BANE: A Library for Scalable Constraint-Based Program Analysis
by

Manuel Alfred Fahndrich

B.E. (Ecole Polytechnique Fédérale de Lausanne) 1993
M.S. (University of California at Berkeley) 1995

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Alexander Aiken, Chair
Professor Susan Graham
Professor Hendrik Lenstra

1999



The dissertation of Manuel Alfred Fahndrich is approved:

Chair Date

Date

Date

University of California at Berkeley

1999



BANE: A Library for Scalable Constraint-Based Program Analysis

Copyright 1999
by
Manuel Alfred Fahndrich



Abstract

BANE: A Library for Scalable Constraint-Based Program Analysis
by

Manuel Alfred Fahndrich
Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Alexander Aiken, Chair

Program analysis is an important aspect of modern program development. Compilers use
program analysis to prove the correctness of optimizing program transformations. Static er-
ror detection tools use program analysis to alert the programmer to the presence of potential
errors. This dissertation focuses on the expressiveness and implementation of constraint-
based program analyses, i.e., analyses that are expressed as solutions to a system of con-
straints. We show that structuring the implementation of program analyses around a library
of generic constraint solvers promotes reuse, gives control over precision-efficiency tradeoffs,
and enables optimizations that yield orders of magnitude speedups over standard imple-
mentations.

The first part of the dissertation develops the formalism of mixed constraints which
provides a combination of several constraint formalisms with distinct precision-efficiency
tradeoffs. We provide a semantics for constraints and constraint resolution algorithms. The
second part of the dissertation describes an implementation of mixed constraints and a
number of novel techniques to support the practical resolution of large constraint systems.
We give empirical results supporting the claims of scalability, reuse, and choice of precision-
efficiency tradeoffs provided by the mixed constraint framework.

Professor Alexander Aiken
Dissertation Committee Chair



To my wife Barbara,

for the patience and support.

iii



v

Contents

List of Figures

List of Tables

1

2

Introduction

Background

2.1 An Ideal Model for Types . . . . . . . . . . . i i e

2.2 Set Constraints . . . . . . . . . .. L
2.2.1 Term-Set Model . . . . . .. .. ... ..
2.2.2  An Ideal Model for Set Expressions. . . . . .. .. ... ... ....

Mixed Constraints

Mixed Constraints

3.1 A Motivating Example . . . . . . ... oo oL
3.2 Syntax . ...
3.3 Sorts . ... e
Semantics

4.1 Value Domains . . . . . . . . . o i i i e e e e e e e
4.2 Interface Paths . . . . . . . . . . . . . . . ... e
4.3 Type Collections . . . . . . . . . e
4.4 Semantic Relations . . . . . . . . ... o
4.5 Solutions . . . . . . . e e
4.6 Discussion and Related Work . . . . . .. . . ... ... ... ...

Constraint Resolution

5.1 Inductive Constraints . . . . . . . . .. . . . ... ... .
5.2 Set Constraint Resolution . . . . . . ... . . ... .. .. ..........
5.2.1 Upward-Closure and Negation . . .. ... ... ... ........
5.2.2 L-Intersection Simplification. . . . . . . .. ... ... 0oL
5.2.3 Set Resolution Rules . . . . . ... .. ... ... ... ........
5.3 Term and FlowTerm Resolution . . . . . . . . ... ... ... ........

vii

ix

NeliNe NN =2}

13

15
16
17
18

22
23
26
29
36
39
39



IT

5.4

9.5

Row Resolution . . . . . . . . .. ...
5.4.1 Domain Constraints . . . . . . . .. .. .. ... ...
5.4.2 General Row Resolution . . . . . .. ... ... ... ...
5.4.3 Splittingof Closed Rows . . . . . . .. .. ... .. ... ......
5.4.4 Splitting of Minimal and Maximal Rows . . . . . . ... ... . ...
Inductive Systems . . . . . . .. L
5.5.1 Level Semantics. . . . . . . . .. .. o
5.5.2 Contractive Systems of Equations . . . .. .. ... ... .. ....
5.5.3 Contractive Term-Equations . . . . . . ... ... .. ... .. ....
5.5.4 Generating Set and FlowTerm-Equations . . . . . . .. ... ... ..
5.5.5  Solutions For Row-Constraints . . . . ... ... ... ... .....

Practical Aspects of Constraint Resolution

6.1 Conditional Constraints . . . . . . . .. .. .. ... oo
6.2 Graph Formulation . . . . . . .. .. ... 0 0 L
6.2.1 Transitive Lower Bound . . . . .. .. ... 0000000
6.2.2 Condition resolution . . . . . .. .. .. oL oo
6.3 Complexity . . . . . . . . e
6.4 Discussion and Related Work . . . . .. .. ... ... 0oL
BANE
BANE: An Implementation of Mixed Constraints
7.1 Constraint Graph Representation . . . . . . . . .. ... ... .. ......
7.1.1 Nodes . . . . . . e
7.1.2 Edges . . . . ..
713 AliasEdges . . . . . . .
7.1.4 Expression Hashing and Bound Representation . . . . .. ... ...
7.1.5  Online Cycle Detection and Elimination . . . . . .. .. .. .. ...
7.1.6 General Constraint Resolution Algorithm . . . . ... ... ... ..
7.2 Set Sort . . . . .
7.2.1 Projections . . . . . . ..o
7.2.2 Projection Merging . . . . . . . . .. ..o oo
7.3 Term Sort . . . . . . . . e
7.4 FlowTerm Sort . . . . . . . . . . . e
7.5 Row Sorts . . . . . . e
7.6 Polymorphic Analysis . . . .. . .. .. .. e
7.6.1 Multiple Constraint Graphs . . . . . . ... ... .. ... ......
7.6.2 Quantification and Instantiation . . ... ... ... .........

7.6.3 Simplification . . . . . .. ..o Lo

55
58
60
62
62
66
71
75
7
78
85

87
87
92
99
101
103
103

107



vi

8 Example Analyses
8.1 Points-to Analysis for C . . .

8.1.1 Re-Formulation using Standard Set Constraints . . . . . . . . .. ..

8.1.2 Counstraint Generation

8.1.3 A Complete Points-to Example . . . . . .. ... ... ... ...,

8.2 ML Exception Inference . . .

8.2.1 Type and Constraint Generation . . . . .. .. .. ... ... ....

8.2.2 An Example Inference
8.2.3 Exception Inference for

FullSML . . ... ... oo oL

8.2.4 Precision-Efficiency Variations . . . .. ... ... ... ...,
8.2.5 Related Exception Work . . . . . . . . ... ... ...

9 Experiments
9.1 Measurement Methodology .
9.2 Online Cycle Elimination . .
9.2.1 Measurements . . . .
9.3 Projection Merging . . . . . .

9.4 Standard Form v.s. Inductive Form . . . . . . . . . . .. .. .. ... ....

9.4.1 Standard Form . . . .
9.4.2 Inductive Form . . . .
9.4.3 Measurements . . . .
9.4.4 TLB on demand . . .
9.5 Precision-Efficiency Tradeoffs

10 Related Work
10.1 The Cubic-Time Bottleneck .
10.2 Sub-Cubic Time Formalisms .
10.3 Program Analysis Frameworks

11 Conclusions

Bibliography

136
136
138
139
142
145
149
153
155
157
158

159
159
160
161
165
168
169
170
171
175
177

184
184
185
186

188

190



List of Figures

1.1

3.1
3.2

4.1

5.1
5.2
5.3
5.4
9.5
0.6
0.7

6.1

6.2
6.3
6.4

7.1
7.2
7.3
74
7.5
7.6
7.7

8.1
8.2
8.3
8.4
8.5
8.6

Constraint-based approach to program analysis . . . . . ... ... .. ...

Set operations in TIS®t . . . . . L
Operations ITRO() for sort Row(s) . . . . . .o oo i it

Development of lattices (S%,Cg) . . . v v v v v v v i

L-intersection simplification . . . . . . . . .. ... ... ... .. ... ...
Resolution rules for Set-constraints.. . . . . . . ... ... ... ... ...,
Resolution of FlowTerm-constraints. . . . .. .. ... ... .. .......
Resolution of Term-constraints. . . . . .. .. ... ... ... ........
Resolution of Row-constraints (simple cases). . . . ... ... ... .....
Resolution of Row-constraints (complex cases). . . . . .. ... .......
Simplification of domain constraints (complete) . . . . . ... ... ... ..

Transforming constraints with conditional expressions into conditional con-
straints . . . . L L e e e e
Structural rewrite rule for conditional constraints . . . . . . . ... .. ...
Structural rewrite rule for inconsistent constraint . . . . . . . ... .. ...
Unnecessary edges in full graph closure . . . . . .. ... ... ... .. ...

Example frequency of bound sizes . . . . . . . . .. ..o oo
Cycle detection in an example graph . . . . . . ... ... ... .. .. ...
The two kinds of cycles detected . . . . . . . ... ... ... ..
Possible 3-cycles . . . . . .. L
Transitive edges to projection patterns . . . . . . . .. .. ... L.
Specialized Term resolution . . . . . . .. .. ... L o oL
Specialized FlowTerm-resolution . . . . . . . . .. ... ... .. .......

Example points-to graph . . . . . . ... L L o Lo L
Constraint generation for Andersen’s analysis . . . . . . ... .. ... ...
More complex C example . . . . . . .. ... L Lo
Points-to graph of program in Figure 83 . . . . . . . ... ... ... ....
Type and exception inference rules for expressions . . . . .. ... .. ...
Type and exception inference rules for patterns . . . . .. .. .. ... ...

vii



viii

8.7

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

9.11
9.12
9.13
9.14
9.15
9.16

Example Mini-ML program . . . . . .. .. ... 0 0 0oL 152
IF without cycle elimination . . . . . . . . .. ... ... ... 162
Analysis times with cycle detection and oracle . . . . . . ... ... .. ... 162
Speedups through online cycle detection . . . . . . ... ... ... ..... 163
Graph Schema . . . . . . . ..o 165
Paths from sources to Y tosinks . . . . . .. ... L. 165
Paths added through projection merging . . . . . . . ... ... ... .... 166
Speedups through projection merging . . . . . .. ... ... ... .. ... 168
Example constraints in SFand IF . . . . . .. ... ... ... ... 170
SF and IF without cycle elimination . . . . .. .. ... ... ........ 173
Relative execution times of Shapiro and Horwitz’s SF implementation of C

points-to analysis (SH) over SF-Plain . . . . . . . . ... ... ... ..... 173
Analysis times with cycle detection and oracle . . . . . .. .. ... ... .. 174
Speedups through online cycle detection . . . . . . ... ... ... ..... 174
Speedups through inductive form . . . . . . . ... ... o000 175
Fraction of variables on cycles found online . . . . .. ... ... .. .... 175
Final graph sizesof SFand IF . . . . ... .. ... .. ... ... ...... 175
Comparison of the Base experiments . . . . . ... ... .. .. ....... 183



X

List of Tables

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15

Benchmark data common to all experiments . . . . . . .. ... ... .... 160
Experiments . . . . . . . . .. 161
Benchmark data for IF-Plain and IF-Oracle . . .. ... ... ... ..... 162
Benchmark data for IF-Online . . . . . . .. ... . . 000 163
Cycle detection statistics . . . . . . . . . . ... Lo 164
Benchmark data for IF-PM . . . .. 00000000 167
Points-to Experiments . . . . . . . ... .o oo o o 172
Benchmark data for SF-Plain and SF-Oracle . . . . ... ... ... .. ... 172
Benchmark data for SF-Online . . . .. ... ... ... ... ........ 174
Benchmark data for on demand TLB . . . . . . .. ... ... ... 176
Precision-efficiency variations for exception analysis. . . . . . . ... .. .. 177
ML Benchmarks for exception analysis . . . . . .. ... ... ... . .... 179
Experiments for exception analysis . . . . . . . .. ... ... 0. 179
Benchmark data of all implementations and experiments . . . . . . . .. .. 180

Benchmark data for Term-Set Base experiment with Cartesian-closed con-
structors. . . . . . L. e e e e e e 182



Acknowledgements

My deepest thanks go to my advisor Alex Aiken, without whose support and encouragement
this dissertation would have never seen the light of day. His never wavering optimism and
cheerfulness kept me going through those unavoidable lows of graduate school and I hope I
was able to take on some of these qualities myself.

I’'m also deeply indebted to my Berkeley fellow graduates Jeff Foster and Zhendong
Su for their role as early adopters of BANE. Their work, discussions, and feedback helped
me focus on the important aspects of BANE and spurned me on to find yet another factor of
ten. Other Berkeley people I'd like to thank for generating ideas through various discussions
are David Gay, Raph Levien, Ben Liblit, Boris Vaysman, Remzi Arpaci, and Andrew Begel.

Finally, I'd like to thank my other committee members Sue Graham and Hendrik
Lenstra for their time and useful feedback.



Chapter 1

Introduction

This dissertation supports the thesis that structuring the implementation of pro-
gram analyses around a library of generic constraint solvers promotes reuse, gives control
over precision-efficiency tradeoffs, and enables optimizations that yield orders of magnitude
speedups over standard implementations.

The work described here is part of an ongoing research project on program analy-
sis at the University of California at Berkeley under the supervision of Professor Alexander
Aiken. The goals of this project are to advance the state of the art of program analysis
by 1) developing novel sophisticated program analyses for compiler optimizations or error
detection, and 2) finding novel ways of implementing program analyses (new and old) so as
to improve their scaling behavior. My involvement in this research has resulted in BANE,
a library for constraint-based program analysis. BANE addresses the need of our research
group to rapidly develop prototypes of program analysis ideas and perform experimen-
tation, without spending a huge effort on implementation. Without respect to efficiency
and scalability, prototypes could in principle be developed reasonably cheaply. However,
such naive implementations of prototypes do not answer interesting questions like whether
in practice an analysis scales. Furthermore, poor prototype efficiency substantially slows
down experimentation since the measurement cycle becomes intolerably long.

Experimentation is important, since paper designs of program analyses often do
not prove practical for two reasons. First, the computed information may be too approx-
imate on real programs to be useful. Second, the running time and especially the scaling
behavior of the analysis may make it impractical. (Analysis designers sometimes ignore the
asymptotic complexity of their algorithms, hoping that the worst case bound is not met
in practice.) Shortcomings in precision and efficiency are usually only found after a sub-
stantial effort has been invested in writing and tuning an implementation. At that point,
it may be difficult to change the precision and or efficiency of the analysis, since tuning
often results in monolithic, obscure code that is hard to change. For the same reason, such
implementations are also hard to maintain and reuse.

Constraint-based implementations of program analyses need not fall into this trap.
Figure 1.1 shows graphically the organization of a constraint-based program analysis. The
goal of any static program analysis is to infer information about a program given in some
source representation. In constraint-based program analysis, this information is expressed



Source Constraint
™| Generator
\
C - Solver | Solutions
) ? \
,,,,,,,,,,,,,,,,,,,,, - Static - Mapping
Info

Figure 1.1: Constraint-based approach to program analysis

as the solutions to a system of constraints derived from the program source. Constraint-
based program analysis thus proceeds in three steps: 1) constraints are generated according
to a set of rules from the source, 2) constraints are solved, and 3) the static information
is extracted from the solutions. A constraint-based program analysis is uniquely defined
by the constraint generation rules and the mapping from solutions to the desired static
information. The analysis is therefore independent of the constraint resolution which is the
bulk of the implementation. The constraint resolution can be thought of as a black box,
where constraints are entered on one side, and solutions come out on the other side. The
black box interface is well defined, namely by the constraint language and the meaning of
the constraints. As a result, the black box can be implemented completely independently
of any particular program analysis, as long as the implementation produces the solutions
to the given constraints. It is this clean separation of constraint generation and constraint
resolution that naturally supports reuse and non-intrusive tuning. Constraint resolution
engines can be factored into libraries and their code tuned independently of any particular
constraint generation code. The narrow interface to the constraint engines further enables
more aggressive tuning than in monolithic implementations. For example, the representa-
tion of constraints and the resolution algorithm can be completely changed without affecting
any client analyses.

BANE is based on a novel constraint formalism called mized constraints. Mixed
constraints provides inclusion constraints between mized expressions. Mixed expressions



are a combination of expressions from a number of base constraint formalisms. Mixed
constraints then synthesizes constraint relations out of the constraint relations of the base
formalisms. The synthesis of the mixed constraint relations is parameterized by constructor
signatures that specify how expressions of the base formalisms are combined into mixed
expressions. If the base formalisms have distinct precision-efficiency characteristics, then
it possible to choose the precision-efficiency tradeoffs of mixed constraints explicitly via a
suitable set of constructor signatures.

One of the base constraint formalisms provided in BANE is set-constraints. Many
well-known program analyses can be expressed in this formalism. Resolution of set con-
straints in the simplest case has cubic worst case time complexity. Implementations in the
past have shown that analyses in this constraint class are feasible on small programs. Un-
fortunately, the resolution of set-constraint problems for larger programs quickly becomes
intractable on today’s hardware. This scaling problem has resulted in a shift towards less
precise but computationally cheaper algorithms for program analyses. One contribution
of this dissertation is to provide a transition path from precise but expensive analyses to
coarser but faster analysis through the mixed constraint formalism.

Another major contribution of the work presented here is a number of imple-
mentation techniques that substantially improve practical performance of set-constraint
resolution. Even though these techniques do not lower the worst-case computational com-
plexity, they do improve the “common” case scaling behavior of set constraints. Using these
techniques, we can solve set-constraint problems that are orders of magnitude larger than
the largest previously reported problems. Our hope is that by showing how to structure
implementations for better scaling, more sophisticated program analyses become feasible
for very large programs.

