
Lightweight Extensible Records for Haskell

Mark P. Jones

Oregon Graduate Institute

mpj@cse.ogi.edu

Simon Peyton Jones

Microsoft Research Cambridge

simonpj@microsoft.com

September 6, 1999

Abstract

Early versions of Haskell provied only a positional notation

to build and take apart user-de�ned datatypes. This po-

sitional notation is awkward and error-prone when dealing

with datatypes that have more than a couple of components,

so later versions of Haskell introduced a mechanism for la-

beled �elds that allows components to be set and extracted

by name. While this has been useful in practice, it also has

several signi�cant problems; for example, no �eld name can

be used in more than one datatype.

In this paper, we present a concrete proposal for replacing

the labeled-�eld mechanisms of Haskell 98 with a more
ex-

ible system of records that avoids the problems mentioned

above. With a theoretical foundation in the earlier work

of Gaster and Jones, our system o�ers lightweight, extensi-

ble records and a complement of polymorphic operations for

manipulating them. On a more concrete level, our proposal

is a direct descendent of the Trex implementation (\typed

records with extensibility") in Hugs, but freed from the con-

straints of that setting, where compatibility with Haskell 98

was a major concern.

1 Introduction

Records are one of the basic building blocks for data struc-

tures. Like a simple tuple or product, a record gathers to-

gether some �xed number of components, each of a poten-

tially di�erent type, into a single unit of data. Unlike a tuple

however, the individual components are accessed by name

rather than position. This is particularly important in lan-

guages where there is no support for pattern matching, or

in cases where the number of di�erent components would

make pattern matching unwieldy and error-prone.

Haskell allows programmers to de�ne a wide range of alge-

braic datatypes, but early versions of the language (up to

and including Haskell 1.2) did not provide any support for

records. As Haskell became an increasingly attractive plat-

form for general purpose program development, the need

for some form of records became more pressing: it is quite

common to �nd data structures with many components in

real-world applications, and it is very awkward to deal with

such datatypes in a language that supports only the tra-

ditional constructor and pattern matching syntax for alge-

braic datatypes. Motivated by such practical concerns, the

mechanisms for de�ning algebraic datatypes were extended

in Haskell 1.3 (and carried over into Haskell 1.4 and Haskell

98) to support labeled �elds, which allows the components of

a datatype to be accessed by name. In essence, the syntax

of Haskell was extended so that the de�nition of a particular

algebraic datatype could include not just the names of its

constructors, as in earlier versions of the language, but also

the names for its selectors. We review the Haskell 98 record

system in Section 2.

The Haskell 98 system has the merit of being explicable by

translation into a simpler positional notation, and has no

impact at all on the type system. However, this simplic-

ity comes at the price of expressiveness, as we discuss in

Section 2.1. This paper presents a concrete proposal for an

alternative record system, designed to replace the current

one (Section 3).

Our proposal is based closely on the extensible records of

Gaster and Jones [4]. An implementation of their system

has been available for a couple of years, in the form of the

\Trex" extension to Hugs, so quite a bit of experience has

accumulated of the advantages and shortcomings of the sys-

tem. Trex is designed to be compatible with Haskell 98,

and that in turn leads to some notational clumsiness. This

proposal instead takes a fresh look at the whole language.

The resulting design is incompatible with Haskell 98 in mi-

nor but pervasive ways; most Haskell 98 programs would re-

quire modi�cation. However, we regard this as a price worth

paying in exchange for a coherent overall design. We review

the di�erences between our proposal and Trex, Gaster's de-

sign, and other system in Section 4.

The paper contains essentially no new technical material;

the design issues are mainly notational. So why have we

written it? Firstly, there seems to be a consensus that some

kind of full-blown record system is desirable, but debate is

hampered by the lack of a concrete proposal to serve as a

basis for discussion. We hope that this paper may serve that

role. Second, it is not easy to see what the disadvantages of

a new feature might be until a concrete design is presented.

Our system does have disadvantages, as we discuss in Sec-

tion 5. We hope that articulating these problems may spark

o� some new ideas.

2 Haskell 98 records: datatypes with labeled �elds

The Haskell 98 record system simply provides syntactic

sugar for what could otherwise be written using ordinary,

positional, algebraic data types declarations. For example,

to a �rst approximation, the following de�nition:

data List a = Nil

| Cons {head :: a, tail :: List a}

can be thought of as an abbreviation for separate datatype

and selector de�nitions:

data List a = Nil -- datatype

| Cons a (List a)

head (Cons x xs) = x -- selectors

tail (Cons x xs) = xs

In fact, Haskell takes things a step further by introduc-

ing special syntax for construction and update operations.

These allow programmers to build and modify data struc-

tures using only the names of components, and without hav-

ing to worry about the order in which they are stored. For

example, we can build a list with just one element in it using

either of the constructions Cons{head=value, tail=Nil}

or Cons{tail=Nil, head=value}, and we can truncate any

non-empty list xs to obtain a list with just one element using

the update expression xs{tail=Nil}.

The following de�nition illustrates another convenient fea-

ture of Haskell's record notation:

data FileSystem

= File {name :: String, size :: Int, bytes :: [Byte]}

| Folder {name :: String, contents :: [FileSystem]}

Values of this datatype represent a standard hierarchical �le

system with �les contained in potentially nested folders. No-

tice that name is used as a �eld name in both branches; as a

result, the selector function name that is generated from this

de�nition can be applied to both File and Folder objects

without requiring the programmer to treat the two alterna-

tives di�erently each time the name of a FileSystem value

is required.

The result of these extensions is a record-like facility, layered

on top of Haskell's existing mechanisms for de�ning alge-

braic datatypes. From a theoretical perspective, of course,

these features are just a form of syntactic sugar, and do

nothing to make the language any more expressive. In prac-

tice, however, they have signi�cant advantages, greatly sim-

plifying the task of programming with data structures that

have many components. Moreover, the resulting programs

are also more robust because the code for selectors, update,

and construction is generated directly by the compiler, au-

tomatically taking account of any changes to the datatype

when �elds or constructors are added, deleted or reordered.

2.1 Shortcomings of Haskell 98 records

Unfortunately, there are also some problems with the

Haskell 98 approach:

� Record types are not lightweight; record values can only

be used once a suitable algebraic data type has been

de�ned. By contrast, the standard Haskell environ-

ment automatically provides lightweight tuple types|

records without labels|of all sizes.

