Proc. POPL 99

Types for M obile Ambients

Luca Cardelli
Andrew D. Gordon

Microsoft Research

Abstract

Java has demonstrated the utility of type systems for mobile
code, and in particular their use and impli cationsfor seaurity. Se-
curity properties rest on the fact that a well -typed Java program
(or the crresponding verified bytecode) cannot cause certain
kinds of damage.

In this paper we provide atype system for mobile mmputa-
tion, that is, for computation that is continuously adive before
and after movement. We show that a well-typed mobile mompu-
tation cannot cause certain kinds of run-time fault: it cannot
cause the exchange of values of the wrong kind, anywhere in a
mobil e system.

1 Introduction

In previous work [4] we introduced the (untyped, monadic) am-
bient calculus, a process cdculus for mobile computation and
mobil e devices. That calculusis able to express via encodings,
standard computational constructions such as channel-based
communication, functions, and agents.

The type system presented in this paper is able to provide
typingsfor those encodings, recovering famili ar type systemsfor
processes and functions. In addition, we obtain a type system for
mobile ayents and other mobile computations. The type system
is obtained by deaorating the untyped cdculus with type infor-
mation.

Anambient, in our sense, isa onfined place where process
es run. Each ambient has a name, and may contain multi ple pro-
cessesand subambients. A processcan causeits suirrounding am-
bient to move in or out of other ambients, transporting al the
subambients and active processes with it. A process may also
open an ambient, that is, it can disolve an ambient boundary
whil e preserving its contents. Finally, processes within the same
ambient may exchange messages.

Our type system tradks the typing of messages exchanged
within an ambient. For example, thefoll owing system consists of
two ambients, named a and b:

a[(x:Int).P | open b | b[in a. (3)]

Permission to make digital/hard copies of all or part of this material for personal or
classroom useisgranted without feeprovided that the cpiesare not made or distributed
for profit or commercial advantage, the mpyright natice, thetitle of the pubicaionand
itsdate gopea, and ndiceisgiven that copyright isby permisson d the ACM, Inc. To
copy aherwise, to republish, to past on servers or to redistribute to lists, requires ge-
cific permission and/or fee.

POPL 99 San Antonio Texas USA

Copyright 1999ACM

The anbient named a contains a process(x:Int).P that isready to
read an integer messageinto avariable x and proceed with P, and
aprocessopen bthat isready to open (dissolve the boundary) of
an ambient b found within a. The anbient named b contains a
processin a. (3) that moves the anbient b inside a (by exeauting
in @ and then outputs the message 3. The ambient b is opened
after moving into a, so the output comes into dred contad with
the reading process within a. The result isthe binding of an inte-
ger message to an integer variable, yielding the state:

a[P{x3}]

The dhallenge of the type system is to verify that this exchange
of messagesiswell-typed. Notethat inthe original systemthein-
put and the output were mntained in separate locations.

Our ambient calculus is related to ealier distributed vari-
ants of the tecdculus, some of which have been equipped with
type systems. The type system of Amadio [1] preventsa channel
from being defined at more than one locaion. Sewell's g/stem
[12] tracks whether communicaionsarelocd or non-locd, so as
to all ow efficient implementation of local communicaion. In Ri-
ely and Hennessy's calculus [11], processes need appropriate
permisgons to perform actions such as migration; a well -typed
process is guaranteed to possess the gopropriate permission for
any adion it attempts. Other work on typing for mobile ayents
includes a type system by De Nicola, Ferrari, and Pugliese [5]
that tradksthe accasrightsan agent enjoysat diff erent locditi es;
type-chedking ensures that an agent complies with its access
rights.

2 The Polyadic Ambient Calculus

We begin by reviewing and slightly extending the anbient cal-
culus of [4]. Inthat cdculus, communication is based on the e-
change of single values. Here we extend the cdculus with com-
munication based on tuples of values (polyadic communication),
sincethis smple extension gredly fadlit ates the task of provid-
ing an expressive type system. In addition, we annotate bound
variables with type information.

Four of our process constructions (restriction, inadivity,
composition and replication) are commonly found in process
cdculi. To these we ad ambients, capabiliti es, and a simple
form of communication. We briefly discuss these @mnstructions;
see[4] for amore detail ed introduction.

The restriction operator, (vn:W)P, creates a new (unique)
name n of type W within a scope P. The new name can be used

to name anbients and to operate on ambients by name. The in-
adive process, 0, does nothing. Parallel composition is denoted
by abinary operator, P | Q, that is commutative axd associative.
Replicaion is atedchnicdly convenient way of representing iter-
ation and reaursion: the process ! P denotes the unbounded repli-
caion o the process P and isequivalent toP | !P.

An ambient iswritten M[P], where M isthe name of the an-
bient, and P isthe processrunninginside the ambient.

The process M.P exeautes an adion regulated by the caa-
bility M, and then continues as the processP. We @nsider three
kinds of capabiliti es: onefor entering an ambient, onefor exiting
an ambient and e for opening Yo an ambient. (The latter re-
quires gedal carein the type system.) Capabilities are obtained
from names; given aname n, the cgability in n alowsentry into
n, the capahility out n all ows exit out of n and the cgabilit y open
n allowsthe opening of n. Implicitly, the possesgon of oneor all
of these cagabiliti es is insufficient to reconstruct the original
name n from which they were extracted. Capabiliti es can aso be
composed into paths, M.M’, with € for the empty path.

Communicdionis asynchronous and locd to an ambient. It
is $milar to channel communication in the aynchronous Tr-cal-
culus [2, 6], except that the channel has no name: the surround-
ing ambient provides the mntext where the ammunication hap-
pens. The process(M;, ..., My) represents the output of a tuple of
values, with no continuation. The process (ni:Wi, ..., Nk Wi).P
represents the input of atuple of values, with continuation P.

Communicdion is used to exchange both names and cepa-
biliti es, which share the same syntadic dassM of expressions.
One of the main tasks of our type system isto distinguish the Ms
that are names from the Ms that are caabiliti es, so that ead is
guaranteead to be used in an appropriate ntext. In general, the
type system might distinguish ather kinds of expresgons, such as
integer and boolean expressions, but we do rot include those in
our basic calculus.

Polyadic Ambient Calculus
I 1

P.Q:= processes
(vn:W)P restriction
0 inadivity
P|Q composition
P replication
M[P] ambient
M.P action
(n:Wy, ..., nkW).P input
(My, ..., My async output
M= expressons
n name
inM can enter into M

out M can exit out of M
open M can open M

€ null path

M.M’ composite path

Syntactic conventions
Parentheses may be used for precalence

(vniW)P | Q isread ((vmiW)P) | Q
P|Q isread ('P)|Q
M.P|Q isread (M.P)|Q

(n:Wy, oo, idWQ).P | Q isread (WA, ..., nkWW).P) | Q
(VN Wy, ..., Nk WP (vngWh)...(Vvnit WP

n(] n[0]

M M.0 (where gpropriate)

1> > 1>

The foll owing tables describe the operational semantics of
the cdculus. The type annotations present in the syntax do not
play arole in reduction; they are simply caried along by the re-
ductions and will be explained in the next sedion.

Termsareidentified up to an equivalencerelation, =, cdled
structural congruence This relation provides away of rearrang-
ing expressions so that interading parts can be brought together.
Then, a reduction relation, —, ads on the interacting parts to
produce computation steps. The cre of the cdculusis given by
thereduction rules (Red In), (Red Out), and (Red Open), for mo-
bility, and (Red Comm), for communication.

Terms are dso identified up to the consistent renaming of
bound variables, in the restriction and input constructs. Wewrite
P{n M} for the substitution of M for ead free occurrence of
the name n in the processP. Similarly for M{n-M’}.

Freenames

fn((vnW)P) £ fn(P) —{n}

fn(0) 2 ¢

fn(P|Q) & fn(P) O fn(Q)

fn(!P) 2 fn(P)

fn(M[P]) & fn(M) O fn(P)

fn(M.P) 2 fn(M) O fn(P)
fn((Ne:Wy, .., nkWW).P) 2 fn(P) —{ny, ..., ng}
fn((My, ..., M) & fn(My) O ... O fn(My)
fn(n) 2 {n}

fnlinM) 2 fn(M)

fn(out M) 2 fn(M)

fn(open M) £ fn(M)

fne) & ¢

fnA(M.M") & fn(M) O fn(M’)

Structural Congruence

P=P (Struct Refl)
P=Q O Q=P (Struct Symm)
P=Q,Q=R 0 P=R (Struct Trans)
P=Q O (vn:T)P=(vn:T)Q (Struct Res)
P=Q O P|R=Q|R (Struct Par)
P=Q O 'P=1Q (Struct Repl)
P=Q O M[P]=M[Q] (Struct Amb)
P=Q O MP=M.Q (Struct Action)

P=Q O (Struct Input)
(nliTl, ey nk:TQ.P = (nliTl, ey nk:Tk).Q

PIQ=QI|P (StructParComm)
PIQIR=P|(Q|R (StructPar Assoc)
IP=P|IP (Struct Repl Par)
(vn:T)(vm:U)P = (vm:U)(vn:T)P if n#m (Struct Res Res)
(vnM(P|Q) =P |(vniT)Q ifn¢ fn(P) (Struct Res Par)
(vn:T)m[P] = m[(vn:T)P] ifn#m (Struct ResAmb)
P|lO=P (Struct Zero Par)
(vn:Amb[T])0=0 (Struct Zero Res)
10=0 (StructZeroRepl)
eP=P (Struct €)
(MM).P=MM.P (Struct .)