BANE has been used in three large analysis applications with several variations
produced by our research group. Furthermore, it has been used by a number of graduate
student groups to realize projects in a class on programming language semantics taught
at Berkeley. This dissertation describes the architecture of BANE, motivating engineering
tradeoffs and new implementation techniques with a series of experiments.

Consumers of Program Analysis

Program analysis computes information about a program’s runtime behavior. Program
analysis can be either static, dynamic, or a combination of the two. In static program
analysis, information about all executions of a program are inferred without actually running
the program. Dynamic program analysis takes the form of trace gathering during particular
executions of programs. In this dissertation program analysis always refers to static program
analysis.

Program analysis is an important component of software development tools. There
are two main uses of program analysis. Traditionally, program analyses is an integral
component of optimizing compilers. Program optimizations are semantics preserving code
transformations. Before a compiler can perform any particular optimization, it must prove
that the transformation is semantics preserving in the particular context. For all but trivial
transformations, this proof is provided by a program analysis. For example, a procedure



call with late binding semantics may be transformed into a static direct call whenever the
receiver of the call can be uniquely identified through a closure or receiver class analysis.
Unfortunately, most properties of programs are undecidable in general. Program analysis
is thus always concerned with computing approximations to the actual program properties.
One often hears that an analysis is conservative, meaning that the analysis errs on the side
of safety w.r.t. the use of the inferred properties. For example, if receiver class analysis is
used to replace late bindings with static calls, the analysis must over-estimate the potential
receivers, or the program transformation may not be safe.

The use of program analysis in compilers started with the earliest optimizing For-
tran compilers. Since then, the use of program analysis has become ubiquitous in compilers
across the whole language spectrum. As new programming paradigms develop, new opti-
mization opportunities arise that result in novel program analyses. Examples that come to
mind are strictness analysis for lazy functional languages, receiver class analysis for object
oriented languages, array use analysis for functional languages. Although program analyses
in compilers have become more sophisticated since the Fortran era, the main criteria for
such analyses is efficiency, both absolute speed and scaling behavior. Many sophisticated
program analyses found in the literature have not made their way into commercial compilers
(or even into research compilers) due to bad scaling behavior.

The second use of program analysis is error detection. This application has become
progressively more important in the last decade and, at least in the author’s view, will over-
shadow the optimization use of program analysis by far in the future. The most common
manifestation of this use is in type checkers and type inference systems. In this scenario,
program analysis guarantees that a program produces no runtime errors arising from ap-
plying primitive operations to unsuitable arguments. In contrast to its use in optimizations
where program analyses always have to be conservative by under-estimating properties,
program analyses in error detection may also err on the other side, i.e., over-estimate prop-
erties, giving rise to two camps of error detection. In the first camp, error detection proves
the absence of errors. In the second camp, it proves the existence of errors. The difference
between the two camps arises from the approximation inherent in program analyses. Er-
ror detection can be viewed as verifying a partial program specification. If a conservative
program analysis proves that a particular program satisfies a partial specification, then it
proves the absence of errors w.r.t. the specification. However, if the conservative analysis
fails to prove the specification, it is not known whether the program actually behaves in
unspecified ways, or whether the proof failed due to the approximations of the analysis. A
program analysis trying to prove the existence of an error also verifies whether a program
satisfies a particular specification. However, if the analysis finds an unspecified behavior
w.r.t. the specification, then the error is a guaranteed error. On the other hand, if no errors
are found, it is not known whether the program satisfies the specification, or whether the
absence of errors is a result of over-estimating program properties.

Program analysis in error detection can also be distinguished from program anal-
ysis for optimizations in terms of the efficiency requirements. Scaling is still an important
issue, but absolute speed is not. For example, it may be well worth running a sophisticated
analysis of a large program overnight if the analysis detects bugs or proves their absence.
Compilation cannot tolerate long analysis times because it disrupts the edit-compile-test



cycle and thus programmer productivity.

Outline of the Dissertation

The dissertation is organized into two parts. The first part describes the mixed constraint
formalism and its constraint resolution and is more theoretical in nature. The second part
describes implementation techniques used in BANE and experiments to validate our claims
of improved scaling. The next chapter introduces background information needed in the
first part of the dissertation.



Chapter 2

Background

This chapter provides background information on the ideal model for types and
set constraints.

2.1 An Ideal Model for Types

The ideal model of types was proposed by MacQueen, Plotkin, and Sethi [56, 57]. This
section summarizes the results of that work used in the development of the mixed constraint
formalism.

Types are used in programming languages to characterize certain subsets of all
runtime values. If a program expression e has a type 7, then it is understood that any
evaluation of e results in a value v, where v is an element of the set of values denoted by
7. To make these notions precise, the set of runtime values V, and the subsets of V that
form the denotations of types must be characterized. This approach is referred to as the
denotational model of program semantics. Other models, such as operational models or
axiomatic models, have different notions of types.

The set of values V is usually characterized by an equation of the form

V =BU{wrong, L} U(V = V)U(VXxV)U(V+YV) (2.1)

where B stands for a set of base values, for example the natural numbers or the truth
values. The distinguished value wrong is used to give meaning to evaluations that result in
an error, for example applying a function to a value outside its domain. The special value
bottom L is the value of a non-terminating computation. The set V — V is the set of
functions from V to V. The set of V X V is the set of pairs of values from V, and finally
the coalesced sum V + V is the set of pairs (i,v), where v € V. — {1}, and i = 1,2. The
index' i specifies from which set in the sum the value v is taken.

Sets V that satisfy such equations have been shown to exist by Scott (see for
example Gunter and Scott [36]) and are commonly referred to as domains. Domains are

!The index set is disjoint from V.



essentially complete partial orders (cpo), where the order is given by

1 <w
f<f <<= VzeV.fz<fuzx
(v1,v9) < {(v],vh) <= vy <V A vy <)
(i,v) < (i,v") <= v <

Domains D are constructed as the limit of a series. In the case of V, the series is Vo = {1}
and

Vi1 =B U{wrong, L} U(V, = V,)U(V, xV,)U(V,+V,) (2.2)

Elements of domains are either finite or infinite. An element v € V is finite, if whenever v
is less than the lub (least upper bound) of a directed set A (a set containing upper-bounds
for all finite subsets), v is less than some element v’ € A. Infinite elements are the least
upper bounds of increasing sequences.

A subset I of D is an ideal, iff

1.T#0
2. YvelVweDw<v — wel
3. for all increasing sequences (v;) in I, | Jv; € T

Ideals are the non-empty, downward-closed subsets of D that are closed under lubs of
increasing sequences. The collection of ideals of a domain D is written Z(D). If a set
satisfies only the first two requirements, then it is called an order ideal. Remarkably,
when restricting the domain D to its finite elements D°, the collection of ideals Z(D°) is
isomorphic to Z(D). It is thus possible to consider only the order ideals and the finite
elements of D. The collection of ideals Z(D) forms a complete lattice under set-inclusion,
where the meet is given by set-theoretic intersection, and the lub is defined by MacQueen

et al. [57] as
(Ls) ~Us
A A

The subsets of a domain D that give meaning to type expressions are the ideals
of D that do not contain wrong. Let E be a language of type expressions formed by the
following grammar

E:=B|t|E-E|ExE|E+E|ENE|EUE |Vt.E|3t.E

where ¢ are type variables and B is a set of base types. A type expression F is said to be
contractive in t, if

e F is b for some base type b € B

o B =1t witht#¢



e F is of the form Fy — FEs, E1 X Ey, or E1 + E»
e F is of the form Ey N Ey or Ey U Ey and both E; and Es are contractive in ¢
e FE is of the form Vt'.E or Vt'.E, and either t = ' or F is contractive in ¢

MacQueen, Plotkin, and Sethi’s main result [56] then states that a system of type equations
of the form

th = By

has unique solutions in Z(V) as long as the expressions F; are contractive in t¢1..t,. This
result is derived in five steps.

e A function «y(I,J) is defined that measures the “closeness” of two ideals I, J from
Z(D). The closeness function is parameterized by a rank function r(I) that associates
a natural number with each finite element in D.

00 ifI=1J
V(L) = { min{r(v) |ve {UJ —-INJ)} otherwise (2:3)
e The collection of ideals Z(D) is shown to form a complete metric space under the dis-
tance metric 6(I,J) = 2-7(7) | Series called Cauchy sequences converge in complete
metric spaces.

Definition 2.1 A sequence of ideals (I;) is a Cauchy sequence, if given any real € > 0,
there exists an n, such that for all ny,ng > n, the distance (I, , I,,) < €.

e The rank function r(v) is defined for elements in v € V as the minimal 4, such that
v € V; in the series (2.2).

e The semantic counter-parts of the type constructors —, +, and x are shown to be
contractive in the metric 6 and the operations U and N are shown to be non-expansive
in the following sense.

Definition 2.2 FEzxpressed in terms of the closeness function vy, an n-ary function f
over ideals is contractive if

Vs D)y f (15 Jn)) > miny (4, J;)
and f is non-expansive if
YW Tn), S () 2 miny (5 )
e Each system of contractive type equations is then a contractive map over Z(D). The

main result follows from the Banach fix-point theorem which states that contractive
maps over complete metric spaces have unique solutions.



2.2 Set Constraints

Set constraints express inclusion relations between set expressions. Set expressions in turn
denote sets of elements in some underlying domain. Set expressions E are formed by the
grammar below. A set expression is either a set-variable X from the collection V', the
empty set 0, the universal set 1, a constructor ¢ from a collection of uninterpreted function
symbols 3 applied to n set expressions (where n is the arity of ¢), a union, an intersection,
or a negation.

EZ:X|0|1|C(E1,...,EH)|E1UE2|E1QE2|—|E

Constants are just a special case of constructors with arity 0. The arity of a constructor
c € ¥ is written a(c).

An inclusion constraint £; C Ey between set expressions F; and Ey expresses that
the set of elements denoted by F; must be a set-theoretic subset of the set of elements de-
noted by E5. The next two subsections describe two models for interpreting set expressions
and characterizing their solutions.

2.2.1 Term-Set Model

The simplest interpretation of set expressions is as sets of elements in a Herbrand universe
H. This model is commonly known as the term-set model [52, 51]. The universe H is
formed by applying constructors from the same set 3 that is used to build constructed set
expressions.

H = {c(v1,... ;) | vi € H,c € 3}

In this model, each set expression E denotes a subset of H. A wariable assignment o is a
map from variables to subsets of H. The interpretation or denotation of set expressions in
the term-set model under a given variable assignment o is then given by u:

WXl = o(X)

pl0]e = 0
ullle = H
ple(Er, ..., Ep)]o = {c(vi,...,vn) | vi € p[E;]o}

plE1 U Es] = plEr]o U plEs]o
plBy N E] = plEi]o N plEo]o
p[-EJo = H —p[E]o

A solution of a system of constraints {F; C Ej,...,E, C E/} is a variable assignment o,
such that the inclusions p[E;Jo C u[E!Jo hold in the model for 7 = 1..n. The complexity
and algorithms for solving systems set constraints (and extensions with projections) have
been widely studied [74, 48, 41, 10, 5, 6, 13, 14].

2.2.2 An Ideal Model for Set Expressions

If the set constraint language is extended with expressions E; — Fy (standing for a set of
functions taking arguments from the set F; and producing results in the set Fs), then the



10

meaning of set expressions can no longer be adequately captured by the term-set model.?
Instead, a model for set constraints can be built based on the ideal model of types discussed
in the previous section. The semantic domain V is defined in terms of the equation

V={L}U(V->V)ul]JeV—{L},...,V—{L}) U{wrong}
cEY

where (J,cx;c(V — {L},...,V —{L1}) can be expressed as the coalesced sum of smash
products [36]. More precisely, each value c¢(vy,... ,v,) of a n-ary constructor c is an element
of the coalesced sum

V-4V

|X| times

where the index set used in the coalesced sum are the constructors ¢ € ¥. Thus, the value

c(v1,... ,vy) has the form (c,v), where v is an element of the smash product
V.-V
N— ——
n times
The smash product differs from ordinary product in that elements (vy,... ,v,), where v; = L

for some i, are identified with 1. This property is commonly referred to as being strict in
L. Constructors in 3 are then said to be strict.

Note that | and the element Az.1l of V — V are distinct values. The former de-
notes a non-terminating computation, the latter denotes a function that is non-terminating
when applied.

The domain T is the domain V without wrong. Set expressions are then interpreted
as ideals of T, i.e., elements of Z(T). Let o be a variable assignment mapping set variables
to elements of Z('T). The meaning function u for set expressions in the ideal model is then

plxle = o(X)
ul0lo = 0
pflle = T
plEr — Es]o = {f |z € pulEi]o = fz € p[Es]o}
ple(Br,y ... ,Ey)]o = {c(vi,...,vn) | vi € u[Ei]o — {L}}
plEy U Ey] = plEr]o Up[Es]o
plBEy N Es] = plEr]o N p[Ea]o
pl-Ele = T—p[Elou{l}

Complement expressions —F pose a problem in this model since the set complement of
an ideal in T is not an ideal. Even when adding {L} to the complement, the result may
not be an ideal, unless pu[E]o is upward-closed. An ideal I is upward-closed in V if Vv €
I—{Ll}Yw € V.w > v = w € I. This problem leads to restrictions on well-formed set
expressions and the form of set constraints that can be solved. These restrictions guarantee
that negations only appear on upward-closed expressions. Since these same restrictions
apply to mixed constraints, we will discuss them in detail in Section 5.2.1.

2An alternative approach to the ideal model has been studied by Flemming Damm [19].



11

The main result of Aiken and Wimmers [3] then states that every set of constraints
S satisfying the restrictions due to negations is equivalent to a set of inductive systems and
that each inductive system has solutions. In order to define inductive systems, we assume
an arbitrary total order on the set-variables appearing in the constraints. The index ¢ in
this order is written as a subscript to the variable, as in Xj. To define solutions inductively,
we need the notion of a top-level variable.

Definition 2.3 The set of top-level variables TLV(E) of an expression E is defined by

TLV(0) = {} TLV(1) = {}
TLV(X) = {X} TV(c(...)) = {}
TLV(E; U Ey) = TLV(E;) U TLV(E)
TLV(E; N Ey) = TLV(E;) U TLV(E)

A constraint set S is an inductive system, iff

1. S has the form Ly C &, C Uy,...L, C X, C U, where L; and U; are set expressions
without negations.

2. The top-level variables appearing in L; and U; have index strictly less than i, i.e.,
TLV(Li) U TLV(UZ) - {Xl, - ,Xz‘—l} for all i.

3. The system S is closed under transitive constraints L; C U;. More formally, the
following property holds for all solutions o of S and for all 4, j:

VE <i.pi[Li]o € pi[Xe]o € p[Uk]o A

Vk > iy 1[Lelo € pj 1[X]o € pj 1[Uilo pilLilo € pi[Ui]o

where f1; is the meaning function up to level j defined by
wlElo = u[Elo 0T

and T} is the downward-closure of the finite domain approximation T of the sequence
Ty, Tq,... used to define the domain T.

The third condition of inductive systems states that if o satisfies the constraints up to level
4 for all variables with index less than ¢, and o satisfies all constraints up to level j — 1 for
all indices greater or equal to 7, then the transitive constraint L; C U; is also satisfied up
to level j.

An inductive system L; C X; C U; is equivalent to the set of equations

Xi=LiuyinU;

Xn:LnUynﬁUn



12

where the variables ); are fresh. This system in turn is equivalent to the following system
of equations £

X, =Liuy nU,

X, =L uY,nU,
where

e L; is equal to L; where all top-level variables X; of L; are replaced with L’ UY; N U7,
and

e U] is equal to U; where all top-level variables X of U; are replaced with L’ UY; NU;

Note that the above transformation is well-defined, since the top-level variables appearing
in L; and U; have index strictly less than ¢ due to Condition 2 of inductive systems. The
transformation can thus be performed starting with L; and U; which have no top-level
variables, and proceeding through L,,, U, in order. The resulting system of equations £ has
no top-level variables from {Xi,... , X, }. Therefore £ is contractive in X;..X,, in the sense
of Section 2.1. Every arbitrary assignment o mapping the variables }); to elements of Z(T),
induces a unique solution of the equations &.



Part 1

Mixed Constraints

13






15

Chapter 3

Mixed Constraints

This part introduces the formalism used to specify and solve constraints in BANE.
We define the syntax of mixed expressions and constraints. Chapter 4 defines their semantics
using a denotational model and characterizes when constraints have solutions. Chapter 5
gives an algorithm for solving the constraints. Chapter 6 discusses practical aspects of
constraint resolution.

Building an analysis framework on a single constraint formalism leads to a tension
between the generality and the efficiency of the chosen formalism. Generality is needed for
the framework to be useful in more than a couple of specialized cases, whereas efficiency is
crucial for the framework to be useful in practice. The constraint formalism at the base of
BANE—set constraints—satisfies the generality requirement. Indeed, many program anal-
yses can be expressed within set constraints, including but not limited to closure analysis,
pointer analysis, receiver class analysis, and subtype inference.

The directionality of set constraints allows expressing analyses with subtyping.
Thus set constraints cover a much larger class of analyses than, for example, equality con-
straints. On the efficiency side, set constraints have not fared well in the past. Pub-
lished accounts of implementations report practical performance on small problems, but
report bad performance on large problems or don’t report performance on large problems
at all [68, 3, 4, 39, 24, 31, 58, 30]. Scaling is the main problem of such analyses. The scaling
problem of set-constraints has led to less precise program analyses based on equality con-
straints solvable using unification [75] in nearly linear time. Mixed constraints addresses the
tension between precision and scalability by integrating a number of specialized constraint
formalisms with distinct precision-efficiency tradeoffs.