� Field names have top-level scope, and cannot be used

in more than one datatype. This is a serious problem

because it prevents the direct use of a datatype with

labeled �elds in any context where the �eld names are

already in scope, possibly as �eld names in a di�erent

datatype. The only ways to work around such con
icts

are to rely on tedious and error-prone renaming of �eld

names, or by using (module) quali�ed names.

� Within a single datatype de�nition, we can only use

any given �eld name in multiple constructors if the

same types appear in each case. In the de�nition of the

FileSystem datatype above, for example, it was nec-

essary to to use di�erent names to distinguish between

the contents (i.e., bytes) of a File, and the contents

of a Folder.

� There is no way to add or remove �elds from a data

structure once it has been constructed; records are not

extensible. Each record type stands by itself, unrelated

to any other record type; functions over records are not

polymorphic over extensions of that record.

In the remaining sections of this paper, we present a con-

crete proposal for replacing the labeled �eld mechanisms of

Haskell with a more
exible system of records that avoids

the problems described above. There seems little point in

retaining the current labeled �eld mechanisms of Haskell

in the presence of our proposed extensions, as this would

unnecessarily complicate the language, and duplicate func-

tionality. Firm theoretical foundations for our system are

provided by the earlier work of Gaster and Jones [5], with

a type system based on the theory of quali�ed types [8].

This integrates smoothly with the rest of the Haskell type

system, and supports lightweight, extensible records with

a complement of polymorphic operations for manipulating

them. On a more concrete level, our proposal is inspired by

practical experience with the Trex implementation (\typed

records with extensibility") in current versions of the Hugs

interpreter, but freed from the constraints of that setting,

where compatibility with Haskell 98 was a major concern.

3 The proposed design

This section provides an informal overview of our proposal

for adding a more
exible system of extensible records to

Haskell. It covers all of the key features, and sketches out

our proposed syntax. Some aspects of our proposal are il-

lustrated using extracts from a session with an interpreter

for a Haskell dialect that supports our extensions. The in-

terpreter prompts for an input expression using a single ?

character, and then displays the result of evaluating that

expression on the next line. At the time of writing, we have

not actually built such an interpreter. However, based on

our experience implementing and using the Trex system in

Hugs, we are con�dent that our proposals are feasible, prac-

tical, and useful.

2

We begin by describing the basic syntax for constructing and

selecting from record values (Section 3.1), and for represent-

ing record types (Section 3.3). But for a few (mostly minor)

di�erences in syntax, these aspects our proposal are almost

indistinguishable from the lightweight records of Standard

ML (SML). Turning to issues that are speci�c to Haskell,

we show that record types can be included as instances of

the standard classes for equality, Eq, and display, Show (Sec-

tion 3.4). One key feature of our proposal, which clearly

distinguishes it from the existing mechanisms in languages

like SML and Haskell 98, is the support for extensibility (Sec-

tion 3.5). By allowing record extension to be used in pattern

matching, we also provide a simple way to select or remove

speci�c record components. A combination of extension and

removal can be used to update or rename individual �eld

in a record. In practice, we believe that these operations

are useful enough to warrant a special syntax (Section 3.6).

A second key feature of the underlying type system is row

polymorphism (Section 3.7), and this leads us to introduce

a general syntax for rows (Section 3.8). Finally, we turn to

a collection of additional features that are less essential, but

that look very attractive (Section 3.10).

3.1 Construction and Selection

In essence, records are just collections of values, each of

which is associated with a particular label. For example:

{a = True, b = "Hello", c = 12::Int}

is a record with three components: an a �eld, containing a

boolean value, a b �eld containing a string, and a c �eld

containing the number 12. The order in which the �elds are

listed is not signi�cant, so the same record value could also

be written as:

{c = 12::Int, a = True, b = "Hello"}

These examples show simple ways to construct record values.

We can also inspect the values held in a record using the

traditional dot notation, where an expression of the form r.l

simply returns the value of the l component in the record

r. For example:

? {a = True, b = "Hello", c = 12::Int}.a

True

? let f r = r.b in f {a = True, b = "Hello"}

"Hello"

?

In all previous versions of Haskell, the `.' character has been

used to represent function composition. It has also been

used in more recent versions of Haskell in the syntax for

quali�ed names. The �rst of these is clearly incompatible

with our proposal, as it would allow a second reading of r.l

as the composition of r with l. To avoid this con
ict, we

propose adopting a di�erent symbol for function composi-

tion; we believe that # would be a good choice, but debate

on that is beyond the scope of this paper. Our use of the

dot notation is, however, entirely compatible with the syn-

tax for quali�ed names, and with proposals for a structured

module namespace in the style of Java packages. Another

appealing consequence of this design is that it gives a single

and consistent reading to the `.' character as selection, be it

from a record or a module. On a practical level, this shows

up in minor, but pleasing ways. For example, we can re-

move the rather ad-hoc restriction in the Haskell 98 syntax

for quali�ed name that currently prohibits the use of spaces

in a quali�ed name like Prelude.map that might otherwise

have been confused with compositions like Just . f.

Repeated selections can be used to extract values from

record-valued components of other records. As usual, \."

associates to the left, so that r.l.k is equivalent to (r.l).k:

? {a = True, b = {x="Hello"}, c = 12::Int}.b.x

"Hello"

?

3.2 Pattern matching

Record values can also be inspected by using pattern match-

ing, with a syntax that mirrors the notation used for con-

structing a record:

? (\{a=x, c=y, b=_} -> (y,x))

{a=True, b="Hello", c=12::Int}

(12,True)

?

The order of �elds in a record pattern (unlike a record expres-

sion) is signi�cant because it determines the order|from left

to right|in which they are matched. Consider the following

two examples:

? [x | {a=[x],b=True} <- [{b=undefined,a=[]},

{a=[2],b=True}]]

[2]

? [x | {b=True, a=[x]} <- [{b=undefined, a=[]},

{a=[2],b=True}]]

Error: {program uses the undefined value}

?

In the �rst example, the attempt to match the pattern

{a=[x], b=True} against the record {b=undefined, a=[]}

fails because �eld a is matched �rst and [x] does not match

the empty list; but matching the same pattern against

{a=[2],b=True} succeeds, binding x to 2. Swapping the

order of the �elds in the pattern to {b=True, a=[x]} forces

matching to start with the b component. But the �rst ele-

ment in the list of records used above has undefined in its b

component, so now the evaluation produces a run-time error

message.