Reduction

| nfinm. P|Q] |[MR] — m[n[P|Q] |R] (Red In)
mnfoutm.P|Q] |R] — n[P| Q] | mM[R] (Red Out)
openn.P|n[Q] —P|Q (Red Open)
(n:Wy, .., kWP | (M4, ..., M) — (Red Comm)

P{ Ny My, .., Nk MK}

P—Q O (vnWP — (vn:W)Q (Red Res)
P—Q O n[P]l —n[Q] (Red Amb)
P—Q O PIR—QIR (Red Par)
P=P,P—-QQ=Q 0 P —Q (Red =)

L

3 Exchange Types

An ambient is a placewhere other ambients can enter and exit,
and where processes can exchange messages. The first asped,
mobility, is regulated by run-time caabiliti es and will not bere-
stricted by our type system. The second asped, communication,
iswhat we now concentrate on.

3.1 Topics of Conversation

Within an ambient, multi ple processes can fredy execute input
and output adions. Sincethe messagesare undireded, it iseasily
possible for a process to utter a message that is not appropriate
for some receiver. The main ideaof our type system is to keep
track of the topic of conversation that is permitted within agiven
ambient, so that talkers and listeners can be certain of exchang-
ing appropriate messages.

The range of topics is described in the following table by
message types, W, and exchange types, T. The message typesare
Amb[T], the type of names of ambients that all ow exchanges of
type T, and Cap[T], the type of capabiliti es that when used may
cause the unleashing o T exchanges (as a mnsequence of open-
ing ambients that exchange T). The exchange types are Shh, the
absenceof exchanges, and W, x...xW, the exchange of atuple of
messages with elements of the respedive message types. For
k=0, the empty tuple typeis cdled 1; it alows the exchange of

empty tuples, that is, it alows pure synchronization. The cae
k=1 all ows any message type to be an exchange type.

Types
I W:= message types I
Amb[T] ambient name dlowing T exchange
Cap[T] capability unleashing T exchange
T:= exchange types
Shh no exchange
Wix... xW tuple exchange
For example:

e A quiet ambient: Amb[Shh]

¢ A harmlesscapability: Cap[Shh]

¢ A synchronizaion ambient: Amb[1]

¢ An ambient that all ows the exchange of harmless cgpa-
biliti es: Amb[Cap[Shh]]

« A capability that may unleash the exchange of names of
quiet ambients: Cap[Amb[Shh]]

3.2 Intuitions

Before presenting the formal type rules, we discussthe intuitions
that lead to them.

Typing of Processes
If a message M has message type W, then (M) is a processthat

outputs (exchanges) W messages. Therefore, we will have arule
stating that:

M:W O (M):W

If P isaprocess that may exchange W messages, then (xW).P is
aso a process that may exchange W messages. Therefore:

P:w O (xW.P:W

The process 0 exchanges nothing, so it naturaly has exchange
type Sth. However, we may a so consider 0 asaprocessthat may
exchange any type. Thisis useful when we need to placeO in a
context that is already expeded to exchange some type.

0:T foranyT

If P and Q are processes that may exchange T, then P | Q isaso
such aprocess Similarly for !P.

P:T,Q:T O P|Q:T
P:T O IP:T
Therefore, by keeping track of the exchange type of aprocess, T-

inputs and T-outputs are tracked so that they match corredly
when placed in parallel.

Typing of Ambients

An ambient n[P] is a processthat exchanges nathing at the aur-
rent level, so, like 0, it can have ay exchange type, and can be
placed in parall el with any process

nfP]: T foranyT

There needs to be, however, a mnnedion between the type of n
and the type of P. We give to eat ambient name atype Amb[T],
meaning that only T exchanges are dlowed in any ambient of
that name. Ambients of different names may permit internal ex-
changes of different types.

n:Amb[T],P: T O
n[P] iswell-formed (and can have ay type)

By tagging the name of an ambient with the type of exchanges,
we know what kind of exchanges to exped in any ambient we
enter. Moreover, we can tell what happens when we open an am-
bient of a given name.

Typing of Open

Tracking the type of 1/0 exchanges is not enough by itself. We
also need to worry about open, which might open an ambient and
unlessh its exchanges inside the surrounding ambient.

If ambients named n permit T exchanges, then the capability
open n may unleash those T exchanges. We then say that open n
has a caability type Cap[T], meaning that it may unleash T ex-
changes when used:

n: Amb[T] O openn: Cap[T]

Asa mnsequence, any processthat uses aCap[T] must be a
processthat is already willi ng to participate in exchanges of type
T, because further T exchanges may be unleashed.

M:Cap[T,P:T O MP:T

The capability types Cap[T] do not keep track of any infor-
mation concerning in and out capabiliti es; only the df ect of open
istradked.

3.3 Typing Rules

We base our type system on three judgments. The main judg-
ment tracks the exchange type of aprocess that isthe type of the
1/O operations of the process, and of the 1/O operations that the
processmay unleash by opening other ambients.

Judgments
EF¢ good environment
EFM:W good expresson of message type W
EFP:T good processof exchangetype T

Based on the discussion in the previous ®dion, we can formal-
izethe type system as described in the foll owing table. Conven-
tion: alist of assumptionsE+ J; ... EF Jcfor k=0 meansE + 0.

Rules

[
(Envg) (Envn)
EF9¢ n¢dom(E)

E, nWI ¢

(Expn)
E.nW,E" F¢
E,nW,E" Fn:W

g0

(Exp€) (Exp)
EF¢ EFM:Cap[T] EFM :Cap[T]

Et¢e: Cap[T] E-M.M : Cap[T]
(Exp In) (Exp Out) (Exp Open)
E-M:Amb[S E-M:Amb[Y E-M: Amb[T]
EFinM:Cap[T] EFroutM:Cap[T] EF openM: Cap[T]
(Proc Action) (Proc Amb)

EFM:Cap[T] EFP:T EFM:AmMb[T] ERP:T

EFMP:T EFM[P]:S

(Proc Res) (Proc Zero)

E, nNAmb[T] - P: S EFO

EF (vn:Amb[T])P: S EFO:T
(Proc Par) (Proc Repl)

EFP:T EFQ:T EFP:T

EFP|Q:T EFIP:T

(Proc Input)

E, ng:Wy, ..., kWi E P2 WX, XW

EF (ni:Wh, ..., NicWE).P - Wi, . xW
(Proc Output)

EFM1:W; ... EF Mg W

EF (Mq, ..., M) : WX . xWj

« Example: A processthat outputs names of quiet ambients:
@ = 1(vn:Amb[Shh])(n) : Amb[Shh]
« Example: A cagpability that may unleash S-exchanges. Note

that the in nadion contributes nothing to the type of the path;
only the open m adion does:

@, n:AmMb[T], m:Amb[I in n. open m: Cap[g

The orrednessof the type system is expressed by the fol-
lowing proposition (the proof isin Appendix 7):

3-1 Proposition (Subjed Reduction)

IfEFP:UandP— QthenEFQ: U.
O

Certain “run-time aror” expressions are dlowed in the syn-
tax but are nonsensicd because they confuse names with capa-
biliti es. Examples are in N[P], (vn:Amb[T])n.P, and (in (in n)).
Such expressons are nat initialy typeable, and they cannot be
produced by well-typed processes becaise Proposition 3-1 says
that the evolution of well-typed processes leals only to well-
typed processes.

4 Applications

4.1 Channel Types

We now begin to explore the expressvenessof our type system.
The first test case is whether we can represent typed communi-

caion channels, that is, whether we can find a typed encoding of
the Tecdculus [8].