To motivate the development, consider using set constraints for specifying and
implementing the resolution of equality constraints arising in Hindley-Milner type infer-
ence [60]. A standard set constraint solver can do this task. However, the efficiency will
fall short of the standard unification-based implementation. In this case it is clear that a
unification-based implementation is preferable. There are two important aspects that make
the equality constraints for Hindley-Milner type inference simpler to solve than general set
constraints. The first aspect is that equalities induce equivalence classes which are more
efficient to represent and merge than the partial orders that arise from inclusions. The sec-
ond aspect is the solution domain of expressions appearing in the equality constraints. Each



16

type expression denotes a single tree of the form ¢(...), with a unique head constructor c.
Set expressions on the other hand denote sets of terms with a variety of head constructors.
The general observation is that if the shape or domain of solution is restricted in certain
ways, a specialized and more efficient algorithm should exist.

Given an analysis problem, it is natural to select the most specialized class of
constraints in which the problem is expressible. This idea can be pursued by building a
library implementing a variety of specialized constraint solvers. However, mixed constraints
goes beyond this idea. Analysis problems may not be uniform in their precision require-
ments. It can well be that part of an analysis requires general sets for precision, and other
parts may only need restricted sets built from a single head constructor. With a library
of independent, specialized solvers such a problem must be expressed uniformly in a set
constraint formalism, without taking advantage of the single head constructor restrictions.
The idea of mixed constraints is to combine several constraint formalisms into a common
framework that enables the construction of analyses where precision-efficiency tradeoffs are
made explicit.

3.1 A Motivating Example

This section motivates mixed constraints with a concrete example analysis: Uncaught ex-
ception inference for a subset of the ML language. Exception inference is an interesting
problem for mixed constraints because it can be expressed as a minimal refinement of stan-
dard Hindley-Milner type inference, while still making essential use of set expressions.

We begin by illustrating the problem of types that are more general than needed
if the exception inference is uniformly expressed in a set constraint formalism. In ML, the
type of an exception value v is simply exn—no indication is given of the possible exception
constructors of v. Consider a refinement of the ML type system that models exception types
with an explicit annotation of the set of exception constructors. For example, the type of
the exception constructor Subscript is modeled as exn(Subscript). A possible inference
rule for if-expressions based on inclusion constraints is

At p:bool
A|—€1:T1
AI—GQ:TQ
T CX X fresh
T, C X
Al if p then e; else ey: X

[TF]
The rule says that the result type must contain the types of both branches. The conditional
expression

if p then Subscript else x

returns either the exception value Subscript (exceptions are first-class), or the
value of the program variable x. Assuming x has type ), applying the inference rule to this
expression gives the type A along with two lower bounds, written

X where exn(Subscript)CX A YCX



17

There are many solutions for X and ) satisfying these constraints. One possible solution is

Y —int
X +— exn(Subscript) Uint

For many programming languages (and in particular for ML), this solution is uninteresting,
because the union of an integer and an exception cannot be used anywhere. We are really
only interested in solutions where the type of the else branch is also an exception. However,
we cannot simply require both branches to have the same type as in a standard ML type
system, because the else branch may contribute an exception other than Subscript. For
example, if the else branch returns exn(Match), we would like to infer that the entire if
returns exn(Subscript) or exn(Match). Thus we have two conflicting goals: On one hand
we need the generality of inclusion constraints to allow different exception constructors in
the branches of the conditional, and on the other hand we do not want the full generality of
inclusion constraints, since they admit many uninteresting solutions. In the example, the
interesting solutions all have the form

Y =exn(2)
X = exn(Subscript U 2)

which clarifies that the if-expression and both branches return exceptions and that the set
of exception constructors of the result includes the Subscript exception and any exceptions
contributed by the else-branch. In summary, the example illustrates two points:

e For particular analyses, inclusion constraints may admit more solutions than required.

e Set types are needed to express sets of values with more than one head constructor
(e.g. Subscript U Z).

3.2 Syntax

Mixed constraints are a combination of constraints in several specialized constraint for-
malisms, which we refer to as sorts. Each sort in a collection of sorts S is characterized by
a constraint language, a constraint relation, a solution domain, and a resolution algorithm.
Expressions for a sort s are built from a collection of s-variables V*, s-constructors X%,
and s-operations II°. Each constructor ¢ € 3° and operation op € II? is equipped with a
signature. A signature

Cily L —> S

specifies the constructor sort s, the number of arguments k, the sort of arguments ¢;, and
their variance (¢; is t or ¢ for some ¢t € S, overlined sorts mark contravariant arguments, the
rest are covariant). Signatures also specify the strictness of the constructor in each argu-
ment. To keep the notation readable, we omit the strictness annotations. The signatures
for operations are fixed, whereas the signatures for constructors parameterize the language.
We refer to ¥° for the set of s-constructors along with their signatures. The arity of a
constructor ¢ is written a(c).

Let V = J,cg V® be the set of variables of all sorts. The language L* of expressions
of sort s is formed by the term algebra Txsyms(V).



18

Definition 3.1 An expression E € L® is well-formed if it is
e a variable of sort s (E € V*),

e of the form c¢(Ey,... ,Ey), where ¢ € ¥° has signature 11 -1, — 8, and expression
E; is either an expression of sort s (if 1j = s), or a variable from Vel

o of the form op(E1,...,Ey), where op € II° has signature v1---1p — s, and Ej is
either an exzpression of sort s (if 1; = s), or a variable from V'i.

Depending on the signature, some arguments to a constructor ¢ of sort s may be of sort ¢
distinct from s. An s-constructor c¢ is called mized if at least one argument of ¢ is of a sort
other than s. Otherwise the constructor is called pure. The constraint relation for sort s
is written C,. Constraints observe sorts, i.e., a constraint £; Cg FEy is well-formed if both
FE1 and Ey are s-expressions. Expressions and constraints are assumed to be well-formed
unless otherwise mentioned.

We use the following terminology: Expressions on the left of a constraint C, are
said to occur in an L-context, and expressions on the right occur in an R-context. Sub-
expressions occur in the same context (L- or R-) as their immediately enclosing expression,
unless the sub-expression is the ith argument to a constructor that is contravariant in .
In that case its context is inverse w.r.t. the enclosing expression. We call an expression
occurring in an L-context (R-context) an L-expression (R-expression).

For example, let Term be a sort of equality constraints between tree expressions,
formed by a set of constructors £ T¢™ and variables VT®™ and no additional operations.
Pure Term-expressions are defined by giving each constructor ¢ € 7™ the signature

c: Term---Term — Term
—_———
a(c)

3.3 Sorts

For concreteness, the development of mixed constraints focuses on the set of sorts provided
in BANE. There are three base sorts: Set, Term, and FlowTerm, abbreviated by s,t, and ft.

The Set-sort is a language of set expressions with operations II® given in Figure 3.1
including joins LI, meets M, the empty set (written 0), and negation. The universal set, which
we refer to as 1, is simply shorthand for —={}. Note that we write unions and intersections of
Set-expressions with LI and M instead of the usual set-theoretic union and intersections U and
N. We make this distinction because the semantics of mixed expressions we give in Chapter 4
shows that the meet of two Set-expressions is not exactly set-theoretic intersection, but
may in fact be smaller. Similarly, the join of two Set-expressions may be larger than set-
theoretic union. Constraints F; Cge F9 are inclusions between set expressions Fq and
E5. The resolution rules are given in full detail in Chapter 5. Here we only show the rule

!When we introduce the operations of each sort, we also allow 0! (the smallest expression of sort ¢) and
1% (the largest expression of sort t) to appear as arguments of mixed constructors.



19

LI : SetSet — Set
M : SetSet — Set
0 : Set
—{c1,...,¢cp} : Set for any set of Set-constructors ¢; € ¥5¢

Figure 3.1: Set operations in TT5¢t

involving constructors to give insight into how constraints involving mixed constructors
connect constraints of different sorts

SU{c(B,... ,By) Csc(BL,... By} < SU{E; C, E}

where c:¢1- -1 — S

Depending on the signature c : 11 - - - 1, — s, the constraints £; C,; E; may be on expressions
of sort ¢; distinct from s. For contravariant arguments, the constraint relation is flipped,
i.e., Ej gg E; = E; gs Ej.

The Term sort provides inclusion constraints between restricted sets. There are
two constant operations in IIT®™: ( stands for the empty set, and 1 for the set of all Term
denotations. Sets are restricted in that they are built from a single head constructor (besides
0 and 1). On single head constructor expressions, the relation C; is actually equality. Thus,
the resolution rule for constructors is symmetric in the constraints on constructor arguments

SU{c(Br,... ,By) Cre(B),... By} <= SU{E,; C,, E,E,C, Ej}

where c: 11 1 — t

The third base sort, FlowTerm, also provides inclusion constraints over restricted
sets. It has the same language as Term, i.e., IIF'O%Te™ contains only 0 and 1. This sort
distinguishes itself from the Term sort in that the constraint relation is still directed for
single head constructor expressions. The constructor rule is therefore not symmetric.

SU{c(B,... ,By) Ca o(B),...  B)} <= SU{E; C,, E}}

where ¢ : 111 — ft

The FlowTerm sort can be thought of as a combination of the Set and Term sort, inheriting
the directionality from Set-constraints and the solution domain from the Term sort.

For each base sort s there is a corresponding row-sort Row(s), abbreviated by r(s).
Expressions of sort Row(s) model record types of labeled fields of sort s. Such records denote
sets of partial functions from an infinite set of labels L to elements of sort s. There are no
constructors for row expressions. Instead all row expressions are formed from the operations
in Figure 3.2. The constants 1 and 0 denote the set of all records and the least record. The
syntax (I : Ej);e4 stands for a sequence (l1 : Ey,,... Il : E,) where A= {ly,...,l,}. Row-
expressions can be composed with o. Composition is restricted to the case where the left
side is an explicit finite enumeration of labels. Furthermore, we are principally interested
in strict extensions, i.e., the domain of the Row-expression on the right does not contain



20

1 : Row(s)

0 : Row(s)

() : Row(s)
(I:)ea0- : s---8 Row(s) = Row(s)

|A| times

for any finite set A C L

Figure 3.2: Operations IIR"() for sort Row(s)

any labels from A. We will make this notion precise in Chapter 5 when we address the
resolution of the constraints. Besides associativity, a number of equivalences hold for row
expressions. The empty record () is a neutral element for composition.

E1 o (E2 o E3) = (E1 o Ez) o E3 (31)
(YoE1=FEi10()=F
(I:Epicac(l: Epicar =l : Ep)icavar

Row expressions obtained by permuting the order of label-expression pairs are also con-
sidered equivalent. Using the above equivalences, every Row-expression is equivalent to a
Row-expression of the form (I : Ej)jca o E, where E = (), E = X, E =1, or E = 0.
Such Row-expressions are normalized and we assume that we work only with normalized
Row-expressions. Where necessary, we disambiguate the field sort s by adding the sort as a
superscript to a Row-expression as in (I : Ep)j. 4.

Our definition of mixed expressions requires that arguments of sort ¢ to construc-
tors and operations of sort s, where ¢t # s are variables from V!. For convenience, we
relax this restriction now for the constants 0 and 1 (of sort ¢), which may also appear as
arguments in these cases.

Coming back to our motivating example on exception inference, we can now give
signatures to the constructors for exceptions, and exception names:

exn :s — ft

Subscript : s

Types are modeled by FlowTerm expressions, i.e., expressions having a single head con-
structor. To distinguish exceptions by name, the exception constructor exn is refined to a
unary constructor, embedding sets of exception names into the FlowTerm sort. Exception
names are constants of sort Set. Some exceptions constructors in ML carry a value. Such
exception constructors c can be given the signature

c:ft—s

making clear that the value is of sort FlowTerm and the resulting exception is of sort Set.



21

The set of sorts S is now fixed {s, ft,t,r(s), r(ft),r(t)}. The constants 0 and 1 are
overloaded, but their sort should always be apparent from the context. Every choice of
signatures Y5, ¥t, and If generates the languages for mixed expressions LS, L, L. We
refer to X5, X, and Xt as fixed, but unknown signature sets.



22

Chapter 4

Semantics

This chapter formalizes the semantics of mixed expressions and constraints by
defining semantic domains for the different sorts, the semantic constraint relations, and the
notion of solutions.

We provide a denotational semantics, i.e., a semantics where each expression de-
notes a subset of values from an underlying value domain. Constraints between expressions
are then interpreted as inclusion constraints between these values sets. The novelty of mixed
constraints is that these inclusions are actually stronger for some sorts than set-theoretic
inclusion. The motivation for a denotational semantics stems from the desire to make the
constraints suitable for quick prototyping of program analyses. The model in mind is that
given a programming language and an analysis problem, mixed expressions are used to
conservatively approximate the sets of values of each program expression. Constraints are
used to conservatively model the value flow in the program, i.e., if values from a program
expression e; may flow to an expression es where the values of e; are abstracted by a mixed
expression F; and those of es by FEs, then there should be a constraint Fy Cg Fo. If all
value-flows in a program are conservatively approximated by constraints, then one obtains a
sound analysis. An analysis is sound if for any program expression e and possible evaluation
of e to v, the denotation of the mixed expression E approximating e contains v.

In the above naive formulation, we have ignored the evaluation context. If different
approximations of an expression are used according to the context, then the soundness
argument must be refined. The idea here is to give an intuitive approach to modeling value
flows at a range of abstractions. Without a denotational model and constraints that imply
set inclusion, it becomes harder to reason about the appropriateness of an analysis.

We quickly summarize the development of the mixed constraints semantics. We use
the ideal model of types as outlined in Chapter 2 to assign semantics to mixed expressions.
The semantics is parameterized in two ways. The first parameterization is a collection
of semantic constructors which are used to construct a semantic domain V. The second
parameterization of our semantics is given by the syntactic constructors appearing in mixed
constraints, and their signatures. Each n-ary constructor comes with an interpretation
function that maps sequences of n ideals to ideals. We use these constructor interpretations
to partition the domain V into sub-domains V* for each sort s. This partitioning induces a
partitioning of the collection of ideals Z(V) into collections of ideals Z(V*) for each sort s.



23

VA Vt 'Vft Vr(S) Vr(t) Vr(ft)

(Z(V®),9) (Z(V9, Q) (Z(V"),9) (V). @(v®™).0) (V"))

(S% GCs) (8%, Ce) (S", Cr) (89, Cos) (S, Cory) (8™, Cory)

Figure 4.1: Development of lattices (S*, C;)

We then select only a subset S® of each collection Z(V*) which we call the type-collection S*
of sort s. The ordering on ideals Z(V*) is set-theoretic inclusion. The relations expressed in
mixed constraints are in general stronger than set-theoretic inclusion. We define the order
relations C; on elements of S* and show that (S*, C;) forms a lattice. Figure 4.1 summarizes
the development in graphical form.

We use the following notational convention. The symbols U and N refer to set-
theoretic union and intersection, or to joins and meets of ideals in the complete lattice of
ideals Z(V) (Section 2.1). Symbols M and LI are used for meet and join operations of ideals
w.r.t. the type collections S® constructed in this chapter.

4.1 Value Domains

The semantics of mixed expressions is given in a common domain V similar to the ideal
domain described in Chapter 2. The main differences from the semantics of set constraints
given there are

e The semantic constructors from which the domain is built are disjoint from the syn-
tactic constructors used in the constraints.

e The relation between syntactic and semantic constructors is captured by a collec-
tion of constructor interpretations ¢, : Z(V)---Z(V) — Z(V) that parameterize the
semantics.

e The domain V contains total functions over an infinite label set L for modeling records.
There is a special value abs in the range of these functions to also model partial
functions which correspond more closely to actual record values.



24

e Not all ideals Z(V) are denotations of mixed expressions. The constructor signatures
and their interpretations impose more structure.

To distinguish semantic constructors from syntactic constructors, we refer to the set of
semantic constructors with the letter C and to individual semantic constructors with the
letter k. The semantic domain V is the solution of the domain equation

V={1} U |Jr(V-{L},....,V-{L}h U
KEC
V — (VU{wrong}) U L — (V U{abs})

The domain of values V. — (V U {wrong}) are the strict continuous functions from V to
V U {wrong}. The definition contains functions returning wrong. This provision is different
from the development by Aiken and Wimmers [3], where functions are restricted to V.— V.
Including functions that return wrong models function implementations more realistically
(applying a function to an argument outside its domain may generate an error) and has the
advantage of getting rid of the following equivalence (assuming I # {1})

I-V={l}->V

If functions may return wrong, this equivalence does not hold since the right side contains
functions that return wrong for = € I, whereas the left side does not.