3.3 Record types

Like all other values in Haskell, records have types, and these

are written in the form {r}, where r represents a `row' that

associates labels with types. For example, the record:

{c = 12::Int, a = True, b = "Hello"}

has type:

{a::Bool, b::[Char], c::Int}

This tells us, unsurprisingly, that the record has three com-

ponents: an a �eld containing a Bool, a b �eld containing

a String, and a c �eld of type Int. As with record val-

3

ues themselves, the order of the components in a row is not

signi�cant, and so the previous type can also be written as:

{b::String, c::Int, a::Bool}

In the special case when the row is empty, we obtain the

empty record type {}, whose only value (other than ?) is

the empty record, also written as {}.

Of course, the type of a record must be an accurate re
ection

of the �elds that appear in the corresponding value. The

following example produces an error because the speci�ed

type does not list all of the �elds in the record value:

? {a=True, b="Hello", c=12} :: {b::String, c::Int}

ERROR: Type error in type signature expression

*** term : {a=True, b="Hello", c=12}

*** type : {a::Bool, b::[Char], c::a}

*** does not match : {b::String, c::Int}

*** because : field mismatch

?

Notice that our system does not allow the kind of sub-

typing on record values that would permit a record like

{a=True, b="Hello", c=12} to be treated implicitly as

having type {b::String, c::Int}, simply by `forgetting'

about the a �eld. Finding an elegant and tractable way

to support this kind of implicit coercion in a way that inte-

grates properly with other aspects of the Haskell type system

remains an interesting problem for future research. How-

ever, as we shall see in Section 3.7, our use of row polymor-

phism o�ers many of the bene�ts of subtyping.

3.4 Overloaded operations on records

Record types are automatically included in the standard Eq

and Show classes of Haskell, provided that the types of each

�eld in the records concerned are themselves instances of the

appropriate class. Our interpreter uses these functions to al-

low comparison and display of record values in the following

examples:

? {a=True, b="Hello"} == {b="Hello", a=True}

True

? {a = True, b = "Hello", c = 12::Int}

{a=True, b="Hello", c=12}

? {c = 12::Int, a = True, b = "Hello"}

{a=True, b="Hello", c=12}

?

Note that these operations always process record �elds ac-

cording the dictionary ordering of their labels. The fact

that the �elds appear in a speci�c (but, frankly, arbitrary)

order is very important; the results of the (==) operator and

the show function must be uniquely determined by their in-

put, and not by the way in which that input is written. The

records used in the last two lines of the example have exactly

the same value, and so we expect exactly the same output

for each. The di�erence in behavior between the following

two examples is also a consequence of this:

? {a=0, b="Hello"} == {b=undefined, a=1}

False

? {b=0, a="Hello"} == {a=undefined, b=1}

Error: {program uses the undefined value}

?

In the �rst case, the equality test returns False because the

two values di�er in their �rst component, labeled as a. In

the second case, where the labels have been switched, the

equality test begins with an attempt to compare the string

"Hello" with an unde�ned value, resulting in an error.

Arguably, records should automatically be instances of the

classes Ord, Ix, Bounded, and Read, on the grounds that

these are the classes (beyond Eq and Show) of which tuples

are automatically instances. The di�culty is that the order

of the �elds matters even more for these four than they do

for the former two. There is no di�culty in principle |

�elds can be lexically ordered | but the arbitrary nature of

this ordering is apparent in more than just the strictness of

the class methods.

3.5 Extension

An important property of our system is that the same label

name can appear in many di�erent record types, and po-

tentially with a di�erent type in each case. However, all of

the examples that we have seen so far deal with records of

some �xed shape, where the set of labels and the type of

values associated with each one are �xed, and there is no

apparent relationship between records of di�erent type. In

fact, all record values and record types in our system are

built up incrementally, starting from an empty record and

extending it with additional �elds, one at a time. This is

what it means for records to be extensible.

In the simplest case, any given record r can be extended

with a new �eld labeled l, provided that r does not already

include an l �eld. For example, we can construct the record

{a=True, b="Hello"} by extending {a = True} with a �eld

b="Hello":

? {{a=True} | b = "Hello"}

{a=True, b="Hello"}

?

Note that we write the record value that is being extended

�rst, followed by a `|' character, and then by a list of the

�elds that are to be added. Another way to construct ex-

actly the same result is by extending {b = "Hello"} with a

�eld a=True:

? {{b = "Hello"} | a = True}

{a=True, b="Hello"}

?

It is often convenient to add more than one �eld at a time,

as shown in the following example:

? {{b1="World"} | a=True, b="Hello", c=12::Int}

{a=True, b="Hello", b1="World", c=12}

?

On the other hand, a record cannot be extended with a

�eld of the same name, even if it has a di�erent type. The

following example illustrates this:

? let r = {c=12::Int} in {r | c=True}

ERROR: {c::Int} already includes a "c" field

4

?

Much the same syntax can be used in patterns to decompose

record values:

? (\{r | b=bval} -> (bval,r)) {a=True, b="Hello"}

("Hello",{a=True})

?

Notice that we can match, not just against individual com-

ponents of a record value, but also against the portion of

the record that is left after the explicitly named �elds have

been removed. In previous examples, we saw how a record

could be extended with new �elds. As this example shows,

we can use pattern matching to do the reverse operation of

removing �elds from a record.

3.6 Update

It is often useful to update a record by changing the val-

ues associated with some of its �elds. Update operations

like this can be coded by hand, using pattern matching to

remove the appropriate �elds, and then extending the re-

sulting record with the new values. However, it seems much

more attractive to provide special syntax for these opera-

tions, using := instead of = to distinguish update from ex-

tension. Slightly more formally, a record expression:

{r | x := e}

is treated as an abbreviation for the following update:

case r of {s | x=_} -> {s | x=e}

Providing a special syntax makes updates easier for pro-

grammers to code and also makes them easier for a compiler

to recognize, which can often permit a more e�cient imple-

mentation that avoids building the intermediate record s.

For further convenience, we allow updates to be freely mixed

with record extension in expressions like the following:

{r | x=2, y:=True}

Unlike the extension syntax, however, it does not seem sen-

sible to allow the use of update syntax in a record pattern.