The basic ideafor the encoding of channelsisto use an am-
bient as a buffer where input and ouput processes can exchange
messages. An output operation generates an output padet that
enters the buffer and (after being opened) deposits an ouput. An
input operation generates an input padket that simil arly entersthe
buffer, reads an input, and credes a return padket that exits the
buffer and continues with the rest of the process Each name n of
the T-cal culus becomes a pair of names in the ambient caculus:
the name n of the buffer and the name nP of the padkets. There-
fore, communication o at-cdculus name becomesthe mmmu-
nication of apair of ambient cdculus names. A te-cd culus chan-
nel type Ch[W] for names of type Wistranslated as Amb[WxW].

Encoding o the Typed Polyadic Asynchronous tcalculus
I({EI—P)} 2 (E)F¢P):Shh I
(g, Wy, ..., ncW) 2
g, W), niP:qWa), ..., nicQWAD, QW)
(Ch[Wy, ..., W) £ Amb[qWi)xqWi)x... xQWD*CWid)]
EVT:Ch{W,, .., W])P) £
(vn,nP:¢Ch[WY, ..., WD) (n[!open rP] | ¢PY)
an(ngWy, ..., nkWW).P) &
(vp:Amb[Shh]) (openp |
nPlin n. (ng,nP: QW) ..., NP QWAD). plout n. ¢(P)]])

ning, ..., NYY £ nPlinn.(ng, NPy, ..., N, NPY]
PIQ) 2 (P)|(Q)
Py 2 1Py

The trandation induces the foll owing derived typing rules,
which correspond to afragment of Pierce and Sangiorgi’s g/stem
[20] consisting only of bidirediona channels, with no subtyp-
ing. Each r-cal culus processis given the type Shh, sinceno com-
munication happens at the level of processes. Instead, communi-
cdion happenswithin buffers, so eat buffer receivesthetype of
the arresponding Tecdculus channel. Input and output padets
receve the same type & the buffers where they are opened.

(E,n:Ch[W4, .., W FP) O (EF (VN:Ch[W, ..., WiJ)P)

(EFn:Ch[Wy, .., WD, CEF ng: WD, ..., CEF i WAD
O (EFn{ng, ..., WY
(EFn: Ch[W, .., WA, €E, n:Wy, ..., Nk Wk F P)

O CEF n(ng:Wh, ..., Nk WY).P)
(EFP),EFQy O (EFP|Q)
(EF-P) O (EFIP)

Georges Gonthier has devised two other encodings of the T+
cdculusas ambients. The first encoding usesasingle name n for
both the buffer and the sssciated padkets, instead of pairs of
names n, n°. The padkets are temporarily hidden inside another
layer of ambients, so that there is no confusion between padkets

and buffers. For the T-cdculus this techniques leads to a nicer
encoding, where a dannel type maps smply to an ambient type.
Still, the technique of passgng padket names along with associat-
ed ambient names is often useful, as we show in later examples.

Gonthier's Encoding
" (CH[Wa, ... W) 2

Amb[{W1)x...xEWIH]

(V™M:Ch[Wy, ..., W)P) 2
(vn:{Ch[Wy, ..., WD) n[lopen n] | (P)

(N Wy, ..., nkWY).P) &
(vp:Amb[Shh]) (openp |
(VK:(Ch[Wy, ..., WD)
k{in n. n[out k. open k.
(N QWAY, ..., MkWAD). plout n. ¢P)]]])

n(Mwy, - M) 2
(VK:(Ch[W4, ..., WD) k[in n. n[out k. open k. {ny, ..

Pl1QY 2 ¢P)|CQ)
Py 2 1Py

|

(We use asubscript typetoindicae the type of aterm that, while
not avail ableinthetermitself, isavailableinitstype derivation.)

Gonthier's 00nd encoding also uses single namesfor buff-
ers and padkets. In addition, the encoding does not rely on buff-
ersbeing generated at the placeof v: buffers are generated when-
ever (and wherever!) needed by 1/0 operations. For the tecdcu-
lus this makeslittl e difference, but if we imagine using channels
fredy within the anbient cdculus, then it isimportant not to rely
on afixed location for the buffer: we may want I/O operationson
a channel to interact whenever they occur within the same ambi-
ent. The potential problem with thisideais that, sincethere ae
multi ple buffers, all the output padkets may go in one buffer, and
al the input padkets may go in a different buffer. To solve this
problems, the buffers are designed to be self-coalescing. This
techniqueis useful in general, when buffers need to be generated
in adecentrali zed fashion.

Gonthier's Coalescing Encoding
I 1

Ch[Wy, ..., W) 2 Amb[EWy)x...x(Wid]

AV™M:Ch[Wy, ..., W)P) 2 (vn:{Ch[Wy, ..., WD) (P)

an(N:Wy, ..., nkW).P) &
(vp:Amb[Shh]) (open p.p(] |
n[lopenn|inn|
(N: QW) ..., Mk QWKD). p[!out n | open p.¢Py]1])

n(ng, ..., W) & n[topenn|inn|(ny, .., N
PIQ) 2 ¢P)|(QD
¢P) 2 1(P)

4.2 Parent-Child Communication

It is often useful for an ambient to communicate with its parent
or its children, as when an agent enters a server and wants to ex-
change information with it. We now describe such a derived
communication mechanism, and how to typeit.

Parent-Child 1/0
I

(M) parent outputs to child n
An(x:W).P child n inputs from parent
An(M) child n outputs to parent
Yn(x:W).P parent inputs from child n

We could adopt the foll owing reduction rules as primitive:

“n(x:W).P | n[*n(M) | Q] — P{xM} |n[Q]
(M) | n[*n(xW).P | Q] — n[P{x—M} | Q]

Instead of taking these operators as primitive, it is possble to ap-
proximate parent-child 1/O with normal ambient 1/0. The encod-
ing gven below, however, fails to provide the same a@omicity
guarantees as the reductions above. When using this encoding,
parent-child 1/0O operations are partially sensitive to disruptions
of the protocol due to sudden movement of the cild. To avoid
this problem, the dhild has to implement its own synchroniza-
tion.

The encoding o parent-to-child messaging is quite smple,
using the child ambient as the ammmunication buffer. M essages
from the parent down to a child n use packets labeled n®".

M) 2 ndin it (M)]
2n(xW).P 2 openn®. (xW).P

Thismessaging isnot sensiti ve to sudden movement of the cil d:
messages from parent to child may get blocked but do not get
lost.

The encoding of chil d-to-parent messaging, instead, ismore
problematic. There is a choice of where to put the communica-
tion buffer: in the dild or in the parent. If the buffer isin the
child, the parent hasto send a process to fetch the message; such
aprocess may get lost on the way bad if the child has moved. If
the buffer is in the parent, the dhild has to send a processto de-
posit the message; such a process may get lost if the child moves
before the (asynchronous) processcan get out.

In both cases, though, the child can wait for a cnfirmation
from the parent that the message has reached the parent; this can
be done with parent-to-child communication, which is reliable.
After the onfirmation, the child is freeto move.

We describe the cae where the buffer is kept in the parent.
This arrangement seans more interesting becaise, with asimple
modification, it can be extended to anonymous communicaion
between arbitrary children and a parent.

Each communication from a dild n® to a parent happens
within a mailbox nP™ within the parent; the mail boxes are self-
coalescing. Messages from a child n® up to the parent use padk-
ets |abeled P that are sent out of the cild and then into n°>,

AnM).P 2 nUout n™. in n°% (M)]
Yn(xW).Pyw 2
(vp:Amb[W]) (open p. p] |
n°>[open n'P. (x:W). p[out n°*. open p. P] |
lopen n% | in n°>)

(Theidiomsopen p. p[] and p[... open p. P] are used to delay the
adivation of P until P reades the proper position.)

Thetype of names of child ambientsthat admit parent-child
1/0 may be denoted by Amb“¥[W]. This notation can be trandat-
ed to the anbient cdculus by mapping ead environment name
n : Amb2¥[W] to four environment names n®, n“?, n, n°o :
Amb[W], and by mapping each restriction (vn:Amb*Y[W]) P to
the restrictions (vn:Amb[W]) (vn"P:Amb[W]) (vn™Amb[W])
(v :Amb[W]) P.

The derived type rules are as foll ows.

