, and if C[N] 1 e then
C[M] 1 e. This is exactly the definition of C. Hence <° C L.

The reverse inclusion, C C <°, is proved co-inductively by showing that
L is an applicative error simulation and that the reciprocal relation, L, is
an applicative convergence simulation. The proofs make use of the beta-laws
in section 5 which, by the above inclusion $° C C, can be established for T
by via refinement similarity. O

4.8 Compatibility of Refinement Similarity

In order to enable us to prove its compatibility, refinement similarity will be
decomposed in terms of two applicative similarities. The first is essentially the
same as the applicative similarity of [Abr90,How96]. The second is obtained
from the first by adding an extra clause for exceptional behaviour. First, we
define a useful auxiliary notion.

4.8.1 Compatible Refinement

We use the notion of the compatible refinement of a given relation to define
what it means for a relation on open terms to be a congruence. It is also used
to define the simulation functional upon which our notion of similarity will be
based. If R is a binary relation over terms, then its compatible refinement,]/1;,,

is defined by the rules:

~ —~ —~ ! !
z Rx eRe ORO MEN MRMANRN
Az.M R \x.N MN R M'N'
MRM NRN' M RN

let! z=M in N R let! z=M'in N’ raise M R raise N

Compatible refinement will be used in the definition of simulation below as a
way of testing values, but it also provides a simple characterisation of com-
patibility. We can easily show that R is compatible when R C R.

4.83.2 Applicative Convergence Similarity
The applicative convergence simulation functional, is defined as follows.

Definition 4.4 Given relation R, define [R] thus
MR, NE VUM U = IV.NJVAURV.

An applicative convergence simulation is a relation that is dense with re-
spect to []ﬁ, i.e. R C [R]ﬁ Define applicative convergence similarity, <9, as

the largest applicative convergence simulation.

Lemma 4.5 < is compatible.

S

We elide the proof of the compatibility of <{. It is a simple instance of
that found in [How96].

4.8.8 Applicative Error Similarity
The applicative error simulation functional, is defined as follows.

Definition 4.6 Given relation R, define [R], thus

MR, NE YUMUYU = FVNIVAURV
AVe.Nte = M Te.

An applicative error simulation is a relation that is dense with respect to
[]? Applicative error similarity, <?, is the largest applicative error simulation.

~1)

o

7 s compatible.

Lemma 4.7 <

In order to prove this, we will define a candidate precongruence which by
definition will be compatible and contain applicative error similarity. Then
we will show that the candidate is an applicative error simulation. This will
imply the desired result: that applicative error similarity is compatible.

The candidate congruence, written <?, is the least relation satisfying

~T?

M<sM M <N

s (4.1)
~1

This relation can easily be shown to have the following properties.

Lemma 4.8 (i) <P is compatible.
(i) S0 C 53
fii) S50 C <

(iv) <t is substitutive: M <t M AN <8 N' = M[M'/,] <+ N[N'/).

This lemma states that <? is indeed an applicative error simulation.
. o]0
Lemma 4.9 <P C LST]T'

Proof. Since <P is reflexive (because it is compatible) and substitutive, it
suffices to prove that M <P N implies M [5;]T N for all closed M and N.
There are two parts to the proof, corresponding to the two clauses in the
definition of [-],.
(1) We are required to prove:
M<SUNAMJPU = VN VAUZV. (4.2)

T

This follows by rule induction over the judgement M | U. We elide the
proof (it is in fact the crucial lemma for showing the applicative convergence
similarity is compatible).

(2) We are required to prove

M<UNANte = Mte, (4.3)

However, it will be sufficient to prove

M<NAM S = 3IT.N *TATCS. (4.4)

1

since if M 1, then (4.3) follows trivially, and if M |} then N |} also, by (4.2),
and in that case (4.3) holds trivially.

Suppose M <t N and M 7 S. We proceed via rule induction on the
judgement M 7 S. We give the application cases only. Here M = M; M,
and, since M <P N, we know there exists an M' = M] M, such that M; $3 M
for i = 1,2, and M’ <? N. We may assume that M’ is closed (otherwise,
any closed instance of M’ fits the bill, by the reflexivity and substitutivity
properties of <? and by the definition of <° by open extension). There are

St

four sub-cases; we give two only.

(App »,) My |} e, and M {TypeError}. Then by (4.2), M{ | e also, so
M" /7 {TypeError}. Since M’ <? N, we know that any exception that N
can raise must be contained in this set, so we are done.