3.7 Row polymorphism

We can also use pattern matching to understand how se-

lector functions are handled. For example, evaluating an

expression of the form r.l is much like passing r as an ar-

gument to the function:

(\{_|l=value} -> value)

This function is polymorphic in the sense that it can be used

with any record containing an l �eld, regardless of the type

associated with that particular component, or of any other

�elds that the record might contain:

? (\{_|l=value} -> value) {l=True, b="Hello")

True

? (\{_|l=value} -> value)

{name="Record", age=2, l="None")

"None"

?

To see how this works, we need to look at the type of this

function, which can be inferred automatically as:

(r\x) => {r | x::a} -> a

There are two important pieces of notation here that deserve

further explanation:

� {r | l::a} is the type of a record with an l component

of type a. The row variable r represents the rest of the

row; that is, it represents any other �elds in the record

apart from l. This syntax for record type extension

mirrors the syntax that we have already seen in the

examples above for record value extension. We discuss

rows further in Section 3.8.

� The constraint r\l tells us that the type on the right of

the => symbol is only valid if \r lacks l," that is, if r is a

row that does not contain an l �eld. If you are already

familiar with Haskell type classes, then you may like to

think of \l as a kind of class constraint, written with

post�x syntax, whose instances are precisely the rows

without an l �eld.

For example, if we apply our selector function to a record

{l=True,b="Hello"} of type {b::String, l::Bool}, then

we instantiate the variables a and r in the type above to

Bool and (b::String), respectively.

The row constraints that we see here can also occur in the

type of any function that operates on record values if the

types of those records are not fully determined at compile-

time. For example, given the following de�nition:

average r = (r.x + r.y) / 2

our interpreter would infer a principal type of the form:

average :: (Fractional a, r\y, r\x)

=> {r | y::a, x::a} -> a

However, any of the following, more speci�c types could be

speci�ed in a type declaration for the average function:

average :: (Fractional a) => {x::a, y::a} -> a

average :: (r\x, r\y)

=> {r | x::Double, y::Double} -> Double

average :: {x::Double, y::Double} -> Double

average :: {x::Double, y::Double, z::Bool} -> Double

Each of these is an instance of the principal type given above.

These examples show an important di�erence between the

system of records described here, and the record facilities

provided by SML. In particular, SML prohibits de�nitions

that involve records for which the complete set of �elds can-

not be determined at compile-time. So, the SML equivalent

of the average function described above would be rejected

because there is no way to determine if the record r will

have any �elds other than x or y. SML programmers usu-

ally avoid such problems by giving a type annotation that

completely speci�es the structure of the record. Of course,

if a de�nition is limited in this way, then it also less useful.

With the expected implementation for our type system, as

described in Section 3.9, there is an advantage to knowing

the full type of a record at compile-time because it will allow

the compiler to generate more e�cient code. However, un-

5

like SML, the type system also o�ers the
exibility of poly-

morphism and extensibility over records if that is needed.

3.8 Rows

To deal more formally with record types, we extend the kind

system of Haskell with a new kind, row : in a record type of

the form {expr}, the expression expr must have kind row.

Types of kind row are written using essentially the same

notation that we use for records, but enclosed in parentheses

rather than braces. For example:

� The empty row is written as (), and the empty record

type {} is really just a convenient abbreviation for {()}.

Note that this is a change from Haskell 98, where the

symbol () is used to denote the unit type and its only

proper (i.e., non bottom) value. With our proposal,

the empty record, {} of type {}, can be used in place

of a special unit value.

� Non-empty rows are formed by extension. For ex-

ample, (r|x::Int) is the row obtained from row r

by extending it with an x �eld of type Int. Mul-

tiple �elds can be speci�ed using comma-separated

lists. For example, (r|x::Int, y::Bool) is a short-

hand for ((r|x::Int)|y::Int). Another short-

hand allows us to write extensions of the empty

row as a comma-separated list of �elds. For ex-

ample, (x::Int, y::Bool) is an abbreviation for

(()|x::Int, y::Bool), which is in turn just an ab-

breviation for ((()|x::Int)|y::Bool). In all cases,

we allow the outermost pair of parentheses to be omit-

ted when a row expression appears inside a pair of

braces. For example, {(x::Int)} can be abbreviated

to {x::Int}.

� Row variables (i.e., type variables of kind row) repre-

sent unknown rows. As in Haskell, the kinds of all type

variables are inferred automatically by the compiler us-

ing a simpli�ed form of type inference.

Row expressions can be used anywhere that a type construc-

tor of kind row is required, including the right hand side

of a type de�nition, or the parameters of any programmer

de�ned class or datatype constructor. For example, the fol-

lowing de�nitions introduce a type synonym, Point, of kind

row, and then extend this to de�ne a second type synonym

ColoredPoint that adds an extra Color �eld:

-- Point :: row

type Point = (x::Int, y::Int)

-- ColoredPoint :: row

type ColoredPoint = (Point | c::Color)

As the comments indicate, Point and ColoredPoint have

kind row. (Haskell type declarations can already introduce

type constructors of kinds other than �.)

This style of de�nition allows us to build up row types (and

hence record types) in a style akin to single inheritance. It

does not, however, support multiple inheritance. For exam-

ple, the following de�nition of ColoredPoint is ill-formed

because our proposal requires a �eld list to the right of a |,

and does not permit arbitrary row expressions.

type Point = (x::Int, y::Int)

type Coloring = (c::Color)

type BadColoredPoint = (Point | Coloring) -- NO!

While we can model single inheritance, this style does not

make it possible to de�ne polymorphic functions. To illus-

trate this point, consider the following example:

move :: Int -> Int -> {Point} -> {Point}

move a b p = {p | x:=a, y:=b}

The function move works �ne on values of type {Point}

but it is type-incorrect to apply it to a value of type

{ColoredPoint}.

However, it is easy to obtain a move that is applicable to

points of all varieties by de�ning the types a little di�erently:

-- Point :: row -> row

type Point r = (r | x::Int, y::Int)

-- Colored :: row -> row

type Colored r = (r | c::Color)

-- ColoredPoint :: row -> row

type ColoredPoint r = Point (Colored r)

Notice that it is entirely legitimate for the type synonym

Point to abstract over a row variable, so that Point itself

has kind row!row. Of course, the original de�nitions for

each of these rows are just extensions of the empty row ().