(n: AMbAYWJ O P:T) O (vn: Amb*Y[W]).P: T
M:W,n: Amb*Y[W] O Yn(M):U (anyU)
M:W,n: Amb*Y[W] O “niM):U (any U)
n: AMbAY[W], (x: WO P:W) O “n(xW).P:W
n: AmbAY[W], (x: WO P:W) O Yn(xW).P:W

4.3 Function Types

By using atyped encoding of channelsin the anbient cdculus,
we can provide typed encodings of A-cdculi simply by using the
known encodings of A-cdculi i nto the Tecdculus[9]. For exam-
ple

Encoding of the Call-by-Value A-calculus
into the Te-calculus

Co0c & k)
xbye 2 (Vi) (kin) | 'n(x, K'). ¢bdi)
£ (VK k") (@bde [k (¥). (€ade K (y). Xty K))

{b(a)dk

Encoding of the Typed Call-by-Value A-calculus

into the Ambient Calculus
[1

(EFBTY & (E)F (vVkCh[¢T}]) (b)k: Sth
(B, XA, o, XA) 2 B, X(ALD, -y XECAD
(A-B) & Ch[(A), Ch[(B}]]
O 2 kX
IACADba_)k 2

(vn:¢A- BY) (k) | 'n(x:¢A), K :Ch[{B}]). (bsdx)
(ba_s(an)lk 2

(VK :Ch[¢A= BY], k" :Ch[A])

(@bdie | K (x:(A-BD). (€@ | K" (y:CAD). Xy, K)))

Therefore, as in the Tecalculus, a function is represented by a
channel that communicates an argument and a channel for there-
sult. The derived typesrefled this dructure.

4.4 Reoords

We define operationsfor handling records of mutable cdl s; these
will be useful in the next example.

A reaord r containing cell s ¢ has the general structurer| ...
| &P T(M;) | lopen ci'P] | ...], wherer isthe cél container, ° are
the value containers for ead cdl, ¢;'P areinput packets for read-
ing and writing cell contents, and M; are the cll contents. The
operations consist of creding an empty record named r (record
r), adding a cél named c withinitial contentsM toarecord r (add
r ¢ M), reading the mntents of cdl c of record r and binding it to
avariable x in ascope P (get r ¢ (xW). P), and setting the con-
tents of acell ¢ of record r to a value M and continuing with P
(setr c(M). P).

(recordr) 2]
(addrcMy 2 c*“topencP|inr.(M)]
fgetrc(xW). Py 2
(vop:Amb[§]) (open op. op(] |
cPlinr.in . (x:W).
((x) | op[out c°“. out r. open op. (P)])])
(setr c(My). P 2
(vop:Amb[S]) (open op. op(] |
cPlinr.in . (x:W).
((M) | op[out ™. out r. open op. {PY])])

The names c™ and c'P related to a cél ¢ are asigned the
type Amb[W], where W is the type of the values held by the cdl.
Thenamer of arecrd is smply assigned the type Amb[Shh]. A
record is able to hold cell s of different types.

The type of names of arecord field holding W may be de-
noted by Field[W]. This notation can be translated to the anbient
cd culus by mapping ead environment namen : Field[W] to two
environment names N, n'® : Amb[W], and by mapping ead re-
striction (vn:Field]W]) P to the restrictions (vn°“:Amb[W])
(vn®:Amb[W]) P.

4.5 Agents

One of the original motivations for the anbient calculus was to
provide a natural semantics for wide-area network languages.
We now define asimple ayent language inspired by Telescript
[13]. In the Telescript model, agents travel over the network be-
tween places (agent servers) where ggents can mee and commu-
nicate with ather agents. Agents carry with them a suitcase con-
taining locd agent data.

The syntax of our stripped-down agent language,
Telestrip’d, is described in the foll owing table, together with an
informal description of the various constructions. We give the
semantics of Telestrip’d by trandation to the ambient cdculus.
The dynamic hierarchicd structure of places, agents and suitcas-
esis preserved by our trangation; it would not be preserved so
obviously by trandlations into standard processcalculi.

We are ale to asdgn types to our definitions, yielding a
typed agent language: Agent[Wi, ..., W] is the type of names of
agents that acapt communications of type Wi x...xW.

Telestrip’d Syntax

| W ::= Agent[Wy, ..., Wi] agent types (k= 0)
Net ::= the network
noplace no place
place p[Arena] aplace cled p
Net | Net more places
Arena ;= inside aplace
empty nobody there
agent (n:W)[Code] an agent with fresh namen
Arena | Arena more ayents
Code ::= agent code
stop stop
go p. Code go to placep and continue
spawn (N :W)[Code']. spawn afresh agent n’ in the
Code current place
welcome (np:Wy, ..., W), aacept input from alocal
Code agent
med n{ny, ..., NK. Code output to locd agent n

add new folder n with con-
tentsn’ to the suitcase

folder nn’. Code

get n(x:W). Code get contents of folder n from
the suitcase

set n{n’). Code set contentsof folder nton’ in
the suitcase

other constructs (omitted)
L |

Typed Telestrip’d Semantics
[

(Agent[Wy, ..., W) 2 Amb[qWi)x...xqW)]
@Net) : Shh

(Arenaj, : Shh if p : Amb[Shh]

{Codedm : QWx..x¢WD if m: (Agent[Wy, ..., W]

(noplace) £ 0

(placep[Arena]) £ p[{Arena),] (for p:Amb[Shh])
(Net | Net) 2 (Net) | (Nety

({empty), £ O

agent (n:Agent[W, ..., WiJ)[Code]p, 2
(vn:gAgent[Wy, ..., WD)
n[record sut | add sut at p | {Code)y]
(Arena|Arena), £ (Arena), |(Arena)y,

(stop)m £ O
{go p. Code)r, &
get sut at(q: Amb[Shh]). set sut at(p). out g. in p. {Code)m
{spawn (N :Agent[W4, ..., W{])[Code']. Code), 2 (forn’ #m)
get sut at(p:Amb[Shh]). (v’ ,u:¢Agent[W4, ..., WD)
(n’'[record sut |add sut at p | out m. open u. {Code’)]
| open u. {Code)n
| (vt:Amb[Shh]) tfout m.in n'. out n’.
(ufout t.inn'] | u[out t. in M)])

gmee N{Nywy,, -, Niwy)- Codedy, £

(VzzgAgent[W, ..., WD)

Zout m. inn. n[out z open z (ny, ..., Y]] | {Code)nm

qwelcome (ng:Wy, ..., nkW). Code), £

open m| (Ng:{W4, ..., Nk:@WAD). (Codednm
(folder n n'y. Code),, &

(vn:Fied[¢Wp]) (add sut n i’ | (Code)m)
{get n(x:W). Code), £ get sut n(x:{W)). (Code)m,
{set n(n’). Code), 2 set sut n(n’). (Code)nm

L |

often as desired, as before.

« A restricted name of type Amb[T] may be exercised as often as
desired, as before.
For example:

+ Disallowed: (x:Cap'[T]). ((X) | (x)), (x:Cap™[T]). ((x) | n[x.P])
« Allowed: (x:Cap™[T]). ((x) | (¥ | n[x.P]),
(<AmMb[T]). ({1 [X[]), (<AmP[T]). (X[P] | X[Q]),

(vx:AMb[T]). ((open x) | (open x) | (y:Cap™[T]). (y))
Here isthe syntax of the extended type system:

No exchange happens at the network level, so the network
has type Shh. Each arena has also type Shh, so the name of eadh
place has type Amb[Shh].

The type of an ambient refleds only the type of the e-
changes performed within it; each agent welcomes (inputs) asin-
gle type of data, but can output to agents of several different
types. The med primiti ve given above is asynchronous; a (more
natural) synchronous version is posshble but more compli cated.

The name of the agent suitcase, sut, isadistinguished name
of type Amb[Shh]. A suitcaseisarecord containing a @lledion
of cdls. Each suitcase contains a cdl named at, a distinguished
name of type Amb[Amb[Shh]], containing the name of the
agent’s current place.

5 Affine Capability Types

In this sction, we describe an extension o our type system ob-
tained by adding a new type of affine capabiliti es Cap'[T]. We
enforce the rule that whenever a process inputs a cgability of
this type, the process may exercise or output the caability at
most once.

The motivation for this type system is that in some situa-
tions we may want capabiliti es to play the role of tickets or
stamps that may be used onceto access a valuable resource (for
example, a mmpute server, or aprinter). We would like to guar-
antee that if awell-typed processis presented with k cgpabiliti es
for accessng aresource, perhaps after a fee has been paid, then
that resourceis exercised at most k times.

5.1 Limiting the Use of Capabilities

Linea type systems for the T-cdculus, beginning with the work
of Kobayashi, Pierce and Turner [7], restrict the usages of bound
namesin avariety of ways. Our systemisanalogous, but isaffine
(at most one use of names) rather than linear (exadly one use).

We modify the syntax of types by renaming Cap[T] to
Cap“[T] and by introducing anew type, Cap*[T], of affine capa-
biliti es. The multiplicities 0, 1 and w are used to count the num-
ber of occurrences of namesin terms. We enforce the following
simple principles:

« Aninput name of type Cap*[T] may be exercised at most once.
« Aninput name of type Cap®“[T] or Amb[T] may be exercised as

Types
I W:= message types I
Amb[T] ambient name
Cap'[T] affine capability
Cap¥[T] unlimited capability
T:= exchange types
Shh no exchange
Wix... XW tuple exchange
M= multi plicities
0 never
1 once
many

Welet u* range over {1, w}.