The set of values L — (V U {abs}) is the set of functions from labels to elements
in V or abs. The idea of abs is to model partial functions. A record with finite domain
A C L is modeled as returning abs on all labels not in A. The domain dom(f) of a function
f is thus the set

dom(f) = {I| f L # abs}

We say that an ideal is a Row-ideal if it is an element of Z(L — (V U {abs})). The domain
of a Row-ideal I written dom([) is the intersection of the domains of all its elements

dom(I)= (] dom(f)
fer—{1}

Furthermore, we write I() for the set

= U i
fer—{1}

fin
Given a finite subset of labels A C L, the composition of two functions f and g, where
A C dom(f), is written f o4 g and corresponds to the function

foag=A.if [ € A then fI else gl

Given two Row-ideals I and J such that dom([I) is finite, the composition I o J is the set

T0J={f ogomng| f€T-{L}AgeJ—{1}} U {1} (4.1)



25

We now motivate the parameterization of constructor interpretations and then
proceed by partitioning V into sub-domains V?* for each sort s. Most published accounts
of set constraints interpret constructor expressions c¢(F1, ..., E,) as sets of strict tuples
labeled by ¢, where the syntactic constructors and the semantic constructors stand in a
one-to-one relationship

ple(EBr. ... \E)] = {c(tr, ... ta) |t € u[E] — {1} U {L}

(11 is the function mapping expressions to their denotation). The arrow constructor for sets
of functions cannot be modeled this way and is treated specially. Expressions E; — Fo
have the interpretation

{flzep[E] = fxep[E]}u{l}

Other standard type constructors, e.g. list also need to be modeled as special cases in such
an interpretation. For example, the standard interpretation for a type list(E) is

pflist(E)] = X  where X is defined by the equation
X ={nil, L} U{cons(v,w) |v € u[E] — {L} Aw € X}

which is rather different from a set of tuples labeled by list, and has the additional property
of being non-strict in F.

Having numerous special cases is impractical and interpreting all constructors
as labeled tuples severely limits the applicability of the formalism developed here. Our
approach is to assume as little as possible about the interpretation of constructors. We
assume only that there exists an interpretation function ¢, : Z(V)™ — Z(V) for each n-ary
constructor c in any given signature set ¥°. Each ¢, gives meaning to expressions with head
constructor c

MIIC(Ela o aEn)]] = ¢C(M|IE1]]’ s Hu[[En]])

The mappings ¢, must satisfy a number of axioms. These properties are used in the
remainder of the development.

Axiom 4.1 The mapping ¢, for constructor ¢ must satisfy the following conditions.
i. [Ideals] ¢, is a mapping of ideals to ideals, i.e., ¢. : Z(V)" — Z(V)
ii. [Contractive] ¢. must be contractive according to the Definition 2.2.

iii. [Variance] ¢. must observe the variance of the declared signature ¢ : t1---1,, — s.
Formally,

¢c([1, N ,In) - ¢C(Il"Ij—17 J, Ij+1-.In) Lj=te€ S

iv. [Disjoint] The interpretations of any two distinct constructors ¢, d of some sort s must
be disjoint, i.e., ¢c(I1, ... , Lo)) N Pa(J1,- - , Jo)) = {L}, for any sets I; and J;.



26

v. [Non-empty| The interpretation of any constructor ¢ is non-empty (besides L) when
applied to non-empty arguments, i.e., ¢c(I1,... , L)) D {L} for all sets I; D {1}.

vi. [Strictness] Every constructor interpretation is either strict in all arguments, or non-
strict in all arguments.

vii. [Injective] The interpretation ¢. of non-strict constructors must be injective.

To simplify the development in the rest of the dissertation, we require all Term and FlowTerm
constructors to be non-strict. We believe that this requirement can be relaxed.

The following equations define the domain of values for each sort, splitting up the
common domain V.

V= J{ge(Di,. . Tag) [ c:t1-eta = t A I €I(VY), 5 =1.a(c)}

V= J{pe(Tr,. . Ta) [ ciae -ty = ft A T € T(VY),j = 1..a(c)}

Ve = Joelt,. . To) | €1+ tagy s A I €I(VY),j =1..a(c)})
V) = {1} UL — (V* U {abs})

Since the mappings ¢. are contractive, the above equations are also contractive and thus
have unique solutions.

Mixed expressions allow Set-expressions to include e.g., embedded Term-expressions.
Thus, inclusion on Set-ideals may actually be a stronger relation than set-theoretic inclu-
sion, because the embedded Term-ideals require equality between constructor arguments
and not inclusions. To make precise what inclusion relations on mixed expressions mean,
we introduce the notion of interface paths and interface-path projections.

4.2 Interface Paths

Let an access path be a sequence formed by constructor-index pairs, i.e., P = (X x N)*
where ¥ = 25U St U X!, An access path p € P is well-formed of sort s if

1. p =€ (p is empty), or
2. p=(c,5)p', 0<j<alc), c:i1- 1y — s, and p’ is well-formed and of sort ¢;.
Definition 4.2 The following definitions characterize useful properties of paths.

1. The sort of a non-empty path p is sort(p). Where convenient, we write ps when p is
non-empty and sort(p) = s.

2. A path p is uniform of sort s iff every prefiz path of p is of sort s.

3. The interface if(p) of a non-empty, well-formed path p is t, if p = p'(c,J), ¢ :
L1 lg(e) = S, and 1y =t or 1 = t for some t € S. Additionally, we say that
the interface is covariant if 1; =t and contravariant if v; =t. Where convenient, we
write p' whenever p is non-empty, well-formed, and if(p) = t.



27

4. A path is non-strict if all constructors in the path are non-strict, otherwise the path
15 strict.

5. A non-empty path p is called an interface path if p is uniform of sort s, and if(p) # s.

6. Finally, a path p is called even (odd), iff it the number of distinct prefiz paths of p
with contravariant interface is even (odd).

Unless stated explicitly, paths are always well-formed and finite, and interface paths are
always non-strict.

We now define what it means for a path to be present in a an ideal Z(V).

Definition 4.3 A path p is present in I, written present(p,I), iff p =€ or p = (¢, j)q with
Citye gy — s and 31 € T(V™). ) € I(V'a©®) such that {1} C ¢pe(I1,... ,1qe)) €1
and present(q, ;).

Definition 4.4 The projection p~'(I) of an ideal I w.r.t. to a path p is defined as follows:

_ 1 ifp=ce
4o :{ Clfadir o . :
PO e ) = (e
where ¢z i1+ Lge) = S and

6o M1 j) = UL {1} Coelln, ... Lae) ST} ¢4 szor somet €S
c \&sJ N | {L} C pe(liy-v  Tue) C I} 15 =1 for someteS

with Iy € Z(V'*) for k =1..a(c), U{} ={L}, and N{} = V', if1; =1.

The projection of non-present even paths is { L} and the projection of non-present odd paths
of interface ¢ is V!. (Note that Z(V*) is a complete lattice and that the above intersections
and unions are defined for infinite collections.)

We now prove that projections of non-strict paths distribute over unions and in-
tersections. We'll need the following lemmas.

Lemma 4.5 For any ideals I, J, constructor ¢ and index 1 < j < a(c), such that c is
non-strict and covariant in j, we have

¢ (IL.5) N (1.5) = ¢, (IN T 5)

Proof: First consider the case D. Since c is covariant in j, we have
¢ HINJ,5) C d I, 7) and also
¢ (INJ5) C . (J.g)  thus
b (IﬂJJ)Qqﬁ ML) N g ' (d.9)
Consider the case C. Suppose t € ¢-1(I,5) N ¢ 1(J,5). Then

te| JIV; [ {1} Cge(V1,... ,Yy) €I} andalso

te | JO) {1} C e, . V)(y) C T}



28

Thus 3Y7..Y, () and EIYl’..Yé(C) such that

{L} C ¢e(Y,... aYa(c)) CI NteYy
{L} C (Y], Vo)) CT A tEY]
Since ¢. observes variance and is non-strict, { L} C ¢.(Y1 NY{,... , Yy N Yé(c)) cInd,

where
= { N for covariant arguments

U for contravariant arguments

Since t € Y; N Y], we have t € ¢ 1 (I N J, J). O
The next lemma states the dual case.

Lemma 4.6 For any sets I, J, constructor ¢ and index j < a(c), such that c is non-strict
and contravariant in j, we have

¢ (1,5) U ;' (J,5) = ¢z (INJ,5)

The proof is symmetric to the proof of Lemma 4.5. In similar spirit one can prove the
following

Lemma 4.7 For any sets I, J, non-strict constructor ¢ and indezx j < a(c) we have

¢, (1, 5) U@ (], j) ¢ covariant in j

1 N
¢ (IUJ. ) = { o7 (1, 5) N (J,§) ¢ contravariant in j

The next lemma states that intersections and unions distribute over projections of
non-strict paths.

Lemma 4.8 For any sets I, J, and non-strict path p,

-1 even
oot ={ L0 b

and 1( )
_1 _1 [ pT (HUJ) p even
p (I)Up (J)_{ pfl(ImJ) podd

Proof: By induction on the length of p. If p = €, the lemma holds. We prove the
induction step for intersections. The case for unions is analogous. Suppose p = (¢, j)q. By
definition and the induction hypothesis we have

p  (DNnp ' (I)=q " (6. (T, 5) g (o, (], )
_ { g (6 N(T,5) N (J,5)) g even
¢ (¢ (1,7) Uz (J,5)) qodd

Note that since p is non-strict ¢ is non-strict. Suppose that p is even. There are two cases. If
q is even, then c is covariant in j. By Lemma 4.5 we have ¢_ (I, j)N¢. 1 (J,5) = ¢, L(INJ, j),



29

and thus ¢~ (¢ (1, 5) N7 (], 7)) = ¢ (¢ (INJ,5)). Now suppose that g is odd. Then c
is contravariant in j and by Lemma 4.6 we have ¢ (I, j)U¢; 1 (J,5) = ¢-1(INJ, ), and thus
¢ (6, (1) U, () = (¢, (IN,5)). Tn'either case g (¢, 1(INJ, 1)) = p (INJ).

Now assume that p is odd. We have again two cases. If ¢ is even, then ¢
is contravariant in j. By Lemma 4.7 ¢, (I,5) N ¢, (J,5) = ¢, (I U J,j), and thus
NP I, )NP (T, 5)) = ¢ (@7 H(IUJ, ). Now suppose that g is odd, then c is covariant
in j. By Lemma 4.7 (ﬁgl(I,j)Ugﬁgl(J,j) = ¢EI(IUJ7j)a and thus qil(ﬁbcil([aj)U(ﬁcil(ij)) =
¢ (P (I U J,5)). In either case ¢~ (-1 (IU J,5)) =p~ 1 (T UJ). O

4.3 Type Collections

This section defines for each sort s the collections S* C Z(V*) of ideals denoted by mixed
expressions of sort s (see also Figure 4.1). We call these collections type collections. Whereas
in the work of Aiken and Wimmers [3] every ideal of Z(V) is a possible denotation of a
set-expression, in mixed constraints we impose more structure on the denotations that we
consider. For example, Term and FlowTerm expressions only denote ideals of the domain
obtained by applying a single head constructor. The interpretation functions ¢, make it
convenient to specify the collections of ideals S°.

Before we define the type collections S®, we characterize three kinds of Row-ideals
denoted by Row-expressions.

Definition 4.9 Fach Row-ideal I is fully characterized by the ranges I(l) for all labels
[ € L. Thus, for all labels I, if f € I, then for each v € I(l), there exists f' € I, such that
f'()y =wv, and f'(I'y = f(I) for all labels I' # 1. Furthermore, a Row-ideal I is called

1. [Maximal] iff dom(I) is finite and VI & dom(I).I(l) = V*® U {abs}.
2. [Closed] iff dom(I) is finite and ¥l & dom(I).I(l) = {L, abs}.
3. [Minimal] iff dom(I) = L and there are finitely many | € L such that I(l) # {L}.

The three kinds of Row-denotations correspond to the three Row-expressions that
can appear as the right-most expression of a Row-composition: 1, (), and 0. Maximal Rows
are denoted by expressions of the form (I : Ej)4 o 1, closed Rows by expressions of the form
(I: Ej)a=(l: E;)ao (), and minimal Rows by expressions of the form (I : Ej)4 0 0. We
define the minimal domain dom | (I) of any Row-ideal I to be

At 1) #{L}} if I minimal
dom | (I) = { dom(I) otherwise

Definition 4.9 implies that dom (I) is finite for all Row-ideals we consider. Even though
we won’t discuss any applications of Row-expressions until Section 4.6 and Chapter 8 we
briefly give some intuition about the three different kinds of Row-ideals in our model.
Width-subtyping is common in type systems and refers to the ability to forget the presence
of certain fields in record types, or add new fields in variant types. Width-subtyping is
reflected in the relation of the minimal domains of two Row-ideals. The semantic relation



30

I Cy5) J on Row-ideals that we define later in Section 4.4 captures three distinct width-
subtyping relations, depending on the kinds of Row-ideals I and J. If I and J are minimal
Row-ideals, then I C,(,) J only if dom (1) C dom(J). If I and J are closed Row-ideals,
then I C,(;) J only if dom, (I) = dom(J). Finally, if I and J are maximal Row-ideals,
then I C,(,) J only if dom | (I) 2 dom (J).

The following invariant specifies the properties of the type collections S that make
them distinct from Z(V*).

Invariant 4.10 (Type Collections) The collections S® must satisfy the following condi-
tions.

1. All elements (besides L and T, defined below) of St, and S® are of the form ¢.(Iy,. .. , I,,)
for some constructor c: 11 -+ -1, — {t,ft} and elements I; €S,’_,.

2. For every finite non-strict interface path pl and every element I € SS the projection

p~1(I) is an element of SZ—\p\' (By convention S} = S§ for negative i).

3. For every I € S;(s) and every label | in the domain of I, the set I(l) is an element of
S;_,, and I is either closed, mazimal, or minimal according to Definition 4.9.

Condition 1 is motivated by the desire to restrict the ideals of Term and FlowTerm-expressions
to the form ¢.(...), i.e., ideals built from a unique head constructor ¢. Condition 2 guar-
antees that for any Set-ideal I in S®, the projection p~!(I) of any non-strict interface path
pt is an element of S*. We use this property in Section 4.4 to define the semantic relation
1 Cg J to be stronger than set-theoretic inclusion I C J by also requiring that for any
non-strict interface path p?, p~'(I) C; p~'(J). Condition 3 is similar to Condition 2, but
for Row-ideals. Note that Row-composition defined by (4.1) preserves Condition 3.

The collections S* C Z(V*) are now defined inductively for each sort, along with
binary operations Ny and Ll;. These operations will serve as the meet and join when we
define the semantic relations on the type collections. The meet and join also serve as
the generalized intersection and union operations for mixed Set-expressions. We use two
abbreviations 1 and Ts to denote the smallest and the largest ideal for sort s. For sorts
s € {s,ft,t}, the smallest set is Ly = {L1}. For Row-sorts, the smallest ideal is L) =
{L,\z.L}. The largest ideal Ty for sort s is simply V*. The type-collections S* are defined
inductively as the smallest fix-point of a series S§j,S7,S5,.... For notational convenience,
we say that T3 = 1 and 1s = T,. Where the sort s is understood, we omit it. In the base
case, type collections merely contain L and Tg.

St ={Le, Te}
SF = {1, T}
S:)(S) = {J-r(s)a Tr(s)}
?] = {J_s, Ts}

At level n of the induction, we define S; in terms of two simpler collections T
and O} . T} is the collection of ideals built by applying constructors of sort s to elements of



31

St

w1, and O7 is built from T}, by adding ideals built using operations of sort s (besides meet
and join operations). Finally, S; is built from O; by closing under finite meets and joins
(defined below). The following equality defines how T is built from the collections Sf, ;.
(Note that for Row-sorts, this collection is empty since Row-sorts have no constructors).

T, ={de(li,... , Ix) |civn--up = 5,1 € 5:{'71} (4.2)

O; is obtained from T} by adding the denotations of constants 0 and 1 for all sorts.
Additionally, denotations for Row-constant () and Row-composition are added to sorts r(s),
and negations of single constructors are added to the Set-sort.

0 s € {t,ft}
fin
05 =T* U{L,, T,}U{ {pa(9) o K|ACL A geA=S] 4} s =r(t) (4.3)

{Ts — Pe(Tyysen s T, )|c:L1---La(C)—>S} s=s

» age)

where K is J_r(s), abs,(s), or Tr(s), and

palg) ={f €L — (V'U{abs}) |le A = flegl Nl¢gA = fle{l,abs}}

e (4.4)

and

abs,o) ={f €L = (VU {abs}) | fl € {L,abs}}U{L}
=L — {L, abs}

Note that abs,(,) is in O:l(s) since pg(g) o absy(s) = abs(y).
Finally, collections S¥ are obtained from O;, by closing under finite meets and joins
(M7, 1Y defined below)

S; = minX D O;, such that for all non-empty finite subsets Y of X
[oyex a [ |ovex

We now show that the inductive definition of the type collections S® satisfy Invari-
ant 4.10. Conditions 1-3 of Invariant 4.10 hold for the base collections S§. Assuming they
hold for S!,_, then by equations (4.2) and (4.3) they hold for T¢ and also for O5. We now
inductively define the two binary operations M7 and U7 that perform meets and joins of
elements of S; and show that the invariants also hold for S; provided they hold for S _,.

At the same time we show that for all sorts s and all induction levels n,

ImJgcing (4.5)
Iy} JorI1uJ (4.6)

i.e., meets are smaller than set-theoretic intersections and joins are larger than set-theoretic
unions.



32

For the Term-sort the meet and join operations are particularly simple. The join
of two non-bottom elements of Of is T unless the elements are equal, or one is L. Similarly,
the meet of two non-top elements is | unless they are equal, or one is T.

I ifI=J I ifI=J
I ifJ=T I ifJ=1

IM J = J ifI=T Ty J = J ifI=1 (4.7)
1 otherwise T otherwise

In the first three cases IM,J = INJ and IU;J = IUJ. In the last case, Ly =IT1,J CINJ
and Ty =1l J D IUJ. Thus (4.5) and (4.6) are satisfied for all n. The definition directly
implies that for all I,.J € O we have I, J € O} and T'U, J € Ot. Thus St = O! and
Condition 1 of Invariant 4.10 is satisfied.