For example, with these de�nitions, we can write the type

of a record {x=0, y=0, c=Red} as {ColoredPoint()}. Now

we can de�ne move thus:

move :: (r\x, r\y) => Int -> Int

-> {Point r} -> {Point r}

move a b p = {p | x:=a, y:=b}

The type neatly expresses that move works on any \sub-

class" (i.e., substitution instance) of {Point r}; any

{ColoredPoint s} will do, for example. It also expresses

that move returns a Point of the same variety as it is given

as its argument, a well-known problem in many object sys-

tems (e.g., Cardelli and Mitchell [2, Section 2.6] discuss the

\update problem" at some length). The observation that

row polymorphism deals with this problem is not new [1].

Even though we have constructed ColoredPoint in a \se-

quential" way, row composition is commutative. For ex-

ample, the following de�nition of ColoredPoint is entirely

equivalent|to see this, just expand out the synonyms:

-- ColoredPoint :: row -> row

type ColoredPoint r = Colored (Point r)

We can also use variables of kind row as the parameters of

user-de�ned datatypes, thus:

data T r = MkT {r | x :: Bool}

According to the normal rules for kind inference, T will be

treated as a type constructor of kind row! �, but it is clear

that this kind is inaccurate; it does not seem sensible to

allow T to be applied to any row argument, only to those that

do not have an x �eld. Our kind system is not expressive

enough to capture this restriction directly, but it can be

re
ected by including a constraint r\x in the type of T. From

6

a practical perspective, this is a minor issue; without any

further restrictions, the type system will allow us to use

types like T (x::Int) without
agging any errors, but it will

not allow us to construct any values of that type, apart from

?. However, although it makes no real di�erence, it seems

more consistent with other aspects of Haskell to require the

de�nition of datatypes like T to re
ect any constraints that

are needed to ensure that their component types are well-

formed. For example, we can correct the previous de�nition

of T by inserting a r\x constraint, as follows:

data (r\x) => T r = MkT {r | x :: Bool}

(Haskell old-timers who remember the Eval class, may

also recall that similar constraints were once required on

datatypes that used strictness annotations.)

3.9 Implementation

A major merit of Gaster and Jones's record system is that

it smoothly builds on Haskell's type class mechanism. This

analogy applies to the implementation as well. The details

are covered elsewhere [5] but the basic idea is simple enough.

Each \lacks" constraint in a function's type gives rise to

an extra argument passed to that function that constitutes

\evidence" that the constraint is satis�ed. In particular,

evidence that r lacks a �eld l is given by passing the o�set

at which l would be stored in the record {r} extended by l.

The size of the entire record is also required when performing

record operations. This can be obtained either from the

record itself, or by augmenting \evidence" to be a pair of

the o�set and record size.

As usual with overloading, much more e�cient code can be

obtained by specialisation. In the case of records, speciali-

sation \bakes into" the code the size of the record and the

o�sets of its �elds.

3.10 Additional Features

In this section, we collect together some small, but poten-

tially useful ideas for further extensions of our core proposal.

3.10.1 Presentation of inferred types

One comment that some experienced users of the Trex sys-

tem have made is that user-written type signatures become

unreasonably large. For example, consider the type signa-

ture for move in Section 3.8:

move :: (r\x, r\y) => Int -> Int -> {Point r} -> {Point r}

move a b p = {p | x:=a, y:=b}

The Point synonym allowed us not to enumerate (twice)

the details of a Point, but the context (r\x, r\y) must

enumerate the �elds that r must lack, otherwise the type is

ill-formed. This is annoying, because, if we expand the type

synonym, it is absolutely manifest that r must lack �elds x

and y:

move :: (r\x, r\y) => Int -> Int

-> {r | x::Int, y::Int}

-> {r | x::Int, y::Int}

Not only is it annoying, but it is also non-modular: adding

a �eld to Point will force a change to the type signature of

move, even if move's code does not change at all. In practice,

these annoyances are enough to cause programmers to omit

type signatures altogether on functions with complex types

| arguably just the functions for which a type signature

would be most informative.

Thus motivated, an obvious suggestion is to permit con-

straints in a type signature to be omitted if they could

be inferred directly from the rest of the signature. This

is akin to the omission of explicit universal quanti�cation.

Haskell already lets us write f::a->a, when we really mean

f::forall a.a->a. The \forall a" is inferred. In a sim-

ilar way, we propose that a similar inference process adds

\lacks" constraints to a type signature, based solely on the

rest of the type signature (after expanding type synonyms).

Note that this is a matter of presentation only, and the ac-

tual types used inside the system do not change. Constraints

of this form cannot always be omitted from the user type

signature, as illustrated in the following (pathological) ex-

ample:

g :: (r\l) => {r} -> Bool

g x = {x | l=True}.l

As a slightly more realistic example where constraints can-

not be omitted, consider the following datatype of trees,

which allows each node to be annotated with some addi-

tional information info:

data Tree info a b

= Leaf {info | value :: a}

| Fork {info | left :: Tree info a b,

value :: b,

right :: Tree info a b}

In an application where there are many references to the

height of a tree, we might choose to add height informa-

tion to each node, and hence avoid repeated unnecessary

repeated computation:

addHeight (Leaf i) = Leaf {i | height=0}

addHeight (Fork i)

= Fork {i | left := l, right := r,

height = 1 + max (height l)

(height r) }

where l = addHeight i.left

r = addHeight i.right

height (Leaf i) = i.height

height (Fork i) = i.height

Careful examination of this code shows that the type of

addHeight is:

(info\height, info\left, info\right)

=> Tree info a b -> Tree (info | height::Int) a b

Note here that only the �rst of the three constraints,

info\height, can be inferred from the body of the type,

and hence the remaining two constraints cannot be omit-

ted. In our experience, such examples are quite uncommon,

and we believe that many top-level type signatures could

omit their \lacks" constraints, so this facility is likely to be

very attractive in practice.

7

3.10.2 Tuples as values

As in Standard ML, records can be used as the underly-

ing representation for tuples; all that we need to do is pick

out canonical names for each position in a tuple. For ex-

ample, if we write field1 for the label of the �rst �eld

in a tuple, field2 for the second, and so on, then a tu-

ple value like (True,12) is just a convenient shorthand

for {field1=True, field2=12}, and its type (Bool,Int) is

just a shorthand for {field1::Bool, field2::Int}. The

advantages of merging currently separate mechanisms for

records and tuples are clear, as it can remove redundancy

in both the language and its implementations. In addition,

it o�ers a more expressive treatment of tuples because it

allows us to de�ne functions like:

fst :: (r\field1) => {r|field1::a} -> a

fst r = r.field1

that can extract the �rst component from any tuple value;

in current versions of Haskell, the fst function is restricted

to pairs, and di�erent versions must be de�ned for each dif-

ferent size of tuple.