Let the multiplicity order, u < ', be the least reflexive and
transitive relation to satisfy 0< 1 < w. Let the addition, p+u’ of
multiplicities u and ' be the multiplicity defined by the equa-
tionsu+0 = O+p = 1, 1+1 = w, and p+w = w+y = w. Let the rep-
lication, 1, of amultiplicity be the multiplicity p+p.

The functions n occurs M and n occurs P, given by the fol-
lowing equations, count the occurrences of the name n in the
term M and in the process P, respedively. Note that any name
under a! has multi plicity .

noccursm £ 1if men; 0 otherwise
noccursin M £ nocaursM
noceurs out M £ nocaursM
noccursopen M 2 nocaursM
n occurs M.M’ 2 (noccurs M) + (n occurs M’)
nocaurs e 20
nocaurs M.P £ (noccurs M) + (n occurs P)
n occurs M[P] £ (noccurs M) + (n occurs P)
n occurs (vm:W)P 2 (nocaursM) form#n
noccurs0 20
nocaursP | Q £ (noccurs P) + (noccurs Q)
noccurs!P £ !(nocaursP)
nocaurs (N Wy, ...,ncW).P &

noccursP forn¢ {ny, ..., n}

noccurs{My, ..., M) 2
(nocaursMy) + ...+ (noccurs My)

For example:

noccurs (M[] | (vm:W) n[]) =0
noccurs mn.0] =1
noccurs (m[n.0] | (n)) = w

We define anew type system using the samerules as before
except for the modifications listed below.

Rules
I
(Exp€) (Exp)
EFo EFM:Cap*'[T] EFM :Cap[T]
E+e: Cap[T] EF MM’ : Cap'[T]
(Exp In) (Exp Out)
EFM:Amb[S EFM:AMO[Y

EFinM:Cap*'[T] EF outM: Cap"'[T]

(Exp Open) (Proc Action)
EFM: Amb[T] EFM:Cap"'[T] EFP:T
E + open M : Cap"'[T] EFMP:T

(Proc Input) (where Viel..k. W, =Cap'[T;] O n;occursP < 1)
E, ni:Wy, ..., mcWicH P o WX W

EF (N WA, ..., NicWE).P 2 Wi, XWj

A subjed reduction result can be proven for the modified system
(the proof isin Appendix 8).

5-1 Proposition (Subjed Reduction)
IfFEFP:UandP—QthenEFQ: U.
O

5.2 Avoiding aSynchronization Error Using Affine Types

Toll ustrate the use of affine caability types, we describe ataxi
protocol. This protocol uses affine typing to achieve proper
movement synchronization between two parties. The taxi pub-
lishes a @pability for a passenger to enter a sed in the badk of
the taxi. The pasenger enters and tell sthe taxi aroute to foll ow.
At the end of thetrip the taxi door is unlocked, and the passenger
may exit. The capabiliti es for entering and exiting the taxi, and
for the route, are given affine types.

If the cgability to enter the taxi were to be acedentally or
malicioudly duplicated, a synchronization error could arise, in
which a passenger holding a valid cgpability would attempt to
enter the taxi, but would be left behind because aother passen-
ger got thetaxi first. Thisposshility isruled out by affine typing.

In the following, the parameter M is the route the taxi is to
follow, and the parameter P is the behavior of the passenger at
the destination.

passenger MP &
(enter:Cap'[Shh]).
moveenter. talk[out move (M) |
talk[(ext:Cap*[Shh]). move exit. P]]]]
taxi 2
(v taxi:Amb[SH], go:Amb[Shh],
lock Amb[Shh], seat:Amb[Cap*[SH]])
({intaxi. inlock. in seat) |
taxi[open go |
lock]
seat[open talk. (route:Cap*[SH]).
(open talk. (out seat. out taxi) |
go[out seat. out lock. route. open locK)]]])

If we suppose there is ©me evironment E with:

E I talk : Amb[Cap'[Shh]] E+ M: Cap[Shh]
E - move: Amb[Shh] EFP:Sh

then:
Et (passnger M P | taxi) : Cap'[Shh]

(N.B.: the pasenger-taxi system can also be given type
Cap“[Shh]. We can force the Cap*[Shh] typing by situating the
system within an ambient whose name has type
Amb[Cap'[Shh]].)

Initialy, the system reduces as follows, up to the point
where the passenger has entered the taxi and the taxi is realy to
follow the route M:

passenger M P |taxi —*
(v taxi:Amb[SH], lock Amb[Shh], seat: Amb[Cap*[Shh]])
taxi[M. open lock |
lock{ move[out taxi. P] | seatfmove(]]]]

Oncethe route M has been foll owed, the lock ambient is opened,
and the passenger exits.

5.3 Digpensing Transferrable Tokens Using Affine Types

A seaond example demonstrates that affine types al ow capabil -
ities to serve as consumable, transferrable tokens for aresource

We mnsider a system consisting of several principals that
are given accessto a printer. Each principal has an API (inter-
face) al owing it to print messages on the printer. Each timeit ac-
cesesthe API, aprincipal must consume atoken, the caability
open api. This capability is given the dfine type Cap'[Msg],
where Msg isthe type of messages printed by the printer. By dis-
pensing different numbers of these tokensto diff erent principals,
we may seledively control the number of messages eat princi-
pa has aright to print. The top-level of our system, sys, serves
as a printer spool; any outputs here may be thought of as being
sent to a printer.

We describe eab principal asfollows:

principalnP £
n[open n | printAPI n | toks[!open toks | P]]

The processparameter P modelsthe spedfic behavior of the
principal. We asume that the names api and print are not freein
P. The anbient named toks represents a channel on which the
principal receves cgpabiliti esfor printing. A token open api pro-
vides accessto the printer API, which is defined by:

printAPI n £ lapi[(x:Msg). print[out n. (x)]]

Our example system consists of two principals, named alice
and bob:

sys &
(v alice Amb[Msg], bob:Amb[Msg], api:Amb[Msg],
print:Amb[Msg], toks:Amb[Cap'[Msg]])
(‘open print |

tokgin alice in toks | (open api) | (open ap)] |

principal alice ((x;:Cap{Msg]). (x,:Cap'[Msg]).
alicgout toks | x;. (M) |

tokglout alice in bob. in toks. (x2)]])

principal bob ((y:Cap'[Msg]).

bob[out toks. y. (N)]))

In this example, we dispense two tokens to alice via the
processtoks[in alice. in toks | (open api) | (open api)], but noneto
bob. Principa aliceinputs the two tokens as variables x; and x;
she uses x; herself to print M, but donates the other to bob, who
inputsit asy, and usesit to print N.

The processsys has type Msg. We have:

sys —* (M) (N)

We may easily add more principals to this example, and we
may dispense @& many tokens as is appropriate to each new prin-
cipal. By using affine types to regulate the use of printer tokens,
principals are freeto transfer tokens amongst themselves, but the
total number of messages printed is limited by the number of to-
kens dispensed initialy. Without linea or affine types, it would
be harder to al ow the transfer of printer tokens between princi-
pals whilestill controlli ng their total number.

6 Conclusions

We have presented a type system for the ambient calculus. The
types arising from this work are unusual in that they do not cor-
respond dredly to channel or function types. The type system
guarantees the soundness of message exchanges, while leaving
gred flexibility in mobility. Asan example, we have given anat-
ural semantics for atyped agent language.

Our type system is rather basic, roughly corresponding to
the simply-typed discipline for the A-cdculus. Much richer typ-
ing disciplines can be imagined, along the usual lines. Perhaps
more interestingly, it is appeding to try and use static type sys-
tems to restrict mobilit y; thisis the subject of current work.

10

Acknowledgments

Georges Gonthier made useful remarks on an early draft, and
discovered new t-caculus encodings that ill ustrate interesting
techniques.

7 Appendix: Subjed Reduction
Let E + J denote any judgment.

7-1 Lemma
If E, W, E” - Jthenn ¢ dom(E’, E”).

7-2 Lemma

IfEFn:Wand EFn: W, then W=W'.

7-3 Lemma (Implied Judgment)

IfE,E" FJthenE F 9.

Lemma (Exchange)
IfE, nW, mW' ,E" FJthenE', mW’', nn\W,E" - J.

7-5 Lemma (Weakening)

IfE',E" FJandn ¢ dom(E', E’) thenE’, n'\W, E" I J.

7-6 Lemma (Strengthening)

If E,nW,E” FJandn ¢ fn(J) thenE’, E” I J.

7-7 Lemma (Substitution)

IfE,nW,E" FJandE' M :WthenE', E" F J{n-M}.

7-8
(€
@)
Pr oof

By mutual induction on the derivationsof P=Qand Q= P.
DIfEFP:UandP=QthenEFQ: U.