(App »,) My § Ax.My and My[M2/,] ~ S. By (4.2), M! |} Xx.M} where
My < Mj. By substitutivity, My[Ma/,] < M}[Ms/,], so by the inductive
hypothesis, M{[M3/.] » T for some T C 8. Therefore M’ T, and the
result follows since M' <2 N. O

Proof of Lemma 4.7. <7 is compatible.

Proof. <7 is by definition the greatest (open) applicative error simulation.
Therefore, since <P is an applicative error simulation, by lemma 4.9, <P C

<9. But <9 C 2, by lemma 4.8(ii), so P = <P <SP is compatible, by

lemma 4.8(i), so <7 is also. O

4.3.4 Compatibility of Refinement Similarity
We are now in a position to decompose refinement similarity into applicative
convergence similarity and applicative error similarity.

Lemma 4.10 M <° N < NI MAMS)N.

A similar lemma holds for bisimilarity.

Proof of Lemma 4.2. <° is compatible.

Proof. Since its component parts are compatible, <° is compatible. O

5 The payoff: examples of equivalences

So much for the underlying theory. It is time to return to the claim we made
in the introduction, namely that we have added exceptions to a lazy language
without losing any useful program transformations. Have we met that goal?
We don’t know how to prove it in general. What we do instead in this section
is to take several practically-useful equivalences in the ordinary call-by-name
calculus, and prove that they remain valid in our extended language.

5.1 Simple laws

The following inferences are valid for all closed terms M by (3.1) and the
soundness of < and ~:

M|V M Te MY
M2V (W) M T raisee (1) MLTO (0)

The first also depends upon the deterministic nature of ||. Two simple beta-
laws are easily shown to be valid:

(Ax. M) N = M[N/y] (8)
let! 2=V in M = M[V/,] (let!-3)

For example, whenever (Az.M)N |} V so does M[N/,] by (Appy), and wice
versa. Furthermore, whenever (Az.M) N 1 e, so does M[V/,], by (Apps,), and

vice versa. Therefore, (\z.M) N ~ M[N/,], and we have that (Az.M)N ~
MI[N/,], when (Az.M) N and M[N/,] are closed. This extends to open terms
since ~ is substitutive, and the result follows.

As a result of () we get that = is substitutive:

M2MAN=N = (Ax.M)N = (\x.M')N' congruence
= M[N/;] = M'[N] (8)

This is also true of L, by similar reasoning.

5.2 Commuting independent evaluations

The next example is more substantial. It captures the essence of the commu-
tativity of the + example from the introduction.

Proposition 5.1 Provided x and y are distinct and do not occur free in either
M or N,

let! t=M inletl y=N in P = letl y=N inletl =M in P.

Proof. Let LHS and RHS refer to the two expressions we are equating. As
was the case for the beta-laws, it is enough to prove the equation when LHS
and RHS are closed. Then M and N are also closed. We proceed via a case
analysis of the convergence behaviour of M and N. There are four cases; we
give two only.

e M| U,and N || V, for some U and V. Then

LHS =Zletl z=Uin letl y=V in P ({}), congruence
= PIULIV)] (let!-B) x 2
= P[V/y][U/m] U, V are closed and
x, y are distinct
Zletly=Vinletl x=Uin P (let!-3) x 2
=~ RHS ({}), congruence

e M | and N . Then LHS | and RHS }f too. Thus it suffices to show that
LHS 1 e <= RHS 1 e, (5.1)

for all exceptions e. By the rules defining the exceptional convergence rela-
tion for strict let, we see that LHS 1 e holds if and only if one of
(i) M Te,
(ii) N te, or
(iit) P[OL][%) 1 e

holds. But the same is true of RHS, so we conclude (5.1), as required. O

5.8 Transforming call by name into call by value

Our final application involves the strictness transformation. It says that trans-
forming call-by-name (or need) into call-by-value is a refinement whenever the
context involved is strict in the sense of the premise. This transformation is
one of the most commonly applied in functional language compilers, and it is
important that it remains valid.

Proposition 5.2 For all M and N, then the following is a valid inference
rule:

ve‘M[raise] te
M[N/]~ letl 2=Nin M

The premise says that M is strict in z; that is, if = is replaced by raise e in
M, the resulting term is sure to be able to raise e. The bottom line says that
a call-by-name binding of x to an arbitrary term N (denoted by substitution)
is equivalent to a call-by-value binding (denoted by let!).