The exact choice of names for the �elds of a tuple is a

matter for debate. For example, it would even be possi-

ble (though not necessarily desirable) to use the unadorned

integers themselves | e.g. x.2, {r | 3=True}.

3.10.3 Constructors as �eld names

Programmers often use algebraic data types to de�ne sums;

for example:

data Maybe a = Nothing | Just a

data Either a b = Left a | Right b

In such cases it is common to de�ne projection functions:

just :: Maybe a -> a

just (Just x) = x

left :: Either a b -> a

left (Left x) = x

right :: Either a b -> b

right (Right y) = y

An obvious notational convenience would be to re-use the

\dot" notation, an allow a constructor to be used after the

dot to indicate a projection. That is, m.Just would be equiv-

alent to just m, and e.Left would be equivalent to left e,

and so on. This would often avoid the need to de�ne the

projection functions explicitly.

This notation is particularly convenient for Haskell 98

newtype declarations, which allow one to declare a new data

type isomorphic to an old one. For example:

newtype Age = Age Int

Here Age is isomorphic to Int. The \constructor" Age has

the usual type

Age :: Int -> Age

and allows one to convert an Int into an Age. (We put

\constructor" in quotes, because it is implemented by the

identity function, and has no run-time cost.) The reverse co-

ercion is less convenient but, if the constructor could be used

as a projection function, one could write a.Age to coerce a

value a::Age to an Int.

The proposal here is entirely syntactic: to use the same

\dot" notation for sum projections as well as for record �eld

selection. The two are syntactically distinguishable because

constructors begin with an upper-case letter, whereas �elds

do not.

3.10.4 Punning

It is often convenient to store the value associated with a

particular record �eld in a variable of the same name. Moti-

vated by practical experience with records in the Standard

ML community, it is useful to allow a form of punning in the

syntax for both record expressions and patterns. This allows

a �eld speci�cation of the form var is treated as an abbrevi-

ation for a �eld binding of the form var=var, and is referred

to as a pun because of the way that it uses a single name in

two di�erent ways. For example, (\{x,y,z} -> x + y + z)

is a function whose de�nition uses punning to sum the com-

ponents of a record. Punning permits de�nitions such as:

f :: {x::Int, y::Int} -> {x::Int, y::Int}

f {x,y} = {x=y-1, y=x+1}

Here, in the expressions y-1 and x+2, the variables x and y

are bound to the �elds of the same name in f's argument.

Punning was also supported in some versions of Haskell prior

to Haskell 98, but was removed because of concerns that it

was not well behaved under renaming of bound variables.

For example, in the de�nition

f :: Int -> Int

f x = x+1

one can rename both occurrences of \x" to \y". But in the

de�nition:

f :: {x::Int} -> Int

f {x} = x+1

one cannot perform such a renaming, because x is serving

as a record label. In fact punning is perfectly well-behaved

under these circumstances, provided one remembers that it

is simply an abbreviation, which may need to be expanded

before completing the task of renaming:

f :: {x::Int} -> Int

f {x=x} = x+1

Now one can rename as follows:

f :: {x::Int} -> Int

f {x=y} = y+1

Anecdotal experience from the Standard ML community

suggests that the merits of punning greatly exceed the dis-

advantages.

8

3.10.5 Renaming

It is easy to extend the set of supported operations on

records to include a renaming facility, that allows us to

change the name associated with a particular �eld in a

record. This notation can be de�ned more formally in terms

of a simple translation:

{r | x->y} = case r of {s | x=t} -> {s | y=t}

However, as in the case of update (Section 3.6), use of this

notation makes it easier for programmers to use renaming,

and easier for a compiler to implement it.

3.10.6 Kind signatures for type constructors

Earlier in this paper we used comments to indicate the kinds

of type constructors in examples like:

-- Point :: row -> row

type Point r = (r | x::Int, y::Int)

The clear implication is that Haskell should provide a way to

give kind signatures for type constructors, perhaps simply

by permitting the above commented kind signature. Such

kind signatures are syntactically distinguishable from value

type signatures, because type constructors begin with an

upper case letter. Another alternative would be to allow

kind annotations of the form:

type Point (r::row) :: row = (r | x::Int, y::Int)

Annotations like this would also be useful elsewhere, such

as in data of class declarations.

The need for explicit kind information is not restricted to ex-

tensible records. In this very workshop proceedings, Hughes

writes [7]:

data Set cxt a = Set [a] | Unused (cxt a -> ())

The only reason for the Unused constructor which, as its

name implies, is never used again, is to force cxt to have

kind � ! �. It would be far better to say:

Set :: (*->*) -> * -> *

data Set cxt a = Set [a]

3.10.7 Topics for further work

Our proposal does not support all of the operations on

records that have been discussed in the literature. Examples

of this include:

� Record concatenation. This allows the �elds of two dis-

tinct records to be merged to form a single record. Sev-

eral researchers have studied this operator, or closely

related variants. For example, Wand [14] used it as a

way to describe multiple inheritance in object-oriented

languages, and R�emy [13] described a technique for typ-

ing a form of record concatenation for `free' in any lan-

guage supporting record extension.

� Unchecked operations. These are variations of the op-

erations on records that we have already seen that place

slightly fewer restrictions on the types of their input

parameters. For example, an unchecked extension op-

erator guarantees that the speci�ed �eld will appear in

its result with the corresponding value, regardless of

whether there was a �eld of the same name in the in-

put record. With the checked operators that we have

presented in this paper, the programmer must distin-

guish between the two possible cases using extension or

update, as appropriate. Unchecked operations are sup-

ported, for example, in R�emy's type system for records

in a natural extension of ML [12].

� First-class labels. This allows labels to be used and

manipulated as program values, with a number of po-

tentially useful applications. A prototype implemen-

tation was developed by Gaster [4], but there are still

some details to be worked out.

It is not yet clear whether our proposal could be extended

to accommodate these operations, and we believe that each

of them would make interesting topics for future work.