(Struct Refl) Trivial.

(Struct Symm) Then Q = P. By induction hypothesis (2), we
haveEFQ: U.

(Struct Trans) Then P = R, R= Q for some R. By induction hy-
pothesis (1), EF R : U. Again by induction hypothesis (1), E -
Q:U.

(Struct Res) Then P = (vn:W)P" and Q = (vn:W)Q’, with P’
Q. Assume E+ P : U. This must have been derived from (Proc
Res), with E, n:Amb[T] - P’ : U, where W=Amb[T]. By induction
hypothesis, E, n:Amb[T] - Q : U. By (Proc Res) E
(vn:Amb[T])Q’ : U.

(Struct Par) ThenP =P |R,Q=Q |R and P’ = Q. Asuume
EF P’ |R: U. Thismust have been derived from (Proc Par), with
EFP :Uand EF R: U. By induction hypothessEF Q' : U.
By (ProcPar) EFQ |R: U.

(Struct Repl) ThenP=1P",Q=1!Q",and P’ = Q'. Assume E
P : U. This must have been derived from (Proc Repl), with E -
P’ : U. By induction hypothesis, EF Q' : U. By (Proc Repl) E
1Q :U.

Proposition (Subjea Congruence)
IfEFP:UandP=QthenEFQ: U.
IfEFP:UandQ=PthenEFQ: U.

(Struct Amb) Then P = M[P’], Q = M[Q'], and P’ = Q'. As
sumeE F P : U. Thismust have been derived from (Proc Amb),
withEF M : Amb[T] and EF P’ : T for some T. By induction
hypothesis, E Q' : T. By (Proc Amb) we derive E- M[Q'] : U.
(Struct Action) ThenP=M.P’,Q=M.Q’,andP’' = Q. Asaime
EF P: U. Thismust have been derived from (Proc Action), with
EF M : Cap[U] and E}- P’ : U. By induction hypothesis, EF Q’
: U. By (Proc Action) EF- M[Q'] : U.

(Struct Input) Then P = (ng:Wy, .., ncWW).P’, Q = (ngWy, ...,
ncW).Q',and P’ = Q. Assume E+ P : U. Thismust have been
derived from (Proc Input), with E, nzWy, ..., kW = P : U,
where U = W;x...xW. By induction hypothesis, E, n;:Wi, ...,
ncWi = Q' : U. By (Proc Input) E F (ng:W, ..., nkWW).Q" @ U.
(Struct Par Comm) ThenP =P’ |P” andQ=P” |P'. Asame
EF P | P’ : U. Thismust have been derived from (Proc Par),
withEFP : UandEFP” : U. By (Proc Par) EFP” | P : U.
(Struct Par Assoc) ThenP = (P’ [P") [P"" andQ =P | (P" |
P"). Assume EF (P | P") | P'” : U. This must have been de-
rived from (Proc Par) twice, withEF P’ : U, EFP” : U,and E
F P : U.By (Proc Par) twice EFP | (P" |[P'") : U.

(Struct Repl Par) ThenP =!P and Q=P | !P". Assume E -
IP" : U. Thismust have been derived from (Proc Repl), with E+-
P’ :U.By (Proc Par), EF P |IP" : U.

(Struct ResRes) Then P (vnW)(vmV)P' and Q
(vm:V)(vn:W)P’ with n # m. Assume E + (vn:W)(vm:V)P' : U.
This must have been derived from (Proc Res) twice with E,
n:Amb[T], mAmMb[] F P’ : U, where W=Amb[T] and V=Amb[S.
By Lemma 7-4 we have E, mAmMb[S], n/Amb[T] - P’ : U. By
(Proc Res) twicewe have E + (vm:Amb[S])(vn:Amb[T])P’ : U.
(Struct ResPar) Then P = (vnW)(P' | P") and Q = P |
(vn:W)P” , with n ¢ fn(P’). Asume E+ P : U. This must have
been derived from (Proc Res), with E, n:Amb[T] - P’ [P : U and
W= Amb[T], andfrom (Proc Par), with E, n:Amb[T] - P’ : U and
E, nnAmb[T] F P” : U. By Lemma7-6, sincen ¢ fn(P’), we have
EF P’ : U. By (Proc Res) we have E F (vn:Amb[T])P” : U. By
(Proc Par) wehave EF P | (vn:Amb[T])P” : U.

(Struct Res Amb) Then P = (vn:W)m[P’] and Q = m[(vn:W)P'],
withn#m. AssumeEF P : U. Thismust have been derived from
(Proc Res) with E,n:Amb[T] = m[P’] : U with W = Amb[T], and
from (Proc Amb) with E, n:Amb[T] F P’ : Sand E, n:Amb[T] +-
m : Amb[§ for some S By (Proc Res) we have E +
(vn:Amb[T])P’ : S By Lemma 7-6, sincen # m, we have E- m
: Amb[S]. By (Proc Amb) we can derive E - m[(vn:Amb[T])P'] :
U

(Struct ZeroPar) ThenP =P |0and Q=P'. AsumeEF P :
U. This must have been derived from (Proc Par) withEF P’ : U
andEFO:U.

(Struct ZeroRes) Then P = (vniW)0and Q = 0. Assame E+ P
: U. This must have been derived from (Proc Res) with E,
nAmb[T] F0: UandW=Amb[T]. By Lemma7-6, E-0: U.
(Struct ZeroRepl) ThenP =!10and Q = 0. AssumeEF P : U.
This must have been derived from (Proc Repl) withEF 0 : U.

11

(Structe) ThenP=¢.P and Q =P'. Assume E+ P : U. This
must have been derived from (Proc Action) withE= P’ : U.

(Struct .) ThenP=(M.M").P andQ=M.M'.P". AssumeE}+ P
: U. This must have been derived from (Proc Action) with E -
M.M’' : Cap[U] and E+ P’ : U. The former must come from (Exp
JwithEF M : Cap[U] andEF M’ : Cap[U]. By (Proc Action)
twicewe haveEF M.M'.P" : U.
@IfEFP:UandQ=PthenEFQ: U.

(Struct Refl) Trivial.

(Struct Symm) Then P = Q. By induction hypothesis (1), we
haveEFQ: U.

(Struct Trans) Then Q = R, R= P for some R. By induction hy-
pothesis(2), EFR: UandEFQ: U.

(Struct Res), (Struct Par), (Struct Repl), (Struct Amb),
(Struct Action), (Struct Input), (Struct Par Assoc) Symmet-
ricd to case (1).

(Struct Par Comm) ThenQ =P’ |[P” andP=P" | P’. Asuume
EFP" | P : U. This must have been derived from (Proc Par),
withEFP” : UandEFR P : U. By (ProcPar) EF P’ |P" : U.
(Struct Repl Par) ThenQ=!P' andP =P’ |IP’". AssumeEF P’
| P’ : U. Thismust have been derived from (Proc Par), with E+
P U.

(Struct ResRes) Then Q (vnW)(vm:V)P* and P
(vm:V)(vn:W)P’ with n # m. Assume E (vm:V)(vh:W)P’ @ U.
This must have been derived from (Proc Res) twice with E,
m:AMb[S], n:Amb[T] F P’ : U, where W=Amb[T] and V=Amb[S].
By Lemma 7-4 we have E, nnAmb[T], m:Amb[§ + P’ : U. By
(Proc Res) twicewe have E - (vn:Amb[T])(vm:Amb[S)P’ : U.
(Struct ResPar) Then Q = (vnW)(P' | P") and P = P |
(vni:W)P” , with n ¢ fn(P’). Assame E - P : U. This must have
been derived from (Proc Par), withE+ P’ : U and EF (vn:W)P”
: U, and the latter from (Proc Res), with E, n:Amb[T] - P” : U
where W=Amb[T]. By Lemma 7-5, sincen ¢ dom(E’), we have
E, n:Amb[T] - P’ : U. By (Proc Par) we have E, n:Amb[T] - P’ |
P” : U. By (Proc Res) we have E - (vn:Amb[T])(P" | P") : U.
(Struct Res Amb) Then Q = (vn:W)m[P’] and P = m[(vn:W)P’],
withn#m. AssumeE P : U. Thismust have been derived from
(Proc Amb) with EF m: Amb[] and E+ (vn:W)P’ : Sfor some
S The latter must have been derived from (Proc Res) with E,
n:Amb[T] - P’ : Swith W= Amb[T]. By Lemma 7-5, sincen ¢
dom(E), we have E, n:Amb[T] - m: Amb[S]. By (Proc Amb) we
can derive E, nnAmMb[T] - m[P’] : U. By (Proc Res) we have E -
(vn:Amb[T])m[P’] : U.