Proof. Assume M([raisee/] 1 ¢ for all e, and consider N. Again, it is enough
to prove the result when both M[N/,] and let! = N in M are closed, since T
and = are substitutive. Then N must be closed. We split the argument into
two cases:

e N |V, for some V. Then

let! t=Nin M Zletl z=V in M ({}), congruence
= M[V/y] (let!-5)
~ M[N/,] substitutivity,

as required.

« N |f. We prove that M[N/,] and let! 2= N in M are mutual refinements.

First, we show that M[N/,] C letlz=Nin M. Suppose let! x =N in M 1
e. This is derived either by (Strict Lets,) because N 1 e, or by (Strict Lety,)
because M[0/,] 1 e. In the first case, M[IV/,] 1 e is immediate from the
strictness assumption. In the second case, we use that by (0) we have
that N T 0. Therefore, M[N/,] T M[0/,]. Hence M[0/,] 1 e implies that
M[N/,] 1 e, and we are done.

Next, we show that let! z =N in M T M[N/,]. This direction is harder.
We need two facts:

MNL IV = UV =UN/IA (5.2)
YN MN'/] b UINY,
MIN/JteA=(Nte) = MO,] e (5.3)

We establish these facts for arbitrary terms M; (5.2) by rule induction on

MI[N/,] | V, and (5.3) by rule co-induction on M[0/,] 1 e. From (5.2), the
strictness assumption and (3.1) we conclude that M[N/.] Jf, so it suffices to
show that M[NV/,] 1 e implies let! 2 = N in M 1 e for all e. But this follows
easily from (5.3), (Strict Lety) and (Strict Lety,), and we are done. O

6 Extensions

The language described thus far is not particularly expressive (it lacks data
constructors, case expressions, integers, and primitives among other things).
It is also not so useful: we can raise exceptions with ease, but cannot catch
them! In this section, we sketch how the language and its semantics may
be extended to allow for more realistic language constructs, I/O operations,
catching and handling of exceptions, and primitives for concurrency. The
details of these extensions may be found in a forthcoming longer version of
this paper.

6.1 Data Constructors, etc.

We can easily add the following syntactic constructs to the language:
oo |eMy--- M, | case M of {c;Z; - N;}|Ti7 | MopN | fix M

where ¢ ranges over a set of constructor names (not renameable and disjoint
from variable names), 7i" is a distinguished value corresponding to integer i,
and op ranges over a set of primitive operators. fix is explicit recursion, and
case allows us to match on constructors.

The normal convergence semantics rules for these constructs are standard,
and the exceptional convergence semantics rules are straightforward adaptions
of those that were presented in section 3. For example, the three rules describ-
ing the exceptional behaviour of case expressions are very similar to those for
strict let expressions; this is the analogue of (Strict Lety,):

My Nz te

(Casey,)
case M of {¢; ;= N; } e

The proofs in section 4 can also be extended to take the new constructs into
account in a straightforward manner.

6.2 The I/O Monad

We can add the I/O monad to the language by extending the latter with the
following constructs:

-+ | return M | M >>= N | getChar | putChar M | raiselO M.

raiselO M represents a computation that when performed will raise the excep-
tion indicated by M. External interrupts (such as the user typing Control-C)
are represented by raiselO, but the programmer may also use it. Any other
desired I/O operations may be added similarly. 1/O computations are left
almost untouched by the evaluation semantics, since they are treated as con-
structors. Following [PJGF96], we give a transition style semantics to the I/O
operations. Two example axioms of the monadic transition semantics are

(return M) >=N — N M
(raiselO M) >>= N —raiselO M.

All transitions take place within evaluation contexts of the following form:
E == []|E>=M.

An external interrupt replaces the current computation with a raiselO:
E[M] te ElraiselO ¢]

where E is the maximal evaluation context of E[M] (i.e. M is not of the
form M; >>= M,). We have labelled the transition with e to indicate that
an aysnchronous exception has occurred. We are still unable to catch any
exceptions at this point, but now that we have the I/O monad, help is at
hand.

6.3 Catching and Handling Ezxceptions

We add two new operations to the I/O monad:
-+ - | getException M | getExceptionlO M.

The former catches and reifies exceptions that are raised during normal evalu-
ation (like division by zero), while the latter catches and reifies I/O exceptions
and external interrupts. Here’s how getException works:

MV
getException M — return (Ok V)
M Te
getException M — return (Bad e)

where Ok and Bad are tags that may be inspected by exception handlers.
getExceptionlO is similar. We also need to extend evaluation contexts:

E == []| E>>= M | getExceptionlO E.