4 Comparison with other systems

In this section we provide brief comparisons of our proposal

with the facilities for de�ning an using records in other sys-

tems. We focus here on practical implementations, and re-

fer interested readers to the work of Gaster and Jones [5]

for comparisons of the underlying theory with other more

theoretical proposals.

4.1 Comparison with Standard ML

The system of records in Standard ML was one of the orig-

inal inspirations for this proposal, but of course our system

also supports extensibility, update, and polymorphic oper-

ations over records. This last point shows up in Standard

ML when we try to use a record in a situation where its

corresponding set of �eld labels cannot be determined at

compile-time, and resulting in a compile-time error.

4.2 Comparison with SML#

Based on his earlier work on type systems for records [11],

Atsushi Ohori built a version of the Standard ML inter-

preter known as SML#, which extends the SML record sys-

tem with support for update and for polymorphic opera-

tions over records

1

. Ohori's system does not provide the

separation between rows and records that our proposal of-

fers (Section 3.8), nor is it clear how records would interact

with type classes, but it would be wrong to criticize SML#

on the basis of these omissions, because they are much more

relevant in the context of Haskell, with its advanced kind

and class system, than they are in SML. Thus, apart from

di�erences in syntax, the main advantage of our system over

Ohori's is the support that it provides for extensibility.

1

Further information about SML# is available on the World Wide

Web at http://www.kurims.kyoto-u.ac.jp/~ohori/smlsharp.html.

9

4.3 Comparison with Trex

The proposal presented in this paper is closely related to

the Trex implementation in current releases of Hugs 98 [10].

The only real di�erences are in the choice of notation:

� In record types, Trex uses Rec r where this proposal

uses {r}. The latter choice could not be used with Trex

because of the con
ict with the syntax for labeled �elds

in Haskell 98.

� In record values, Trex uses (...) where this proposal

uses {...}. The latter could not be used in Trex be-

cause it con
icts with the update syntax for datatypes

with labeled �elds in Haskell 98. For example, in

Haskell 98, an expression of the form e{x=12} is treated

as an update of value e with an x �eld of 12. For

the current proposal, we would expect to treat this ex-

pression as the application of a function e to a record

{x=12} with just one �eld.

� Trex uses (x::a | r) where this proposal uses

(r | x::a). We deviate from Trex because it can be

easy for the trailing \| r" to become lost when it fol-

lows a large block of �eld de�nitions. (In a similar way,

Haskell puts guards at the beginning of an equation

de�ning a function, rather than at the end as some

languages do.) This choice is ultimately a matter of

taste | we have not found any compelling technical

reason to justify the use of one of these over the other.

� Like SML, Trex uses #l to name the selector for a �eld

l; this proposal uses dot notation for �eld selection, and

the function #l must be written as (\r -> r.l). Dot

notation could not be used in Trex because it con
icts

with the use of . for function composition in Haskell.

� Trex does not support the update notation; update is

one of several features that appeared in the original

work on Trex that were not implemented in the Hugs

prototype.

� Trex uses EmptyRow where this proposal uses (); the

latter could not be used in Trex because it con
icts

with the notation used for the unit type in Haskell 98.

� Trex does not use punning (Section 3.10.4) because of

a con
ict with the syntax for tuples: an expression like

(x,y) could be read in two di�erent ways, either as a

tuple, or as an abbreviation for the record (x=x, y=y).

In short, the current proposal di�ers in only small ways from

Trex, and most of the changes were made possible only by

liberating ourselves from any need to retain compatibility

with the syntax of Haskell 98.

4.4 Comparison with Gaster's proposal

Our proposal is quite similar to that of [3]. Most notably,

we both adopt the idea of using \." for record selection.

We have gone further than Gaster by abandoning Haskell

98's current record system altogether, using \()" for the

empty row instead of the unit tuple, providing a syntax for

record updates (Section 3.6), and using constructors as se-

lectors (Section 3.10.3). We have also elaborated a little

more on the implications of row polymorphism. But the

two proposals clearly share a common foundation.

5 Shortcomings of our proposal

One of the main reasons to turn a general idea into a con-

crete design is to highlight di�culties that deserve further

attention.

5.1 Where Haskell 98 does better

We began this paper by describing some of the weaknesses

of the labeled �eld mechanism in Haskell 98, and using those

to motivate the key features of this proposal. In this section,

therefore, we focus on areas where the Haskell 98 approach

sometimes o�ers advantages over our proposal.

� The double-lifting problem. Part of the price that we

pay for having lightweight records is that it becomes

more expensive to embed a record in a datatype. For

example, with our proposal, the de�nition of the fol-

lowing datatype introduces two levels of lifting:

data P = MkP {x::Double, y::Double}

In semantic terms, this means that the datatype P con-

tains both ? and MkP ? as distinct elements. In imple-

mentation terms, it means that an attempt to access

the x or y coordinates will require a double indirec-

tion. In comparison, the same de�nition in Haskell 98

introduces only one level of lifting. The same behavior

can be recovered in our proposal by adding a strictness

annotation to the record component of the datatype.

data P = MkP !{x::Double, y::Double}

� The unpacking problem. Even if we use the second def-

inition of the P datatype, it will only help to avoid two

levels of indirection when we construct a value of type

P; we still need a two stage process to extract a value

from a datatype. For example, to extract the x, we

must �rst remove the outer MkP constructor to expose

the record from which the required x �eld can be ob-

tained.

This provides an additional incentive to adopt the use

of constructors as �eld selectors (Section 3.10.3). This

would allow the selection of the x component from a

value p of type P to be written more succinctly as

p.MkP.x.

This approach does not help us to deal with examples

like the FileSystem datatype from Section 1, where

the same �eld name appears in multiple branches of an

algebraic datatype. In Haskell 98, the compiler takes

care of generating an appropriate de�nition for the se-

lector function. With our proposal, this must be coded

by hand:

name :: FileSystem -> String

name (File r) = r.name

name (Folder r) = r.name

10

� Strictness annotations. Haskell 98 allows individual

components of a datatype to be marked with strictness

annotations, as in the following example:

data P = MkP {x :: Double, y :: !Double}

The proposal described in this paper does not allow

this because record types are lightweight, not declared.

An advantage is that the same labels can be used in

di�erent types. The disadvantage here is that there is

no way to attach any special meaning, in this case a

strictness annotation, to any particular label. One way

to overcome this restriction would be to use lexically

distinct sets of �eld labels to distinguish between strict

and non-strict components. Alternatively, we could in-

troduce strict versions of the extension and update op-

erators. The problem with this approach is that strict

evaluation will only be used when the programmer re-

members to insert the required annotations.