(Struct ZeroPar) ThenQ =P |[0and P=P'. AsumeEF P :
U. By Lemma 7-3, E + ¢. By (Proc Zero) E 0 : U. By (Proc
Par), EFP |0: U.

(Struct Zero Res) Then Q = (vn:Amb[T])0and P = 0. Assume E
FP:U.ByLemma7-5, E, n:Amb[T] - 0: U. By (Proc Res) E -
(vn:Amb[T])0 : U.

(Struct ZeroRepl) ThenQ =!0andP = 0. AssumeE+ P : U.
By (Proc Repl) with EF10: U.

(Struct €) ThenQ=¢.P’ andP=P’. AsaimeEFP: U.By Lem-
ma7-3, El- ¢. By (Exp€), EF € : Cap[U]. By (Proc Action) with
EFeP :U.

(Struct .) ThenQ=(M.M").P andP=M.M'.P'. Assume E} P
: U. Thismust have been derived from (Proc Action) twice, with
EFM: Cap[U],EFM’ : Cap[U],andEF P : U. By (Exp.) we
have E F M.M’ : Cap[U]. By (Proc Action) we have E +
(M.M).P :U.

O

7-9 Proof of Proposition 3-1 (Subject Reduction)
IfFEFP:UandP—QthenEFQ: U.

Pr oof

By induction onthe derivation of P — Q.

(RedIn) ThenP=n[linm. P |P"] |m[P"] and Q = m[n[P’ |
P"]1|P"]. AsameE} P : U. Thismust have been derived from
(Proc Par), withEF nlinm. P’ |P"] : UandEF m[P"] : U.
Those two judgments must have been derived from (Proc Amb),
withEFn: Amb[T],EFinm. P’ |P” : Tfor someT,and EF m
:Amb[S, E+ P'” : Sfor some S. Moreover, EFinm. P |P” :
T must come from (Proc Par) withEFinm. P’ : TandEF P” :
T,and EF inm. P’ : T must come from (Proc Action) with E -
inm: Cap[T] and E+- P’ : T. Notethat EF m: Amb[S isconsis-
tent with EF inm: Cap[T], by (Exp In). By (Proc Par) we have
EFP |P" : T, and by (Proc Amb) we can derive EF- n[P’ | P"]
: S Then, by (Proc Par) we have EF n[P’ | P"] | P’" : S and by
(Proc Amb) we can derive EF m[n[P’ [P"] |P""] : U.

(Red Out) Then P=m[nfout m. P’ |[P"] | P"] and Q = n[P’ |
P"] | m[P”]. Assume E+ P : U. This must have been derived
from (Proc Amb), with EF m: Amb[T] and EF n[out m. P’ | P”]
|P” : T for someT. The latter must come from (Proc Par) with
EFP” :Tand EF nfout m. P’ | P"] : T. The latter must come
from (Proc Amb) withEFn: Amb[S]and EFoutm. P’ |P” : S
for some S. The latter must come from (Proc Par) with EF P” :
Sand E}out m. P’ : S Thelatter must come from (Proc Action)
withEF out m: Cap[§ andEF P’ : S Notethat EF m: Amb[T]
is consistent with E + out m: Cap[], by (Exp Out). By (Proc
Par) wehave E- P’ | P” : S and by (Proc Amb) we can derive
EF n[P | P"]: U. Then, by (Proc Amb) we ca derive E -
m[P'"] : U, and by (Proc Par) wehaveEF n[P" |P"] |m[P""] :
u.

(Red Open) ThenP =openn. P’ |n[P"]and Q=P | P". As
sume E - P : U. This must have been derived from (Proc Par),
withEFopenn. P’ : Uand EF n[P"] : U. The judgment E -
openn. P’ : U must have been derived from (Proc Action), with
EF openn: Cap[U] and E}F P : U, and from (Exp Open) with
EF n: Amb[U]. Thejudgment EF n[P”] : U must havethen been
derived from (Proc Amb) withE+n: Amb[U’'],andEFP” : U’
By Lemma 7-2, U’'=U. By (Proc Par) wehaveEF P’ | P" : U.

(Red Comm) Then P = (ng:Wj, .., ik WW).P’ [{My, ..., My and Q
=P {n <My, ..., ik« Mi}. Assume E - P : U. This must have
been derived from (Proc Par) with E - (ng:Wy, ..., nkW).P* @ U
and E - (M, ..., My : U. The former must have been derived

12

from (Proc Input) with E, ni:Wy, ..., kWi E P’ : Wy x.. xW, and
U = Wyx..xW. The latter must have been derived from (Proc
Output) with E - My : Wy ... EF M : W, and U =
Wy x...xW . Hence Wy =W, ... Wi = WL . By k appli cations of
Lemma7-7, we havethat EF P'{ny My, ..., Nk My} : U.
(Red Res) ThenP = (vn:W)P’, Q= (vn:W)Q',andP’ — Q. As-
sume E - P : U. This must have been derived from (Proc Res)
with E, n:Amb[T] - P’ : U, where W= Amb[T]. By induction hy-
pothesis E, nAmb[T] F Q U. By (Proc Res), E
(vn:Amb[T])Q’ : U.

(Red Amb) ThenP=n[P'], Q =n[Q'],and P — Q. Asaume
EF P : U. This must have been derived from (Proc Amb) with E
Fn:Amb[T] and EF P’ : T for someT. By induction hypothesis,
EFQ : T. Then, by (Proc Amb) we can derive EF n[Q’] : U.
(Red Par) ThenP=P' |RQ=Q |R and P — Q. AsameE
F P : U. This must have been derived from (Proc Par) with E -
P’ :Uand EF R: U. By induction hypothesis, EF Q' : U. By
(ProcPar) EF Q' |R: U.

(Red=)ThenP=P',Q=Q,andP — Q. AsameEFP: U.
By Proposition 7-8, E P’ : U. By induction hypothesis, E + Q’
: U. By Proposition 7-8, E+ Q : U.

O

8 Appendix: Subjed Reduction for Affine Types

8-1 Lemma
P =
8-2 Lemma
(HW)HU = k(R +UT)
8-3 Lemma
H=p+!lp
8-4 Lemma
If P = Q then noccurs P =n occurs Q.
Pr oof
By induction on the derivation o P = Q.
(Struct Refl) Trivial.

(Struct Symm) Then Q = P. By induction hypothesis, we have
noccurs Q =nocecursP.

(Struct Trans) Then P = R, R= Q for some R. By induction hy-
pothesis, n occurs P = n occurs R. Again by induction hypothe-
sis, nocaurs R=noccurs Q. Hence n occurs P = noccurs Q.

(Struct Res) Then P = (vm:W)P" and Q = (vmW)Q', with P’
Q'. Sincem s bound, we may assume that m # n. By induction
hypothesis, n occurs P’ = n occurs Q'. Therefore, noccurs P=n
occurs P’ =noccurs Q" = noccurs Q.

(Struct Par) ThenP=P' |R Q=Q |R,and P’ = Q. By induc-
tion hypothesis, n occurs P’ = n occurs Q'. Therefore, n occurs
P = (n occurs P’) + (n occurs R) = (n occurs Q') + (n ocaurs R)
=nocaurs Q.

(Struct Repl) ThenP=!P",Q=!Q",and P’ = Q'. By induction
hypothesis, n occurs P’ = n occurs Q. Therefore, n occurs P =

I(noccurs P') = !(nocaurs Q') = nocaurs Q.

(Struct Amb) ThenP=M[P'], Q=M[Q’],and P’ = Q. By in-
duction hypothesis, n occurs P’ = n occurs Q. Therefore, n oc-
curs P=(noccursM) + (nocaurs P’) = (n occurs M) + (n occurs
Q') =nocaurs Q.

(Struct Action) ThenP=M.P',Q=M.Q",and P = Q. By in-
duction hypathesis, n occurs P’ = n occurs Q'. Therefore, n oc-
curs P=(noccursM) + (noccurs P') = (n occurs M) + (n occurs
Q') =nocaurs Q.

(Struct Input) Then P = (ng:Wy, ..., neWW).P', Q = (npWy, ...,
NeWW).Q', andP’ = Q'. Sincethe namesny, ..., nk are bound, we
may asumethat n ¢ {ny, .., n}. By induction hypothesis, n oc-
curs P =nocaurs Q'. Therefore, noccurs P = noccurs P =n
occurs Q' =nocaurs Q.

(Struct Par Comm) ThenP=P' |P” andQ=P” |P’.By Lem-
ma 8-1, we have: n occurs P = (n occurs P’) + (n occurs P") =
(nocaurs P")+(n occurs P’) = n ocaurs Q.