6.4 Concurrent Haskell with Ezceptions

It is also relatively simple to combine exceptions with Concurrent Haskell
[PJGF96]. Add the following I/O operations:

.-+ | forklO M | newMVar M | takeMVar M | putMVar M N | signallO M N.

forklO spawns a new process, containing I/O computation M, and returns a
thread identifier. newMVar, takeMVar, and putMVar concern shared, synchro-
nised variables. The new feature relative to [PJGF96] is signallO, which allows
one thread to raise an exception in another.

Now we can extend the transition system given above to work on processes
of the following form:

P,Q = 0 [(M) | (n | (M) [va.P | P|Q,

comprising a nil process, a thread of computation named ¢, empty and full
MVars, restriction, and parallel composition. For example, here is the transi-
tion for forklO:

(E[forklO M]); — vu.(E[return ul), ||{M)u, u & fn(E, M).

7 Conclusions and Future Work

We have built an operational theory for imprecise exceptions that corresponds
very closely to the denotational semantics of [PJRH'99]. By showing that re-
finement similarity, a simple and effective means of establishing refinement and
equivalence based upon applicative simulation, coincides with respect to con-
textual refinement, we were able to verify most of the standard call-by-name
equations. The advantage of having an operationally-based theory is that we
can more readily extend the language; in particular, adding concurrency is
easy.

One shortcoming of the present theory is that the Exception type is flat:
exceptions have no structure. Allowing exceptions to be arbitrarily complex
doesn’t appear to pose any significant problems, and is certainly something
that should be pursued.

We have only discussed call by name in this paper, although part of our
motivation for using an operational semantics is to make it possible to be
precise about call by need, following [MS99]. However, giving an operational
semantics for imprecise exceptions and call-by-need is not a trivial matter,
since care must be taken to ensure that presence of sharing doesn’t interfere
with the non-determinism inherent in imprecise exceptions. Another difficulty
is the fact that there is no known congruent applicative bisimilarity for call-
by-need, so perhaps the theory would need to be developed via an abstract
machine instead (along the lines of [MS99]).

Acknowledgements.

The first author gratefully acknowledges the hospitality of the Microsoft
Research Lab (Cambridge), where this work was begun, and the Oregon Grad-
uate Institute, where this work was completed.

References

[Abr90] S. Abramsky, The lazy lambda calculus, Research Topics in Functional
Programming (D. Turner, ed.), Addison-Wesley, 1990.

[CCI1] P. Cousot and R. Cousot, Inductive definitions, semantics and abstract
interpretation, Proc. POPL’91, ACM Press, January 1991.

[Gor94] A. D. Gordon, Functional programming and input/output, Distinguished
Dissertations in Computer Science, Cambridge University Press, 1994.

[HM95] J. Hughes and A. K. Moran, Making choices lazily, Proc. FPCA’95,
ACM Press, June 1995, pp. 108-119.

[How96] D. Howe, Proving congruence of bisimulation in functional
programming, Information and Computation 124 (1996), no. 2, 103
112.

[Las98] S. B. Lassen, Relational reasoning about functions and nondeterminism,
Ph.D. thesis, Department of Computer Science, University of Aarhus,
December 1998, BRICS Dissertation Series DS-98-2.

[Mor98] A. K. Moran, Call-by-name, call-by-need, and McCarthy’s Amb, Ph.D.
thesis, Department of Computing Science, Chalmers University of
Technology, September 1998.

[MS99] A. K. Moran and D. Sands, Improvement in a lazy context: An
operational theory for call-by-need, Proc. POPL’99, ACM, 1999.

[MSC99] A. K. Moran, D. Sands, and M. Carlsson, Erratic Fudgets: A semantic
theory for an embedded coordination language, Coordination '99, LNCS
1594, Springer-Verlag, 1999.

[PJGF96] S. L. Peyton Jones, A. D. Gordon, and S. Finne, Concurrent Haskell,
Proc. POPL’96, ACM Press, 1996, pp. 295-308.

[PJRHT99] S. L. Peyton Jones, A. Reid, C. A. R. Hoare, S. Marlow, and
F. Henderson, A semantics for imprecise exceptions, ACM SIGPLAN
Notices 34 (1999), no. 5, 25-36, Proc. of PLDI’99.

[PJW93] S. L. Peyton Jones and P. Wadler, Imperative functional programming,
Proc. POPL’93, ACM Press, 1993, pp. 71-84.

[Plo75] G. D. Plotkin, Call-by-name, call-by-value and the M-calculus,
Theoretical Computer Science 1 (1975), 125-159.