For notational convenience we define My = LIy and L, =M.

( p (11 I_IZ_1 Jis.oo I I_IZ:1 Jr) criigeeop — ft
I:¢C(Il,...,1k) A J:¢C(J1,...,Jk)
=4I ifJ=T (4.8)
J fI=T
[ L otherwise
( p (11 I_IZ_l Jisoo I I_IZ:1 Jr) criigeop — ft

I=¢o(lt,... . It) A J=¢c(J1,... T

ITugJ=< 1 itJ=_1 (4.9)
J iflr=_1
| T otherwise

The meet and join for FlowTerm-ideals are defined in terms of the meets and joins of con-
structor arguments. The base cases (n = 0) degenerate to the cases for Term-ideals. Note
that I;,J; € 5;]'71_ Since S;ﬂl is closed under meets and joins, we have I; I_If;_1 Jj € 5;]'71'
Therefore for all I, J € Of we have I 1% J € Of and I LE J € Of. Thus S* = O and
Condition 1 is satisfied. By induction on (4.5) and (4.6) and the fact that ¢. observes
variance, we conclude that 7T JC INJand IUg J D TUJ.

To simplify the cases for the meet and join of Row-ideals, we use the following
definition.

Definition 4.11 The kind of a Row-ideal I € Sr&) written k(I)—is
Te(s) if I is mazimal

k(I) =19 Llus if I is minimal (4.10)
abs,s) if I is closed

Note that L) C abs,) C Ty(5) and thus these kinds are closed under union and intersec-
tion. The meet and join for elements in row type-collections is defined in terms of meets
and joins of the range of each label and the meet and join of the kinds.

1Ty I = Pdom(ryudom () (ML) T3~ T (1)) 0 kn(I, J) (4.11)
I Uf gy J = Pdom(n)ndom(s)(N-I(1) Ug ™1 (1)) 0 k(1 J) (4.12)



33

where
XY = (X — {abs}) M1 (Y — {abs))
and
( J—r(s) ifk(I)=k(I)Nk(J) = abs,(s)
and dom(J) € dom(I)

Nk(J) = abs,(s)
and dom(I) € dom(J)
| k(I)NEk(J) otherwise

( Tr(s) ifk(I)=k(I)Uk(J) = abs,(s)
and dom | (J) Z dom([)
ku(I,J) = ¢ T if k(J) = k(I) Uk(J) = abs,(y)

and dom | () Z dom(J)
| k(I) UEk(J) otherwise

In order for these operations to be meets and joins of the constraint relation C,(,) which we
will define shortly, we require that if the meet of I and J is closed, then its domain must be
equal to the domain of the closed arguments (I, J, or I and J), and similarly for the join.
The extra cases for kn and k|, take care of this by making the meet minimal (join maximal),
if these domain constraints are not satisfied. The special cases for the meet are furthermore
needed to guarantee (4.6). Consider for example two closed Row-ideals I and J, such that
l € dom(I), I(l) # {L}, and I & dom(J). Then there exists an element f of I, such that
f 1 &{L, abs}. Note that [ ¢ dom(I U J), thus (I UJ)(I) = {L,abs} if k(I U J) = abs,().
But then f ¢ I LI J. The definition makes sure that in this case the kind of I LI J becomes
Ty(s) to guarantee that f € T U J.

We show that for all I,J € O:l(s), 1 I_I?(s) J is an element of O;L(S). In the base
case (n = 0) the (minimum) domains of I and J are empty and the meet and join re-
duce to intersections and unions of kinds. Otherwise, I(1),J(l) € S;_, for [ € dom(I) N
dom(J). By induction, I(l) U2t J(I) € S{_,. Suppose dom(I) N dom(J) is finite. Then,
Paom(Dyndom(ry (NLI(1) LB~ J (1)) 0 kiy(1, J) is an element of OF*) by definition. Otherwise, I
and J are minimal. In this case, dom  (I) Udom (J) C dom(I) Ndom(.J) is finite and thus

11 J is equivalent to

demJ_(I)UdOmJ_(J)(Al'I(l) I—lgil J(l)) ° J—r(s)

which is in 0"

abs € I(1) for some I € SE*, then I(1) — {abs} € S3_,. Thus S&*) = 0%*) and Condition 3

is satisfied. For (4.5) note that if f € T Mis) 7> then

I € dom(I) Udom(J) = f 1€ I(1)rm="J()
A1 ¢ dom(I) Udom(J) = f 1€ (k(I)Nk(J))(1)

). For I_I?( 5) the argument is similar with the additional observation that if

By induction, (1) ﬁg*l J() CI(1)nJ(l) and thus f € I and f € J. The argument for (4.6)
is given above.



34

The crux of the definition comes with the Set-sort. If we use set-theoretic in-
tersection and union for the meet and join operations, we cannot guarantee Condition 2,
since projections of non-strict interface paths p' (of length |p| < n) yield arbitrary unions
and intersections of elements in Sfl, ol which themselves are not necessarily in sz—|p|' We
therefore adjust the set-theoretic union and intersection to establish the invariant.

INJ= maxX € Z(V®)st. X CINJ (4.13)
and for all finite non-strict p!
{ p~ (X)=p () NFpTt(J) if peven, k=n—|p|
p {(X)=p {(D) U p'(J) ifpodd, k=mn—|[p]
IU'J = minX € Z(VS) st. X DIUJ (4.14)

and for all finite non-strict pl

{ pHX) =p NI Ui pH(J)
p~H(X) =p~ (D) M p~ ()

To see that the operations Mg and LIf are well-defined we give an explicit construction of
the maximal (minimal) X. We will use the following auxiliary definitions. For any finite

if p even, k =n — |p|
if podd, k =n — |p|

non-strict path p, and element Y of S;_ pl’ define
(Y ifp=ce
Ge(Lyy Ly, ming(YV), L. Ly ) ifp=(cj)q
min(Y) = < covariant in j (4.15)
P . .
Ge( Ly Ly, maxg(Y), L, L, ) ifp=(cj)g
. contravariant in j
(Y ifp=ce
Ts — ¢C(TL1 Ta(C ) U ¢c( 11 LJ 17man(Y)a TLj+1"TLa(C)) ifp = (C,j)q
max(Y) = covariant in j
P . . )
T — ¢C(TL1 T La(e) ) U ¢c( L1 LJ 1 mlnq(Y)a TL]-+1 --TLa(C)) ifp= (C, ])q
L contravariant in j
(4.16)

Note that max,(Y) € S,. Using these min and max ideals, we can define Ny and LI
explicitly (p ranges over non-strict paths present in I and J where k =n — [p| > 0).

ImJ=1nJ
0N max (p7' @) p))

N () max (p~ (DU 7))

(4.17)

I J= IuJ

U U mm(

even p?

U U mln(

odd p?

We illustrate these definitions with an example.

Uk e ()

0k ()

(4.18)



35

Example 4.12 Consider two constant Term-constructors bool : t and int : t which denote
boolean and integer values, and a covariant unary mixed Set-constructor list : t — s for
lists. Assuming semantic constructors nil and cons, the meaning function ¢y is defined by

diist(A) = X where X = {nil} U {cons(h,t) |he A—{L} At X}
Suppose we form the join of two Set-expressions
list(bool) LI list(int)
and consider the natural denotation I of the above expression given by

I = ¢rist(Pboot) Us Piist (Pint)

If L were simply Set-theoretic union, then the projection p~'(I) of interface path p =
(list, 1) results in the ideal J = ¢pool U Pint. However, J ¢ St, since it is not of the form
¢c(...), i.e., there is no unique head constructor ¢ for J. Our definition of Lig avoids this
problem by raising the above join, such that p~1(J) = ¢pool Uy ¢int = Ti- In particular,

¢Iist(¢bool) |—ls ¢Iist(¢int) = ¢Iist(¢bool) U ¢Iist(¢int) U U Ingn (pil(I) I—lt pil(J))

even pt

= Plist(Pbool) U Plist (¢int) U (Ififslti% (¢bool Uy Pint)

= ¢Iist(¢bool) U ¢Iist(¢int) U ¢Iist(Tt)

= ¢Iist(Tt)
where the second to last step follows from the definition of L, and min,, and the last
step follows from covariance of ¢st. The projection p~'(I) is thus Ty, which is the only

Term-ideal larger than both ¢poo and ¢int-
|

To see that construction (4.17) for I M7 J satisfies requirement (4.13) in general, note that
we have for all finite even interface paths p?,

p Iz ) =p~ @ pT () npT | () wlix (a7 () MEaT)

t

p 00 0 (s (o (0 ) )

Il
)
=

HDnp~ () N~ ) NE ()
D mEp™H()

'S
s

The first equality follows from Lemma 4.8, the second simply chooses the path ¢ = p from
the intersection () and the last equality follows from the inductive hypothesis that

even q’
I I_I”SC J C INJ for all sorts s and k = n — |p| < n. The case for odd paths is analogous, and
similarly for LI7.



36

Note that by Conditions iii, vi and vii of Axiom 4.1, min,(Y’) is by construction the
smallest set X such that p~!(X) =Y. Assume that Z is another set satisfying (4.14), then
min, (p~ 1 (I)L;p~1(J)) C Z for all finite even non-strict interface paths p’ and min,(p~* (1),
p~(J)) C Z for all finite odd non-strict interface paths p’. Thus Z D I Uy J and I U J is
minimal. The argument for the maximality of I .J is analogous. By construction we have
ImgJCcIndand IUgJ D IUJ. Condition 2 is satisfied by the definition.

The type-collections S® are then defined as the limits of the series S§,S{,. ...

Theorem 4.13 The limits S° exist.

Proof: Each series S§,Si,... is monotonically increasing in the powerset lattice of
ideals P(Z(V*#)). This lattice is complete, and thus the series S§,S{,... has a limit, which
is given by the least upper bound of the series. O

4.4 Semantic Relations

Having defined our type-collections, we are ready to define the semantic relations Cg and
show that they form lattices over S®* with meet and join being N, and LI, respectively. A
difficulty in defining the semantic relations for mixed constraints not present in non-mixed
formalisms is that the constraint relations are interdependent. For example, the constraint
relation for mixed Set-constraints is not simply set-theoretic inclusion. The relation depends
on the constraint relations of other sorts that appear in mixed Set-expressions.

We now define the semantic relation Cg for each sort s and show that I C;, J —
I Cvys J, i.e., the semantic relations Cg imply set-theoretic inclusion in the underlying value
domain V*. For notational convenience, we state that I C5J <— J C; 1.

The semantic relation for the Term-sort is

LG I

IC, T (4.19)
IC I

Note that I Ci J implies I C J. For the FlowTerm-sort, the semantic relation is

LCul
ICh T (4.20)
ch(Ila--- ,In) Ce ¢C(J1,... ,Jn) <~ IJ ng J]

Note that I Cg J implies I C J. The first two cases are trivial. For the last case note that
¢ observes the declared variance of constructor ¢ (Axiom 4.1, Condition iii). For rows, the
semantic relation is
I gr(s) J =1 gvr(s) J A
I and J closed = dom(I) = dom(J) A (4.21)
forall I € dom(J) I(l) Cs J(I)



37

Two Row-ideals I and J stand in I C,(,) relation iff I is a set-theoretic subset of J (written
I Cye(s) J), the domains of I and J agree if both are closed, and for all labels [ in the
domain of J, the projection I(l) is related to J(I) according to Cs. Note that I Cyyesy J
implies dom(Z) 2 dom(J).

The semantic relation Cg has two parts, a standard set-theoretic inclusion on the
domain elements (written Cys for clarity), and a set of interface constraints using interface
paths. Our definition of S guarantees that for any interface path p’ and any ideal I € S8,
p~(I) € S! and thus the interface constraints are well-defined.

I CyJ <= I CysJ A forall finite non-strict interface paths p'

{ p 1(I) Cyp'(J) peven (4.22)
p~YJ) S p~i(I) podd

Note how the relations are stronger than the set-theoretic inclusions in the underlying
domain. This fact is not surprising, since the major goal of mixed constraints is to narrow
the set of possible solutions such that more specialized and efficient algorithms can be
applied.

Example 4.14 Reconsider the covariant mixed Set-constructor list : t — s from Exam-
ple 4.12. Suppose I and .J are two Term-ideals from St and consider the set-theoretic
relation

biist(I) € st (J) (4.23)

By covariance of ¢js;, this relation is satisfied iff I C J. Now consider the relation Cg
Giist(I)  ist (J)
which requires (4.23) and in addition
I1¢J (4.24)

From the definition of Cy, the relation (4.24) is satisfied if I = J, unless I = 1y or J = T.
The equality constraints arising through the use of Term-expressions can be represented

and solved more efficiently than inclusion constraints (Section 7.3).
[ |

Lemma 4.15 The operations Mg and U, are the meet and join operations of Cs.

Proof: By induction on S}. For Sj the lemma holds, since meet and join degenerate to
intersection and union in that case.

For I U, J we have I Cy I'LI, J and J C; I L, J from the definition. Suppose there
exists another upper-bound Z. If Z is Ly or Ty we are done. Otherwise, Z =1 =J =11 J
for all n. The case for I, is similar.

For I Uy, J we have by induction I; Cg I; UP~" J; and J; Cq I; U7~" J;. Thus
by variance of ¢., we have I Cg I Ug J and J Cg I U J. For the inductive step of
minimality, suppose there exists another upper-bound Z € S of I and J. If Z is Lg or



38

Tge we are done. Otherwise, since constructor interpretations are disjoint, Z must be of the
form ¢.(Z1,...,2y) with I; C,, Z; and J; C,, Z;. By induction, I; I_IZ,_1 Jj C; Zj, and
thus by variance of ¢., I Ll J Cg Z. The case for MMy is similar.

For I'U, . J we need to show that I C,., [ Uy(s) 5 -€es 1) I Cyne I Uyis) 4 2) if
I, I'U, J are closed then dom(I) = dom(I Uyis) J), and 3) that for all [ € dom(I Uyis) J)
Il) s (I'Uy J)(). We have I'U, o J = pdom(r)ndom()(ALI(1) L=t (1) o ku(l, J).
Since I U, J 2 ITUJ D I, we have the first part. For the second part, suppose I and
1 I_Ir(s) J are closed. Then by definition of I_Ir(s) we have that J is not maximal, and that
dom, (J) € dom([). If J is minimal, then dom(I Uyis) J) = dom(I) Ndom(J) = dom(I).
If J is closed, then we have dom(J) C dom(I) and symmetrically, dom(I) C dom(J). For
the third part we have for all [ € dom(/ Uyis) J) = dom(Z) Ndom(J) that (I Uyis) J)(1) =
I(1) U=t J(I). By induction, I(l) Cy I(I) U?~! J(I) and thus for all I € dom(I Urisy ) we
have I(l) C, (I LUys) J)(l) as desired. The case for Mi(s) is analogous.

To show minimality, suppose there exists another upper-bound Z € S"®) of I and
J. We have I UJ Cys) Z implying that dom(Z) C dom(I U J) = dom(I) Ndom(J) =
dom(I Ues) J). Suppose dom(Z) = dom(I Ues) J), otherwise we are done. Clearly, k(Z) D
ku(I,J), otherwise Z is not an upper-bound. Assume k(Z) = k(I,J), otherwise we are
done. Then for all [ € dom(Z) we have I(l) Cs Z(l) and J(I) Cs Z(I). By induction,
I(l) U, J(I) Cs Z(1) and thus (I Ues) J)(1) Cs Z(I). The case for My(s) 18 similar.

Finally, for I Lig J we have by definition that I Cys I'UgJ and J Cys I Ug J. Also
by definition, for all even interface paths p’, p~*(I) C; p~ /(T U2 J) = p~1(I) UF p~1(J) and
for all odd interface paths p', p~' (I L2 J) = p~'(I) NF p~(J) C; p~(I). Similarly for .J.
Thus by induction (k < n), we have I Cg I U7 J and J Cg I U J. Suppose there exists
another upper-bound Z. Then Z O I U J and p~'(I) C; p~1(Z) and p~1(J) C; p~1(2)
for even non-strict interface paths p’, and p~1(Z) C; p 1(I) and p 1 (Z) C; p(J) for odd
non-strict interface paths p!. By induction, p~'(I) U, p~!(J) C; p~!(Z) for even p and
p~Y2Z) €, p~H(I) N, p~1(J) for odd p. Thus by variance of constructor interpretations,
I'ug J Cs Z. The case for Iy is analogous. O

Corollary 4.16 For all n, the collections S;, with relations Cg form lattices with meets and
joins defined as above; thus for all s

T1UWJCZ <= I1CsZ N JC Z
IC,IJN,Z <= ICsJ NIC,Z

The motivation for our construction of the lattices (5%, C;) was to exclude certain
undesired ideals in Z(V?®) from S*, and to make the relations C; stronger than set-theoretic
inclusion. These two points where illustrated by Example 4.12 and Example 4.14. Another
reason for the non-standard definition of S® is to rule out sets that cannot be built using
constructor application, union, and intersection. Reconsider the standard interpretation of
a list constructor given in Example 4.12

st (A) = X where X = {nil} U {cons(h,t) |h€e A—{L}Ate X}



39

The set of lists of length greater than 0 (not containing nil) is an ideal of V*, but it cannot
be constructed by applying ¢jst. Note that a list constructor is not the only way to refer to
ideals for modeling lists. More precise ideals for lists can be denoted by using two distinct
constructors nil and cons. Using these constructors it is possible to distinguish non-empty
lists from all lists, a distinction that cannot be captured with the list constructor above.