(Struct Par Assoc) ThenP=(P' [P") [P"" andQ =P | (P" |
P'"). By Lemma8-2, we have: noccurs P = ((n occurs P’) + (n
occurs P")) + (noccurs P'”) = (n occurs P")+((n occurs P”)+(n
occurs P'")) = nocaurs Q.

(Struct Repl Par) ThenP=!P’ and Q=P |!P’". By Lemma8-
3, wehave: noccurs P=!(noccursP’) = (noccursP’) + !(n oc-
curs P') =nocaurs Q.

(Struct ResRes) Then P = (vm:W)(vm':V)P" and Q = (vim':V)
(vm:W)P" withm# m'. Since the namesmand m' are bound, we
may assumethat n# mand n# m'. Therefore, n occurs P =n oc-
curs P' = n occurs Q.

(Struct ResPar) Then P = (vmW)(P’ | P") and Q = P |
(vmW)P" , withm ¢ fn(P’). Sincethe name mis bound, we may
assumethat n# m. Therefore, n occurs P = (n occurs P’) + (n oc-
curs P”) =n occurs Q.

(Struct ResAmb) Then P (vmWm'[P'] and Q
m' [(vm:W)P’], with m# m'. Since the name mis bound, we may
assumethat n # m. Therefore, n occurs P = (n occurs m')+(n oc-
curs P') =nocaurs Q.

(Struct ZeroPar) ThenP =P |0 and Q = P'. We have: n oc-
curs P=(noccurs P’) + 0=noccurs P’ = nocaurs Q.

(Struct Zero Res) Then P = (vm:W)0 and Q = 0. We have, n oc-
curs P=noccurs Q.

(Struct Zero Repl) Then P =10 and Q = 0. We have n occurs P
=0=nocaursQ.

(Struct €) ThenP=¢.P’ and Q =P'. Wehave n occurs P = n oc-
curs P' = n occurs Q.

(Struct) ThenP = (M.M’).P’ and Q = M.M'.P’. By Lemma 8-
2, we have n occurs P = ((n occurs M) + (n occurs M")) + n oc-
curs P’ =noccurs M + (noccurs M' + noccurs P') = noccurs Q.

O

13

8-5 Lemma
If n ¢ fn(M) then n occurs M = 0.

Pr oof

By induction on the structure of M.

O
8-6 Lemma
If n¢ {m} O fn(M) then:
(1) noccurs N{m~ M} = noccurs N.
(2) noccurs P{m~ M} =noccursP.
Pr oof

By inductions on the structure of N and P.
O

The extended type system is as foll ows: the judgments are
asin Sedion 3.3, and the rules are & in Section 3.3, except for
the modificaions described in Sedion 5. We now prove subjed
reduction for the extended system.

8-7 Lemma
If EF M : T then fn(M) O dom(E).

8-8 Lemma
If E', "W, E" - Jthenn ¢ dom(E',E").

8-9 Lemma
IfEFn:WandEFn:W,thenW=W.

8-10 Lemma (Implied Judgment)
If E,E" FJthenE F 0.

8-11 Lemma (Exchange)
If E,nW,mW ,E" IthenE, mW' , nW,E" - J.

8-12 Lemma (Weakening)
If E,E" FJandn ¢ dom(E' ,E") then E', n'W, E” I J.

8-13 Lemma (Strengthening)
If E,nW,E” FJandn ¢ fn(J) thenE’, E” I J.

8-14 Lemma (Substitution)
IfE,nW,E" FJandE M : WthenE', E" F J{nM}.

Pr oof
By induction on the derivation o E', n:W, E” F J.

(Proc Input) WehaveE', n:\W, E” I (ni:Wi, ..., ik WL).P: T de-
rived from E', nW, E", ngWy, ... Wk F P : Tand T =
Wix...xWi. Moreover, for all i € 1.k, if W = Cap'[T;] then n; oc-
curs P < 1. By induction hypothesis, E’, E”, ni:Wy, ..., ncWk -
P{n—M} : T. By Lemma8-7, fn(M) OO dom(E’). Hence, by Lem-
ma8-8, ({n} O fn(M)) n {ny, ..., n} =¢g. By Lemma8-6, n; oc-
cursP{n~M})=n;ocaurs P, foral i € 1..k. By (Proc Input), E’,
E’ F (ngWy, ..., iWW).(P{n<M}) : T. Since ({n} O fn(M)) n
{ny, .., n} = g, thisis to say that E', E" + ((nz:Wy, ...,
ncW).P)Y{n-M}): T.

Other cases. The other cases are amost exadly as before.
O

8-15 Proposition (Subjea Congruence)
(1) fEFP:UandP=QthenEFQ: U.
(2 fEFP:UandQ=PthenEFQ: U.

Pr oof

By mutual inductions on derivations.

(Struct Input) Then P = (ng:Wy, ..., e W).P', P =Q’,and Q=
(nl:Wl, e nk:Wk).Q’ .

For part (1), asuume E+ P : U. Thismust have been derived from
(Proc Input), with E, ni:W,, .., néWix = P': U, where U =
Wix...xW. Moreover, for all i € 1.k, if W, = Cap'[T;] then n; oc-
curs P’ < 1. By induction hypothesis, E, ni:W, ..., neWi - Q':
U. By Lemma8-4, P’ = Q impliesthat n; occurs P’ = n; occurs
Q for eadi € 1.k. Therefore, for al i € 1.k, if W =Cap'[Ti]
then nj occurs Q' < 1. By (Proc Input), EF (ng: Wy, ..., ngW).Q’
tU.

Part (2) follows by symmetric considerations.

Other cases. The other cases are dmost exadly as before.
O

8-16 Proof of Proposition 5-1 (Subjed Reduction)
fEFP:UandP — QthenEF Q: U.

Pr oof
By induction onthe derivation of E+- P : U.

(Red Comm) Then P = (ng:Wj, .., ik WW).P’ [(My, ..., My and Q
=P {n <My, ..., ik« Mi}. Assume E - P : U. This must have
been derived from (Proc Par) with E - (ng:Wi, ..., nkW).P* 1 U
and EF (My, ..., My) : U. Thejudgment E - (n;:W4, ..., nkWE).P’
: U must have been derived from (Proc Input) with E, ni:Wi, ...,
NcWi - P 2 U, U = Wy x.. xW for some U = W;x.. xW,, and for
ali e 1.k, if W = Cap'[T;] then n; occurs P’ < 1. The judgment
EF (My, ..., My) : U must have been derived from (Proc Output)
withEF M; : W)’ for eachi € 1.k, for someW; ... W/, and U =

14

Wy x...xW . Hence W' =W for eadhi € 1. k. By k applicaions
of Lemma8-14, weget EF- Q : U.

Other cases. The other cases are dmost exadly as before.
O

References

[1] Amadio, R. An asynchronousmodel of locality, failure, and
processmobility. In COORDINATION'97, LNCS 1282,
Springer. 1997.

Boudol, G., Asynchrony and the Trcalculus. Technical Re-
port 1702, INRIA, Sghia-Antipolis, 1992.

Cardelli, L., Abstractions for Mobile Computation. 1998.
To appea. (See www.lucademon.co.uk.)

Cardelli, L. and A.D. Gordon, M obile Ambients. In Founda-
tions of Software Science and Computational Structures,
Maurice Nivat (Ed.), LNCS 1378, 140-155, Springer. 1998.
DeNicola, R., G. Ferrari, M. Pugliese, Coor dinating M obile
Agents via Blackboards and Access Rights. COORDINA-
TION'97, LNCS 1282, 220-237, Springer. 1997.

Honda,, K. and M. Tokoro, An object calculusfor asynchro-
nous communication. Proc. ECOOP'91, LNCS 521, 133-
147, Springer Verlag, 1991.

Kobayashi, N., B.C. Pierce and D.N. Turner, Linearity and
the Pi-Calculus. Proc ACM POPL’96, 358-371. 1996.
Milner, R., J. Parrow and D. Walker, A calculus of mobile
processs, Parts 1-2. Information and Computation, 100(1),
1-77. 1992.

Odersky, M., Polarized Name Passng. Proc FST&TCS,
Springer. 1995.

Pierce B., andD. Sangiorgi, Typing and Subtyping for M o-
bile Processes. Mathematical Structures in Computer Sci-
ence, 6(5), 409-454. 1996.

Riely, J. and M. Hennessy, A typed languagefor distributed
mobil e processes. In Proc ACM POPL'98, 378-390. 1998.
Sewell, P., Global/Local Subtyping and Capability Infer-
ence for a Distributed Tecalculus. In Proc ICALP'98,
Springer. 1998.

White, J.E., Mobil e agents. In Sdtware Agents, J. Bradshaw,
ed. AAA| Press/ The MIT Press. 199%.

(2
(3
(4

(9]

(6]

(7
(8]

(9

(10]

(11]

(12]

(13]