The impact of these problems will depend, to a large extent

on the way that records are used within algebraic datatypes.

5.2 Polymorphism

Although it is not part of the Haskell 98 standard, both Hugs

and GHC allow the components of an algebraic datatype to

be assigned polymorphic types. A standard example of this

might be to de�ne a concrete representation for monads as

values of the following type:

data Mon m

= MkMon {unit :: forall a. a -> m a,

bind :: forall a, b. m a -> (a -> m b) -> m b}

To support the use of this datatype, the MkMon constructor,

and, to a lesser degree, the unit and bind selectors are given

a special status in the type checker, and are used to propa-

gate explicit typing information to places where values of the

datatype are used. (Type inference would not be possible

without such information.) With our proposal, this special

status is lost: all records are constructed in the same way,

and all �elds are selected in the same way. For example, the

function to extend a record with a unit �eld is just:

(\r u -> {r | unit=u})

:: (r\unit) => {r} -> a -> {r|unit::a}

The type variables r and a here range over monotypes (of

kind row and �, respectively), and there is nothing to hint

that a polymorphic value for unit should be expected.

Intuitively, it seems clear that we should still be able to prop-

agate programmer-supplied type information to the places

where it is needed, but the mechanisms that we need to

support this are rather di�erent from the mechanisms that

are used to support the current Hugs and GHC extensions

illustrated above. One promising approach, previously used

in work with parameterized signatures [9], is to use so-called

\has" predicates for records instead of the \lacks" predicates

used here. These \has" predicates provide a looser coupling

between records and their component types, which delays

the need to resolve them to a point where more explicit

typing information is likely to be available. However, it is

not immediately obvious how we can integrate this approach

with the main proposals in this paper, which rely instead on

\lacks" predicates.

Another possibility is to provide a special typing rule for the

syntactic composition of constructor application and record

construction, e�ectively recovering the rule for constructors

used by GHC and Hugs. GHC and Hugs's constructor-

application rule is already restricted to the case where the

constructor is applied to enough arguments to saturate all

its universally-quanti�ed arguments (e.g., map MkMon xs is

rejected); requiring the record construction to be syntacti-

cally visible is arguably no worse.

5.3 Instances

In Section 3.4 we propose that records are automatically

instances of certain built-in classes (Eq, Show, etc), and no

others. Like any user-de�ned type, programmers may want

to make a record type an instance of other classes, or to pro-

vide their own instance decalaration for the built-in classes.

It is possible to de�ne such instances for records whose shape

(i.e., set of �eld names) is �xed. For example, we could de-

�ne tuples as instances of standard Haskell classes in this

manner:

instance (Ord a , Ord b)

=> Ord {field1::a, field2::a} where ...

However, some care is required to deal with instances for

record types involving extension. To illustrate this point,

consider the following collection of instance declarations:

instance C {r|x::Int} where ... -- OK

instance C {r|x::Bool} where ...

instance D {r|x::a} where ... -- INSTANCES

instance D {r|y::b} where ... -- OVERLAP!

The �rst pair of instances for class C are acceptable, but

the second pair will be rejected because they overlap. For

example, these declarations provide two distinct, and po-

tentially ambiguous ways for us to demonstrate that a type

like {x::Int,y::Bool} is an instance of D. An overlap like

this would not be a problem if we could be sure that both

options gave the same �nal result, but there is no obvious

way to guarantee this.

The trouble is that declarations like those for class D seem

necessary for modular user-de�ned instances of record types.

For example, imagine trying to declare Eq instances for a

record. One might be led to say:

instance (Eq a, Eq {r}) => Eq {r | x::a} where

{r1 | x=x1} == (r2 | x=x2}

= x1 == x2 && {r1} == {r2}

But we need one such instance declaration for each distinct

�eld label, which leads to declarations just like those for D

above. The ambiguity in this case boils down to de�ning

the order in which �elds are compared. A way out of this

impasse is an obvious piece of further work.

11

Acknowledgements

We would like to acknowledge our debt to John Hughes,

David Espinosa, and the Haskell workshop referees, for their

constructive feedback on this paper.

References

[1] L. Cardelli. Extensible records in a pure calculus of

sub-typing. In Gunter and Mitchell [6], pages 373{426.

[2] L. Cardelli and J. Mitchell. Operations on records. In

Gunter and Mitchell [6], pages 295{350.

[3] B. Gaster. Polymorphic extensible records for Haskell.

In J. Launchbury, editor, Haskell workshop, Amster-

dam, 1997.

[4] B. Gaster. Records, variants, and quali�ed types. PhD

thesis, Department of Computer Science, University of

Nottingham, 1998.

[5] B. Gaster and M. Jones. A polymorphic type system

for extensible records and variants. Technical Report

NOTTCS-TR-96-3, Department of Computer Science,

University of Nottingham, Nov. 1996.

[6] C. Gunter and J. Mitchell, editors. Theoretical aspects

of object-oriented programming. MIT Press, 1994.

[7] R. Hughes. Restricted data types in Haskell. In E. Mei-

jer, editor, Haskell workshop, Paris, Sept. 1999.

[8] M. Jones. A theory of quali�ed types. In European

Symposium on Programming (ESOP'92), number 582

in Lecture Notes in Computer Science, Rennes, France,

Feb. 1992. Springer Verlag.

[9] M. Jones. Using parameterized signatures to express

modular structure. In 23rd ACM Symposium on Princi-

ples of Programming Languages (POPL'96), pages 68{

78. ACM, St Petersburg Beach, Florida, Jan. 1996.

[10] M. Jones and J. Peterson. Hugs 98 user manual. Tech-

nical report, Oregon Graduate Institute, May 1999.

[11] A. Ohori. A polymorphic record calculus and its compi-

lation. ACM Transactions on Programming Languages

and Systems, 17(6):844{895, Nov. 1995.

[12] D. R�emy. Type inference for records in a natural ex-

tension of ML. In Gunter and Mitchell [6].

[13] D. R�emy. Typing record concatenation for free. In

Gunter and Mitchell [6].

[14] M. Wand. Type inference for record concatenation and

multiple inheritance. In Proc. 4th IEEE Symposium on

Logic in Computer Science, pages 92{97, 1989.

12