4.5 Solutions

To give meaning to mixed constraints we define a meaning function, mapping expressions
to types, and then say that the solutions to a set of syntactic constraints are the solutions
of their semantic counterparts.

Variable assignments o are maps from variables to elements of S®. A variable
assignment o is well-sorted, if for all sorts s and all X € V* we have X € dom(o0) =
o(X) € S°. We consider only well-sorted variable assignments. Given a variable assignment
o, we define the meaning i of mixed expressions by

ulXle = o(X)
pl0fle = Ls
pllfle = Ty
ple(Er, ... Epn)]o = ¢c(p[Ei]o,... ,u[En]o)

plEy M Eplo = plEr]o Mg p[Eo]o
plEy U Es]o = plEr]o Us plEs]o
ul—{ci,... ;entlo = Ts— U Ge(Tors 5 Toy) Cilylg(e) =S
ce{etyestn}

ul()%Jo = absy)
pl(l: Egy o Elo = puy(N.p[E]o) o p[E]o

Since SS is closed under meet and join, and S*®) closed under composition, we have that
is well-sorted under any well-sorted variable assignment o, i.e., E € L® implies u[E]o € S*.

We can now define the meaning of mixed constraints. Under a given set of construc-
tor signatures X, a mixed constraint problem S is the conjunction of constraint problems
5%, where each S* is a collection of s-constraints {Ey C; Ef, ..., E, Cg E]}. A solution to
such a system S is a well-sorted variable assignment o, such that

plEi]o Cs p[Ej]o  forall E; Cs E. € S

4.6 Discussion and Related Work

We start our discussion of the semantics of mixed constraints with a number of examples
that illustrate how the choice of constructor signatures influences the precision of mixed
constraints. Assume list is the unary constructor for lists with the semantic interpretation
oiist given in Example 4.12, and bool and int are constant constructors denoting the set of
boolean values and the set of integers. Consider the two constraints

list(bool) Cs X

list(int) Cs X (4.25)



40

We now explore the possible minimal solution for X under a number of constructor signa-
tures for list,bool and int. First consider the signatures

list:s —'s
bool : s
int:s

defining all constructors as Set-constructors. Then the constraints (4.25) have the minimal
solution

X = ¢Iist(¢bool) I—ls ¢Iist(¢int)
= list (Pbool) U Piist (¢int)
expressing that X is the set of integer and boolean lists, where each list contains either only

booleans, or only integers. Next consider the variation on the signatures where list is made
a FlowTerm-constructor.

list:s — ft
bool : s

int:s
In this case the minimal solution of constraints (4.25) is

X = iist(Pbool) Uge Prist (int)
= ist (Pbool Ls Pint)
= iist(Pbool U Pint)
expressing that & is the set of lists where each element is either a boolean or an integer.

This set is strictly larger than the minimal solution under the previous signatures. Another
coarsening can be obtained by choosing all constructors to be of sort FlowTerm.

list : ft — ft

bool : ft
int: ft

In this case the minimal solution of constraints (4.25) is

X = Piist(Pbool) Uge Prist (Pint)
= ¢Iist(¢bool I—lft ¢int)
= buist(Tee)

expressing that X is the set of all lists. A final coarsening can be obtained by making list
a Term-constructor.

list: ft > t
bool : ft
int: ft



41

In this case the minimal solution of constraints (4.25) is

X = Prist(Pboot) Ly Prist (Pint)
- T

expressing that X' is the set of all values.

Condition 2 of Invariant 4.10 only applies to non-strict interface paths. To illus-
trate why, we show that the definition of meet and join for Set-expressions does not extend
to strict interface paths. Consider the following signatures.

a : t
b : t
c : tt—s

Let X = pfe(a,b)Uc(b, a)] be the join of ¢(a, b) and ¢(b, a). If ¢ is non-strict, the construction
of the join adds the sets min(. 1) (aLl,b) and min 5 (bL,a) so that the projections (¢, 1) *(X)
and (c,2)7%(X) yield elements of St. We relied on the minimum and maximum sets min,,
and max, to force the projection of interface paths of the join and meet to be elements of the
appropriate type collection. The existence of such minimal and maximal sets is guaranteed
by Axiom 4.1 (Conditions iii,vi,vii). If ¢ is strict however, then the meaning function ¢.
is not injective and the construction min(, ;)(X) is always { L} for strict constructors with
more than one argument. Thus (e, 1)_1(min(c’1)(X)) # X for all X strictly larger than {_L}.

Most common constructor interpretations satisfy Axiom 4.1. Unfortunately, the
standard function constructor interpretation does not satisfy Condition vii of Axiom 4.1
since it is non-injective if the first argument is {1}. Instead of the standard function
interpretation, we can use a non-standard function interpretation that is injective. Consider
the interpretation,

o (X, Y)={(f,r) | f€ (Tt = TtU{wrong})) UL, reY NzeX = fzeY}U{L}

which pairs each function with a witness r from its range. Now for A C T the set ¢, (L, A)
is distinct from ¢_,(Ly, Ty) since the first set only contains pairs (f,r) where f is any
function, and r € A. Such an interpretation is still valid for the purposes of modeling
sets of functions in programs. It merely provides distinctions that are only needed for the
technical development and not observable by any actual denotations of program expressions.

Note that it is not simply our choice of the construction for the set max, that
causes this problem. For the standard function constructor, there exists no maximal set
max_, 2)(X) such that (—,2) ! (max_, 5)(X)) = X. To see that this set does not exist,
note that our semantic domain V contains only functions strict in 1. Thus the set of
functions that map L to an element in X is the set of all functions. To guarantee that the
projection of the range is X, we would need to add at least one element v to the domain,
restricting the set of functions to map v to an element of X. There are infinitely many
choices for v and no minimal set exists.



42

Applicability of the Model

The design goal for the model of mixed constraints is to provide an intuitive meaning
to mixed constraints that allows analysis designers to reason about the correctness of a
constraint-based program analysis. This goal motivates the choice of a denotational model
where mixed expressions denote certain sets of values, and where a mixed constraint £ Cg
E5 implies that the denotation of E; is a set-theoretic subset of Fs. If an analysis models
all flows of values using mixed constraints, then in principle, one obtains a sound over-
approximation of the possible runtime values of any expression.

Consider an expression F used to over-approximate a set of values V. We say
that in this case E occurs in an L-context (Chapter 3). Note that if £ contains any
sub-expressions in R-contexts, then those occur in argument positions of contravariant con-
structors. Clearly, if E is to be an over-approximation of V', then the projection of any
odd path p present in E must under-approximate the projection p~*(V). In general, ex-
pressions in L-contexts must over-approximate sets, and expressions in R-contexts must
under-approximate sets. Our choice of L- and R-contexts coincides with the occurrence of
such expressions in mixed constraints. If expressions F; and FEs appear in a mixed con-
straint F; Cg FEs, then we say that F; appears in an L-context and F, appears in an
R-context. The fact that F; over-approximates a set Vi and Es under-approximates a set
V5 makes the constraint harder to satisfy than the set-theoretic inclusion V; C V5. Thus, if
the mixed constraint £y C4 E» is satisfied in a solution, then so is the constraint V3 C V5.

Our definitions of meet and join are such that meets are no larger than set-theoretic
intersection and joins are not smaller than set-theoretic unions. If two expressions F; and
E, over-approximate the set of values at a given program point, then the join also over-
approximates this set. Similarly, if y and E5 under-approximate a set, then so does their
meet. On the other hand, the meet of two expressions E; and E, that over-approximate
a set V does not necessarily over-approximate V', and dually for the join. As a result,
meets may be used in L-contexts only if they are guaranteed to coincide with set-theoretic
intersection, and joins may be used in R-contexts only if they are guaranteed to coincide
with set-theoretic union. This principle serves as a guide when designing an analysis.

Abstract Interpretation

The general theory of program analysis has been set on well-defined mathematical grounds
in the work on abstract interpretation originated by Cousot and Cousot [17]. In the view of
abstract interpretation, a program analysis is an evaluation of a program over an abstract
semantics. The abstract semantics of a programming language conservatively approximates
its concrete semantics. The conservative approximation is formalized by a Galois connection
(a,y) between the values of the concrete semantics (V) and the values of the abstract
semantics, drawn from an abstract domain A. The function a: V — A maps each concrete
value v to the abstract value a that “best” approximates it. The function v : A — 2V
maps abstract values a to the set of concrete values v that it approximates. The functions
a and v form a Galois connection, if for all v € V, v € y(a(v)), and for all a € A,
a = | J{a(v) | v € y(a)}. The abstract domain A must form a join semi-lattice.

It is conjectured that any program analysis can be seen as an abstract interpre-



43

tation. In certain cases it may be necessary to consider a concrete semantics that is much
richer than the standard semantics of a programming language. Such cases arise when an
analysis infers information about a program execution that is not captured by the standard
concrete semantics, such as for example its memory allocation strategy [22].

Abstract interpretation is sometimes mistaken to stand only for the particular it-
erative fix-point approach proposed by Cousot and Cousot [17] to compute the solution of
an abstract interpretation. That algorithm is only one possible implementation strategy.
In general, abstract interpretations can be viewed as minimal solutions to systems of con-
straints between expressions denoting abstract values. These expressions involve meets and
joins and other monotone operations on abstract values.

The type-collections S* for mixed expressions can thus be seen as abstract domains
for the concrete value domain V. Mixed expressions then provide syntax to denote abstract
values in these abstract domains, and mixed constraints provide lattice constraints between
these abstract values. The constructors and their signatures appearing in mixed expressions
synthesize the abstract domains. This synthesis has been recognized previously in the
context of pure set-expressions by Heintze [38] and been described by Cousot and Cousot
for set-expressions [18] and for type-expressions [16].

The Row Model

The row part of the model is to the best of our knowledge novel in its ability to combine
three distinct width-subtype relations for rows with depth-subtyping. Given two row types
i = (l : 7)ica and ry = (I : 7/);cp, width-subtyping refers to the relation between the
domains of A and B of the rows, whereas depth subtyping refers to the subtype relationship
between the types 7, and 7] at certain labels .

If the rows model record types (finite functions from labels to types), width-
subtyping allows the right-side r2 to have a smaller domain than ry, and depth-subtyping
allows each type 7, to be less than 7] for [ € B. This notion of record subtyping is most
common in the literature [86, 12, 78]. Constraints between maximal rows of sort r(s) pro-
vide the width-subtyping of record types. Depth-subtyping is provided to the degree that
sort s provides subtyping. If s = t, only depth-subtyping involving T and L is present.

The constraint relation between closed rows has only depth-subtyping, but no
width-subtyping, since the domains on either side of the constraint must agree. This row
relation is not common in the literature. Such a relation is useful however for an analysis
that extends an ML-like type system with subtyping, but where subtyping on records is to
be limited to depth subtyping to match the absence of width-subtyping in ML.

Labeled variants are the dual of record types. A labeled variant is a label paired
with a value ([, v). A variant type [l : 77];c4 then denotes the set of pairs ([, v), where [ € A
and v € 7). Variant types are treated in the literature as rows with a different subtype
relation than rows used for records. The width-subtyping relation is reversed, i.e., [l : 7];c a
is a subtype of [l : 7/];cp iff A C B and also 7; < 7/ for I € A. The mixed constraint
relation between minimal rows matches the constraint relation used for variant types. The
denotation given in terms of finite functions does not match up with the intuitive meaning
of variants as unions. But there is a simple isomorphism between a minimal Row-ideal J



44

and the set-interpretation of variants:
J={{l,v) |leL NveJ(l)—{L}}

There are models for record types and subtype relations that are not based on a
denotational model. For example, Bruce and Longo describe models for subtyping of record
types (and other types) based on partial equivalence relations [11].



45

Chapter 5

Constraint Resolution

Constraint resolution is the process of deciding whether there exist any solutions to
a given system of constraints, and making the solutions explicit. Here we adapt techniques
developed by Aiken and Wimmers [3]. Constraints are solved by a collection of resolution
rules that transform the constraints into a canonical form.

An application of a resolution rule can be thought of as a rewrite step S = 5’,
transforming the constraints S into the constraints S’. A resolution rule is sound, if every
solution o of S’ is also a solution of S, and a resolution rule is complete, if every solution
o of S is also a solution of S’. If resolution rules may introduce fresh variables, the above
statement can be relaxed to say that a rule is sound, if for every solution ¢’ of S’, there
exists a solution o of S, such that o’ and o agree on the variables occurring in S, and
similarly for completeness.

All the resolution rules we consider preserve sorts, i.e., given a constraint F; C; Fo
of sort s where F; and FE5 are expressions of sort s, the resolution rules only generate well-
formed constraints £ C; E’' where the sorts of E and E’ agree with the constraint sort ¢.
This fact follows directly from the well-formedness of mixed expressions.

The chapter first defines the notion of inductive constraints. The subsequent sec-
tions show how to transform constraints of all sorts into inductive constraints through the
use of resolution rules. Section 5.5 defines the notion of an inductive system of constraints
and shows how to transform a system of constraints into an collection of inductive systems.
Inductive systems consist of inductive constraints and are closed under transitivity. Induc-
tive systems contain no inconsistent constraints (constraints that cannot be satisfied in any
solution).

5.1 Inductive Constraints

It is necessary to distinguish variables occuring in the constraints at top-level (e.g. X C,
Y) from variables occurring inside constructors. The following definition (an extension of
Definition 2.3 to Row-expressions) makes the notion of top-level variables precise.



46

Definition 5.1 The set of top-level variables TLV(E) of an expression E is defined by

TLV(0) = {} TLV(1) = {}
TLV(X) ={X} TLV(()) = {}
TLV(c(...)) = {} TWV(( : E)) o E) = TLV(E)
TLV(E, U Ey) = TLV(E;) U TLV(E;) TLV(~{c1,...,ecn}) = {}
TLV(E, N Ey) = TLV(E;) U TLV(E>)

Note that the right side of a Row-composition expression appears at top-level.

In Section 5.5 we will show how to build solutions of the constraints using a double
induction over the level of the series S§,S7,... and an arbitrary, but fixed, sequence of the
variables. For this purpose, we assume a total ordering on variables characterized by an
injective mapping o : V' — N. Where convenient, we write the index o(X) = i as a subscript
on the variable, as in &;. We now define when a constraint is inductive.

Definition 5.2 (Inductive Constraint) A constraint E Cg; X; or X; Cg E is inductive,
iff TLV(E) C {X1,..., X1}

5.2 Set Constraint Resolution

This section describes the resolution of Set-constraints, i.e., the systematic transformation
of a system of constraints into inductive constraints. Before giving all the resolution rules
we discuss the difficult cases in the following subsections.

5.2.1 Upward-Closure and Negation

There are two forms of Set-constraints that are difficult to decompose during resolution:
E\MNE,; C E3and By C EyUE3. In pure set theory, the constraint Fy C FoUEj3 is equivalent
to By N —Ey C E3 (we use N and U when talking about intersections and unions of pure
Set-expressions). However, if Set-expressions are interpreted as ideals (downward-closed
sets of values) as we do, the complement of a type is not necessarily a downward-closed
set, and thus not an ideal. For example, the complement of the function type 1 — 0
contains every function except the least function Az.Ll, but the least function is part of
every function type. Even though general negation is not closed in the semantic domain,
L-intersections (intersections in L-contexts) and R-unions (unions in R-contexts) need not
be dropped entirely since there is a subset of the domain for which negation is closed,
namely the upward- and downward-closed subsets. A set X is upward-closed, if for all
ze€X —{Llhye Dwehavey>zr = y€ X.

Aiken and Wimmers identified simple restrictions on L-intersections and R-unions
so that negations only arise on upward-closed sets during the constraint resolution. The
two restrictions are

e R-unions E; U Ey must be disjoint, i.e., u[E1]Jo N p[E2]o = {L} in all solutions o.



47

e L-intersections must be of the form £ N M, where E is an L-expression subject to the
same restrictions and M is a ground expression (no variables) denoting an upward-
closed set. We call such expressions M-expressions.

More formally, we define when expressions are compatible with L-contexts (L-compatible)
or R-contexts (R-compatible). An expression that is both L- and R-compatible is said to
be LR-compatible.

e 0, 1, and null-ary constructors are LR-compatible.

A variable X is LR-compatible.

A constructed expression ¢(E1,... , Ey,) is
— L-compatible if covariant arguments are L-compatible and contravariant argu-
ments are R-compatible.

— R-compatible if covariant arguments are R-compatible and contravariant argu-
ments are L-compatible.

An intersection Eq M E> is

— L-compatible if E; is L-compatible and E5 is an M-expression (or vice versa).

— R-compatible if F; and FEy are R-compatible.

A union Fq U Es is

— L-compatible if Fy and Ey are L-compatible.

— R-compatible if Fy and Fs are disjoint in all interpretations.

In well-formed constraints, all expressions appearing in L-contexts are L-compatible, expres-
sions appearing in R-contexts are R-compatible. Since we are only interested in well-formed
constraints, we can refer to L-compatible (R-compatible) expressions as L-expressions (R-
expressions).

Given only well-formed pure Set-constraints, Aiken-Wimmers showed that the
problematic forms can be rewritten using the following two rules:

E1CEUE; & EN-E,CE; AN E;N-E; C Ey (5.1)
ElﬂMgEQ g Elg(EgﬂM)U—!M

Expression E is the smallest M-expressions s.t. u[E]o D p[E]o for all variable assignments
0. The type expression =F denotes (V — u[E]o) U{ L}, which is the complement of E. (To
see this, note that u[E]o U u[-E]e = V and u[E]o N u[-E]o = {L}.)

However, note that these rules don’t make any progress in simplifying the con-
straints unless there is an additional requirement: L-intersections E; N —Fy and E; N —~FE3
arising in the first rule must be simplified to L-expressions containing only intersections on
variables of the form X N M. To do so, it must be possible to move intersections under
constructors, i.e.,

c(Bi,... ,Ex)Nc(My,... ,M,)=c(E},... ,E})



48

for some expressions E!. Thus, M-expressions in L-intersections must be explicit, i.e.,
a union of constructor expressions. Consequently, the ability to compute the two type
expressions E and —E explicitly for any expression E is required.

In order to generalize this approach to mixed constraints we must address the
following questions.

e Are the above rewrite rules sound and complete for C;? Given that we use Mg and Lig
instead of N and U, this is not obvious.

e Given that constructor interpretations are abstract, can we compute explicit forms of
upward-closure and negation?

e What are the restrictions on constructor interpretations so that we can simplify L-
intersections syntactically?

We proceed as follows. We first review the approach of Aiken-Wimmers for computing
upward-closure and negation expressions and show that it is unsuitable for mixed con-
straints. We then introduce an abbreviation expression and new resolution rules that serve
our purpose and show that the resolution rules are sound and complete for Cs. The problem
of simplifying intersections is deferred to the following section.

The algorithms for computing E and —=F given by Aiken and Wimmers [3] are
syntax-directed and depend crucially on the interpretation of constructors as labeled tuples.
The table below reproduces these rules. (For simplicity, we avoided the extra cases to keep
the resulting unions of M-expressions disjoint.)

X =1 0=0
(Bry.. By) = (B, ..., By) =1
E/UE;, = E\UE,; EiNE,=FE NE;
—{ct,... ycn) =—{c1y. .. e}

-0=1 -1=0

—e(My,... ,My) =={c}u |J e(1,...,1,=-M;,1,... 1)
j=1l..n
—|(M1 U MQ) =M N My

~(~{c1,... ,en}) = .U ¢i(1,...,1)

j=1l.n

For example, the negation of an M-expression ¢(a) is ={c} U ¢(—{a}). The rules for =M
assume that constructors are strict and that

oMy, ..., My)U | e(l,...,1,=M;, 1,0 1) =c(1,... 1)
j=1l.n

Having given a semantics to mixed expressions based on ideals Z(V), we face the
same limitations as Aiken-Wimmers concerning L-intersections and R-unions. However,



49

there are additional complications in the context of mixed constraints due to the fact that
we have abstracted the constructor interpretations in the semantics. Without knowing the
interpretation of a constructor ¢, an expression ¢(FEq,... ,Ea(c)) cannot automatically be
transformed into its upward-closure or negation. To see this, consider a standard function
constructor - — - with the interpretation

P-(X,Y)={flreX = fzeY}U{l}

Since the least function Az.L is less than any other function according to the domain order-
ing < it is an element of every downward-closed set containing functions. As a result, the
upward-closure of any downward-closed set containing some function contains all functions.
In other words, the expression F; — Fy is 0 — 1 (the set of all functions') for any E; and
Es.

Even if we are given an explicit M-expression its negation can still not be computed
as above because the second assumption used by the negation algorithm does not hold in
general. As an example, reconsider the interpretation of a list constructor given in Exam-
ple 4.12 and suppose true denotes the set {true, L} containing the value ¢true. Observe that
the expression list(true) is upward-closed, (the semantic constructor cons used by the inter-
pretation is strict, and there are no functions involved). However, list(true) Ulist(—{true}) is
not equal to list(1). To see this note that the 2-element list [true, false] has one element from
true and one element not in true and is therefore neither part of list(true) nor list(—{true}).
This problem does not arise because ¢j; is non-strict in its argument. Consider the unary
constructor pair and its interpretation given by

Ppair(A) = {p(t1,12) [ 11,2 € A= {L}}U{L}

Even though ¢pair is strict, the union pair(true) U pair(—{true}) is not equal to pair(1). To
see this, note that the element p(true, false) € pair(1) is neither part of pair(true) nor of
pair(—{true}).

Given that the semantics of constructors in mixed constraints is a priori not known,
we cannot hope to compute the upward-closure and negation of expressions automatically.
Fortunately, inspection of the two Rules 5.1 and 5.2 shows that the set of M-expressions
required during resolution is fixed by the initial constraints. Therefore, we can circumvent
the problem by putting the constraints in a form that makes all required M-expressions
explicit in the initial system of constraints. We define an abbreviation Pat as follows.?

Pat[E, M] = (ENM)U~M

where M is an M-expression. With Pat we reformulate the resolution rules for L-intersections
as follows.

10 — 1 is the set of all functions in V since V contains only strict functions, i.e., mapping L to L. If V
also contains non-strict functions, then the set {f | f L = wrong} is not in 0 — 1. Strictness however has
the undesired property of inducing a set of equivalences: 0 - X =0 — 1 for all downward-closed sets X.

2Pat stands for pattern, since the expressions it abbreviates are used most frequently in constraints
generated for pattern matching.



50

Theorem 5.3 The following rule is sound and complete.

Ei.NMCsEy, & Ei G (E2|_|M)|_|—|M (53)
= F| G Pat[EQ,M]

Rule 5.3 reduces to rule 5.2 if 3:® contains only pure constructors. We now prove its sound-
ness and completeness under any 5. We need the following observation and lemma.

Observation 5.4 The definition of mized expressions guarantees that M-expressions do
not contain subexpressions of the form c(...), where ¢ is a mized constructor. This follows
from the requirement that M-expressions are ground, and that other-sorted arguments to
mized constructors must be variables, 0, or 1 (Definition 3.1).

Lemma 5.5 Given an M-expression M of sort s, we have p~'(M) = T, for all even inter-
face paths pt present in M and p~'(M) = L; for all odd interface paths present in M.

Proof: By Observation 5.4, the only subexpressions of M whose denotations contain
interface paths are of the form F = —{cy,... ,¢,}. Furthermore, since M is upward-closed,
such subexpressions occur in covariant contexts. Thus for all interface paths p' present in
M, there exists a sub-expression —{ci,... ,c,} of M and a path ¢ such that p = ¢r. Since
the sub-expression appears in a covariant context, ¢ must be even. Thus r has the same
variance as p. We can thus restrict ourselves to the case where M = —{¢i,... ,cp}. We
proceed by induction on the length of p. Let p' be an interface path present in M. Base
case: p = (c,j), where c is a Set-constructor not in {cy,... ,¢,}. If ¢ is covariant in j then
p is even and p~' (M) = T;. Otherwise p is odd and p~'(M) = L;. Induction: p = (c, j)r
with 7 # €. Then ¢’s jth argument is of sort s. If ¢ is covariant in j then (c,7) (M) = Ts.
If p is even, then 7 is even and by induction, p~'(M) = r=1(Tg) = v~ (u[-{}]) = T;. If pis
odd, then 7 is odd and p~!(M) = 1; by the same reasoning. If ¢ is contravariant in j, then
(c,7)"Y(M) = Ls, but since r # ¢, r cannot be present in Lg and thus there is no such p. O

From Lemma 5.5 we immediately obtain the following

Corollary 5.6 For all expressions E, and variable assignments o,
plE N Mo = p[E]o Mg u[M]o = p[E]o N pu[M]o

and also
plE U M]o = p[E]o Us p[M]o = p[E]o U u[M]o

By the above corollary we are free to write EN M and FU M instead of EM M and £ M
without causing confusion as to the operation being performed. We now prove Theorem 5.3.
Proof: of Theorem 5.3 First we deal with the inclusion on the underlying domain V3.
To simplify the notation, we write E to mean u[E]o for some fixed o. By Corollary 5.6 we
have Ey Ng M = E; N M Cyss Es, and thus by set theory Ey Cys Eo N M U—-M. Applying
Corollary 5.6 again, we obtain E; Cys Eo Mg M L, =M.

We now prove that the interface constraints hold as well. Direction = : Assume
E1NM Cg Es. Let pl be a non-strict interface path present in Ey. Assume p is even. There



51

are two cases. First assume p is present in M. By assumption we have p~'(E; N M) C,
p~Y(E). By Lemma 4.8 we have p~'(E;) Np~ (M) C; p~'(E2). By Lemma 5.5 we have
p (M) = V. Since M and =M are disjoint and p non-strict it follows that p is not present
in =M and p~'(-=M) = {L}. Thus p~'(E1) S, p~'(E2) Np~" (M) Up~'(=M). Applying
Lemma 4.8 once more, we obtain p~'(E;) C; p (B2 N M U—=M) and by Corollary 5.6
p~ Y Ey) S p~Y(Ey Ng M Ug ~M). We still need to show the above for all even paths
p present in Ey, but not in M. Since M and —M are disjoint, present(p,—~M). Then
p~H(-M) =Vtand p~ (E; N M U-M) = V! Thus p~'(E;) C; p~}(E2 N M U—-M) holds
for all even p present in Fj.

Now assume p is odd. There are again two cases. Assume p is present in M.
By assumption we have p '(E3) C; p '(F; N M). By Lemma 5.5 we have p (M) =
{L}. Also, since p is non-strict and M disjoint from —M, p is not present in —M and
thus p~1(=M) = V’. By Corollary 5.6 and Lemma 4.8 we have (p~*(E2) Up 1(M)) N
p 1 (=M) C; p~'(Ey N M). Applying Lemma 4.8 and canceling p~'(M) on the right,
we obtain p~'(Ey N M U-M) C; p~'(E1). A final application of Corollary 5.6 yields
p 1By Ng M Ug ~M) C; p '(E;). We still need to show the above for all odd paths
p present in Ej, but not in M. Since M and —M are disjoint, present(p,—~M). Then
p 1(=M) ={1l}and p H{(EaNMU-M) = {L}. Thus p (B g M U, ~M) C; p~ 1(E1)
holds for all odd p present in E;.

Now we prove <: Assume p non-strict and present in £ N M. Thus p present in
E;. Assume first that p is even. Then by assumption, we have p~!(E;) C; p~ ' (Eo N M U
—M). Applying Corollary 5.6 and Lemma 4.8 we obtain p ' (E;) C; p (Es) Np (M) U
p~1(=M). Since p is even and present in M we have p~!(M) = V! by Lemma 5.5. Since
p is non-strict, it is thus not present in =M and thus p '(=M) = {1}. We thus have
p Y (Ey) Np Y (M) C; p~'(Ez). Applying Lemma 4.8 and Corollary 5.6 once more, we
obtain the desired conclusion p~ ! (E;MgM) C; p~'(E;). Now assume that p is odd. Then by
assumption we have p~! (E;N M U-M) C; p~'(E;). Applying Corollary 5.6 and Lemma 4.8
we obtain (p~!(Ez) Up~Y(M)) Np~t(=M) C; p~*(E}). Since p is odd and present in M we
have p~ ' (M) = {1} by Lemma 5.5. Since p is non-strict, it is thus not present in =M and
thus p~'(—M) = V. We thus have p~!(Ey) C; p~!(E1) Up~'(M). Applying Lemma 4.8
and Corollary 5.6 once more, we obtain the desired conclusion p~!(Es) C; p~1(E; Mg M).
O

Using Rule 5.4 the negation =M no longer appears in the abbreviation and there
is thus no need to compute it. Representing arbitrary disjoint R-unions is more complex.

Lemma 5.7 If A, B € S° such that for all even paths p, eitherp '(A) =T orp (B)=T
and for all odd paths p either p~*(A) = L or p~'(B) = L, then

AN,B=ANB

Similarly, if A,B € S® such that for all even paths p, either p~1(A) = L or p 1(B) = L
and for all odd paths p either p~*(A) =T or p~'(B) = T, then

AU, B=AUB



52

Proof: Simply note that in the first case, for all even p?, p~'(ANB) = p~ ' (A)Np~1(B) =
p~'(A) My p~!(B). For odd p', p~'(ANB) = p~'(A) Up~'(B) = p~'(4) U, p~"(B). The
proof for L is analogous. O

Let E; and Es denote disjoint types. Observe that by applying Corollary 5.6
numerous times

Pat[E, E1] Mg Pat[Es, Es] Mg Pat[0, ~(E; U Fs)]
= (E1 N E1 U —|E1) (EQ N EQ U —|E2) (E_1 U E_Q) def. of Pat
= (F; U—|E1) (E2 U—|E2) (E1 UEQ) ENE=E
(EyU—-FEy) N (E; U Eg)) ((Eg U—Ey) N (Ey U Fy ) associativity

(

(( (U

g E1 U —|E1 (E1 U EQ)) ((EQ U —|E2) Ei U EQ)) Corollary 5.6
(

(

EiN(E;UE)U-E N (E1 UE,)) Mg

Ey N (E1UE;)U—EyN (B UE,)) distribute
= (BEiUEy) Ny (EyUEY) ENE=EE N E =0
= (E1 U EQ) (E2 U El) Lemma 5.7
= E U Ey EiNEy=0

To represent an R-union F; LI Es we therefore need the M-expressions for the upward-
closures E; and Es, as well as the M-expression for the complement _|(E_1UE_2) As long as
these M-expressions exist, the R-union can be represented. Below, we show the resolution
of a constraint involving F; U Fs:

ECE UE, = E CPat[Ey, Ej]|N Pat[Ey, Ey] MPat[0,-~(E; U Ey)]
& E CPat[E,E] A E C Pat[Ey, E5] A E C Pat[0,-(E; U E»)]
<~ EﬁEl gEl N EmEQQEQ A Eﬂ—!(ElUEQ) g

Only R-unions of M-expressions remain, and these are themselves M-expressions only ap-
pearing in second positions of Pat where they need never be decomposed.

To summarize, the two rules (5.2) and (5.1) for rewriting L-intersections and R-
unions are replaced with the new rule (5.4) using the abbreviation Pat. The implicit negation
present in Pat avoids the need to form negations during resolution.

5.2.2 L-Intersection Simplification

Constraint simplification as presented by Aiken-Wimmers requires simplifying intersections
between L-expressions and M-expressions. The basic axiom that enables this simplification
in their model is

C(Xl,... ,Xn)ﬂC(Yl,... ,Yn) :C(Xlﬂyl,... ,XnﬂYn)

for any constructor c. In mixed constraints, constructors may be contravariant in certain
arguments. The natural generalization of the above axiom is thus

C(Xl,... ,Xn)ﬂC(Yl,... ,Yn) :C(Xlﬁyl,... ,Xnﬁyn)

where

o { N for covariant arguments

U for contravariant arguments



53

Unfortunately, this generalization is incorrect even for standard function constructors. Con-
sider the type expression
true — false N false — true

The boolean negation function is certainly an element of this type. However, under the
axiom, the above type should be equivalent to (true U false) — 0, which does not contain
the boolean negation function.

We can weaken the axiom since we know that ¢(Y7,...,Y,) must be an M-
expression ¢(Mj, ... ,M,). Suppose c¢ is contravariant in argument j. Thus M; co-varies
with the domain of a function set in the interpretation. For that set to be upward-closed,
the domain must be {1}, and thus c¢(My,... ,M,) = c¢(My,... ,M;_1,0,Mj41,... ,M,).
This motivates the following weakening.

Axiom 5.8 (LI-Simplification) For any Set-constructor ¢, L-expression c(E, ... , Eq(c))
and any M-expression c(My, ... ,Ma(c)), interpretation ¢. must satisfy

¢C(E1,... 7Ea(c)) ﬂ¢c(M1,... 7Ma(c)) = ¢c( {, ’E;(c))

where
B - E;NM; c covariant in j
E; ¢ contravariant in j

By Corollary 5.6 we immediately have

¢C(E1,... 7Ea(c)) M ¢C(M1,... aMa(c)) = ¢c( i, ,E;(C))

where
B — E; g M; ¢ covariant in j
J E; ¢ contravariant in j
Under this weakening, standard function interpretation satisfies the axiom, since
the only upward-closed set of functions is ¢_,({L}, V®) (all functions):

¢—>(Xa Y) Mg ¢—>({J—}avs) = ¢_,(X,Y)
= ¢—>(X7Y My VS)

The abstraction of constructor interpretations in mixed constraints leaves enough
freedom to violate even this weaker axiom. As an example, consider the following interpre-
tation

¢c(4; B) = {c(t) |t € (AUB) = {L}} U{L}

Note that c(false, true) is an M-expression. Yet,

c(true, false) N c(false, true) = {c(true), c(false), L} N {c(true), c(false), L}
= {c(true), c(false), L}

= c(true N false, false N true)



54

Constructor interpretations that violate Axiom 5.8 cannot be used in the mixed
constraint system we present, and it is up to the analysis designer to ensure that no such
constructor interpretations are used. We have not found this restriction to be significant in
practice—standard interpretations satisfy Axiom 5.8.

Given that M-expressions are pure Set-expressions, driving intersection below con-
structors only produces non-trivial intersections on Set-expressions. We need the following
Lemma, for the correctness of our simplification rules.

Lemma 5.9 For any M-expression M, and any expressions E1 and Es,
(E1UE)NM=EiNMUE,NM

Proof: We again write E for the denotation u[E]o for a fixed 0. By Corollary 5.6
(E1UgE9) Mg M = (Ey Ug E5) N M. By the definition of Lig, this is the smallest set X greater
than (E1; U Ey) N M, such that for all non-strict interface paths p

{ p H(X) = (p (B Uy p (Br)) Np H(M) peven
pH(X) = (p~ (B1) Nyp~ ' (B2)) Up~ (M) podd

There are two cases, first assume p present in M, then since p~'(M) = T, for even p and
p~ (M) = L, for odd p, we have

{pl(X) pH(E) Np ' (M) U, p~ 1 (By) Np~ 1 (M) p even
p N (X) = (p ' (E) Up™ (M) M, (p~ ' (E2) Up~ ' (M)) p odd

But this is exactly the condition on (Ey N M) L (E2 N M). Now suppose p is not present
in M. Since p~'(M) = L, for even p and p~'(M) = T, for odd p, we have

p 1(X)=1; peven
p H(X)=T; podd

which is equivalent to

{p‘l( ) =p ' (E1) Np~ (M) U, p~ " (E2) Np~ " (M) p even
p H(X) = H(E)Up {(M))n, (p~ 1 (Ez) Up ' (M)) podd

Thus in either case, the smallest set X greater than (Fy U Fy) N M is equal to the smallest
set greater than Ey N M U Ey N M satistying the above, which is £y N M U, E; N M. By
Corollary 5.6 we conclude (E; Ug Eo) Mg M = Eq Ng M Uy Ey Mg M. 0

We now give the rules for simplifying L-intersections. L-expressions and M-
expressions adhere to the productions

L == 0|X|XOM|L1UL2|C(E1,...,Ea(c))|—|{cl,...,Cn}
M = 0|M1UM2|C(M1,...,Ma(c))|—|{cl,...,Cn}

Note that M-expressions are a subset of L-expressions. Figure 5.1 shows the equations
governing the simplification of L-intersections and M-intersections. Symmetric cases and
the case covered by Axiom 5.8 are omitted. The rules are correct by Corollary 5.6 and
Lemma 5.9.



55

oNM = 0
LN0 = 0
(Xli)mMQ = Xﬂ(MlﬂMz)
(LiUL)NM = LiNMULNM
LN(MyUM,) = LNMULNM,
c(...)nd(...) = 0 c#d
0 ifce{c,...,cp
c(El,...,Ea(c))ﬂ—'{cl,...,cn} = {C(E1,---,Ea(c)) otherviise :

—|{Cl,... ,Cn}ﬂ—!{dl,... ,dm} = —|{Cl,... ,Cn,dl,... ,dm}

Figure 5.1: L-intersection simplification

5.2.3 Set Resolution Rules

Figure 5.2 shows the complete set of resolution rules for Set-constraints. The rules trans-
form a system of constraint sets into a simpler system of constraint sets. More than a single
constraint set is required when constraints can be decomposed in different ways. For exam-
ple, Rule 5.7, which simplifies constraints between strict constructor expressions, produces
two constraint systems. The first corresponds to the case where the expression on the left
is assumed to be non-zero. The second constraints set captures the solutions when the
expression on the left is zero.

The rules should be read as left-to-right rewrite rules. Rules 5.5-5.12 are from
Aiken-Wimmers. The correctness of Rules 5.9 and 5.10 follows from the fact that M, and
LI, are meet and join operations for C,. Correctness of Rule 5.12 follows from Corollary 5.6.
Rule 5.7 is sound but not complete in the presence of strict interface paths.

The rules below the horizontal line in Figure 5.2 are new rules. Rule 5.13 and
Rule 5.14 are proven correct by Theorem 5.3. The rules involving negations are straight-
forward.

5.3 Term and FlowTerm Resolution

The rules in Figure 5.3 for FlowTerm resolution are a subset of the rules for the Set-sort. The
rules in Figure 5.4 for Term constraints are similar, except that Rule 5.27 for constructor
resolution is symmetric in the constructor arguments. The soundness and completeness
argument is analogous to the one for Set-constraints.

5.4 Row Resolution

Recall from Section 4.3 that every Row-expression denotes one of three kinds of Row-ideals:
a maximal, closed, or minimal Row-ideal. This section gives complete resolution rules for
Row-constraints involving all three kinds of Row-expressions. However, the implementation
described in the second part of this dissertation only implements a fraction of the resolu-
tion rules, namely all rules involving Row-expressions without Row-variables, and all rules



56

I, SU{0Cs B}
T,SU{c(E..E,) Cs c(E,..EL)}

T, S U {c(E..Ey,) Cs c(E...EL)}

T,SU{c(E..Ey)} Cs E

T, s (5.5)
[,SU{E; €, E; |ciey-- 1y — s}

¢ non-strict (5.6)
T,SU{E; C, Ej|c:u--tn — s},
SU{c(E:..E,) Cs 0} ¢ strict (5.7)

c:i1-°+ Ly — S non-strict

T
{ I''SU{E, C, 0},...,SU{E, C,, 0} c strict

if £is 0 or d(..) where ¢ # d (5.8)
[,SU{BIUE, CoEY = I,SU{E; Cs B, E» Cs E} (5.9)
[,SU{ECsENE)} = T,SU{ECsE, ECqE} (5.10)
,SU{XCoX} = I8 (5.11)
[,SU{XNMCsX} = IL,S (5.12)
I, SU{E, CsPat[Es, M]} = T,SU{EiNM Cs Es} (5.13)
LSU{XNMCsE} = TI,SU{X C, Pat[E, M]} (5.14)

{ r,S if E=-{dy..d,} and
LLSu{—~{c.c} S E} = {di..dpn} CH{er..cn} (5.15)

r otherwise
[,S U{e(EBr.Ba)} G ~era} = { b e o e st

if c e {c1..cx} (5.16)
r,Su{c(.) Cs~{di..dn}} = TS ifc {di..dp} (5.17)
T,SU{E Cs B} = T,SU{E,Cs Ey} (5.18)

Figure 5.2: Resolution rules for Set-constraints.
I,SU{0Cx E} = T,S (5.19)
I,SU{ECg1l} = TL,S (5.20)
,SU{c(Ei..E,) C c(Ey..Ey)} = T,SU{E; C,, Ej|ciu---1, — ft} (5.21)
[LSU{c(E1..Ep)} Cp E = T if Eis0or d(..) where c #d (5.22)
I,SU{XCq X} = T,S (5.23)
I,SU{E, Cg By} = T,SU{E, Cp Er} (5.24)

Figure 5.3: Resolution of FlowTerm-constraints.



o7

SU{0&G E}Y = I,S (5.25)

SU{EC 1} = T,8 (5.26)
U,SU{c(E1..E,) Ce(BEy.Ey)} = T,SU{E; C, B, E; C, Ej|ciu-1, —t}

(5.27

L,SU{c(E1..Ep)} S E = T if EisOor d(..) where ¢ # d (
rsu{xc o axp = 1,8 (5.29
r,su {E1 St EQ} = I,SU {EQ - El} (

Figure 5.4: Resolution of Term-constraints.

involving Row-variables that denote closed Row-ideals. This section may safely be skipped
on a first reading.

Before we develop the core resolution rules for Row-constraints, we make a simpli-
fying assumption. We assume that the kind of each Row-variable in a system of constraints
S is fixed a priori.® Recall from Definition 4.11 that the kind k(X) of a Row-ideal is either
Te(s)» Le(s) OF absy,). In other words, we associate a unique kind with each Row-variable.
We make this kind explicit where needed by superscripts on variables. Thus X€ is a vari-
able which denotes only closed Row-ideals in all solutions. We simply say that X is closed.
Minimal Row-variables are written X'+ and maximal Row-variables are written X T. Where
convenient, we use the same superscripts on expressions. Given the explicit kinds of Row-
variables, we consider only solutions o that agree with the kind of each variable, formally

E(o(X1) = Ly
k(O(XC)) = abs,(s)
k(o(XT)) = Ty

Note that the kind annotation on variables fixes the kind of every Row-expression E.

The main problem faced in the resolution of Row-constraints is that the right
side of a Row-composition expression appears at top-level. In order for a constraint ([ :
E)poX Ci(s) Y to be inductive, the index of X must be less than the index of J, i.e.,
o(X) < o(Y). If that is not the case, we need a way to break up the composition. We
proceed as follows. The next section introduces domain constraints which are used to justify
a number of resolution rules. Domain constraints are furthermore used in the following
section to argue the termination of the resolution of constraints when both sides are closed
Rows. Finally we show how to split Row-constraints in the remaining cases.

3The resolution under fixed kinds is easier to formulate. In principle, complete resolution of Row-
constraints without fixed kinds is possible by solving the constraints under each kind assignment.



58

5.4.1 Domain Constraints

Consider the following resolution rule for transforming a constraint of the form
(l: Ep)icacE Cysy (l: E))icpo E'

where AN B # (), into a set of simpler constraints.

(Il:EicaoE Cys)(l: E)iepo B = /\ E CsE A
I€ANB
(l: Bp)iea—po E Cs (l: Ej)icp—ao E' (5.31)

The rule is sound, i.e., if the constraints on the right of <= have a solution, then that
solution also satisfies the original constraint. However, for the simplification to be complete,
i.e., a solution to the first constraint is also a solution to the second set of constraints, we
need to know how E and E’ behave on the range of labels in AN B. If E(l) and E'(l)
can be arbitrary for [ € AN B and | € dom(E'), then the constraints E(l) Cs E'(l) may
not be satisfied, even though the original constraint is. We thus establish an invariant that
specifies what is known about F, if E appears on the right side of a composition expression
<l H El)A oF.

Invariant 5.10 (Row Composition) For any Row-expression of the form (I : E;)jcq0 E,
the (minimum) domain of E does not contain any labels from A in all solutions. Formally,

E(l) =mg(k(E)) Vie A (5.32)

Note that the range of k(X)) is the unique set Y, such that there exist infinitely many I’ € L
for which X (I') =Y. Precisely,

{1} if X is minimal
mg(k(X)) =< {Ll,abs} if X is closed
Ts U {abs} if X is maximal

The invariant restricts the denotation of E such that for each label I € A and each function
f € E, it holds that f [ € rg(k(E)). Furthermore, for each [ € A and each value v €
rng(k(FE)), there exists a function f € E, such that f 1 =wv.

Invariant 5.10 guarantees that Rule 5.31 is complete, i.e., direction =—- holds.
However, the rule is no longer sound, since not all solutions for the right-hand side establish
the above invariant for the original constraint. In order to obtain a rule that is sound
and complete, we need to make the restrictions on the domain of Row-expressions explicit
through a new form of constraints called domain constraints.

Definition 5.11 The domain-complement of a Row-ideal I, written o(I) is the set of labels
not in the minimum domain of I. Formally,

a(l) = L —dom  (I)



59

A domain variable ay stands for the set of labels that must be “absent” from the minimum
domain of Row-variable X in all solutions. For any solution o of the constraints, the
solution o(ay) of the domain variable and the solution o(X) of the associated Row-variable
are related by.

a(o(X°)) if X closed
. (5.33)

olay) C alo(X)) otherwise

Note that if X is closed, then ay is exactly the domain complement of X. Otherwise,

ay is only a lower bound of the domain-complement of X'. In general domain-complement

expressions have the form

du=Nlaxy|a(E)|6UN|INN
N:=-A|A

where N is either a finite or co-finite set of labels. The domain-complement «(E) of a
Row-expression F is a lower-bound (equal if E is closed) of the domain-complement of E
in all solutions o, i.e.,

ula(E)]o = a(u[ET)o
ule(B)o  a(u[E])o

Variable assignments o are extended to map domain variables to subsets of L, and p is
extended over domain-complement expressions as follows.

p[Nlo = N
plax]o = o(ax)
ulod(l: Bao Elo = (ufa(ED]o — 1] ulEido # L,})
plo(l: Byao B)lo = (ua(B)]o— A) B4 B*

oo = L
ple(())]o L
oo = L

ufd UNJo = p[dJlo UN

pufo N Njo = p[dlonN N

Domain constraints now have the form

NCys
ax Cqd
a(EY) Cqd

Domain constraints are a special form of set constraints. The notions of top-level variables
and inductive constraints are easily adapted to domain constraints. Using the simplification
rules given in Figure 5.7, domain constraints can be transformed into inductive constraints



60

of the form

N Cq ax
ax NN Cqay
ay CgayUN
ay Cg N
axy Cqga((l: E)ao0)

Domain constraints enable us to restrict the minimum domain of a Row-variable to
exclude certain labels. A domain constraint has the form A Cyq oy, where A is a set of labels.
We extend domain constraints to Row-expressions E of sort r(s) by writing A Cq a(E).
The constraint states that the minimum domain of £ must not contain any labels from A.
Invariant 5.10 is now made explicit using a domain constraint.

Invariant 5.10 (Row Composition Revised) If a system of constraints S contains any
sub-expression of the form (I : Ej})jca o E, then there are domain constraints in S implying
that A Cq a(E) (written S |= A Cq a(E)).

Furthermore, we can now state a sound and complete version of Rule 5.31.

Resolution Rule 5.12 (Common Labels)

SuU {<l : El)leA ok gr(s) (l : E;)leB o EI} <~
SU{E CsE/|le AnNB}U
{{:E)ica-BoECs(l: E)iep-acE'}
where S = A Cqa(E) AN B Cq a(E)

The above rule is sound because the constraints A Cq «(E) and B Cq a(E’) implied by
S on the right establish Invariant 5.10 on the left. Similarly, the rule is complete, because
Invariant 5.10 on the left implies the domain constraints explicit on the right.

5.4.2 General Row Resolution

Given the three kinds of Row-expressions in our language, there are nine possible combina-
tions for the kinds of £y and Fs in a constraint F4 Cr(s) F5. Since maximal rows are never
a subset of closed rows, and closed rows are never a subset of minimal rows, three cases are
easily identified as having no solutions.

r,su {ET g,(s) E} =T

r,su {ET g,(s) El} =T
I,SU{E‘C,s E'} =T



61

Next we consider the base cases, where the sides are equal, the left side is 0, or the right
side is 1.
ISU{E Ci(s) E}=T,5
[LSU{0C,) B} =T,8
ISU{E g,(s) 1}=1,8
Now we consider the cases where one side does not contain a variable. The following cases
assume that ANB =0, ANC =, BNC = (), and neither A nor B is empty but C may be
empty. Note that Rule 5.12 handles the cases when the intersection A N B is non-empty.
I,su {<l : El)A o0 g,(s) <l : E;)B o E} =I,5U {(l : El)A o0 g,(s) E} (534)
F,SU{(Z:EZ)AOEQV(S) <l:El’>COO} EF,SU{El Cs 0 | l GA}U
{E Cys) (L: Ej)c o0}
r,su {<l : El)C o <> gr(s) (l : EZ)B o E} =T (535)
F,SU{<Z H E1>AOEgr(s) (l H EZ)COO} EF,SU{E[ Qs 0 | l GA}U
{E Cs) (L2 Ej)c 00}
T,SU{(l: E)col Gy (l: E)po E} =T
L,SU{(l: E)acE Cr(s) (l: EZ)C’ ol} =T,SU{E Ci(s) (1 E;)C ol} (5.36)
We illustrate the correctness of equivalence (5.35), the other cases are argued similarly.
Note that B is non-empty and disjoint from C. Thus, in all solutions o, there exists I’ € B,
such that (u[{l : E))c o ()]Jo)(I') = {L, abs}. But, the right-side of the constraint maps I’
to (u[(l : E})icp o E]o)(I') = p[E)]o € S°, and abs is not an element of any ideal in S* for
any sort s (abs only appears in the range of functions modeling Row-ideals).

We are left with cases where both sides contain variables. Again, AN B = () and
at least one of A or B is non-empty.

(l:El>A0Xgr(s) (l:ElI)Boy

There are three cases. Either X = Y, or A is non-empty and o(X) > o()), or B is non-
empty and o()) > o(X). Otherwise the constraint is inductive. The first case (X = ))
splits into three cases again, depending on the kind of X. If X is maximal or closed, the
constraint is inconsistent. To see why, note that by Invariant 5.10, B must be absent from
the domain of X. Thus the left side contains functions returning abs for some | € B,
whereas the right side contains no such functions. If X is minimal, X maps ! € AU B to L
by Invariant 5.10. Thus the constraint is satisfied as long as E; C, 0 for [ € A.

F,SU([:E;)AOXC gr(s) <l:ElI>BOXCEF
ISU{:E)acXT gy (l: E)poXT =T (5.37)
T,SU(l:E)acXt Cuy (l: E)po Xt =T, SU{E, C,0]|1€ A} (5.38)

The remaining cases are harder and dealt with in the following subsections. First we consider
the case where both sides are closed.



62

5.4.3 Splitting of Closed Rows

Consider the constraint between closed rows (I : Ej)a o X Cy () (I : Ej)p oY where X' and
Y are distinct. Since both sides are closed, the constraint is only satisfied if the domains of
both sides are equal. Suppose B is non-empty and o()) > o(X) (the case where A is non-
empty and o(X) > o(Y) is symmetric). In all solutions, X must be of the form (I : X})po X’
where X} C; E) for | € B and (l: Ej)q0 X’ Ci(s) V. This can be captured by the rule

Resolution Rule 5.13 (Closed Row Split)

SU{<Z:EZ>AOXQ,(S) <Z:El’)Boy}ESU{B gdaX/}U
{(1: X)pod Cyyy X, X Cyy) (I : X)po X'} U
{)C'l (@ Ell |l€B}U{<l:El>AOXI g,(s) y}

where X’ is a fresh closed Row-variable of sort r(s) and A} with [ € B are fresh variables of
sort s. If we choose the index of X’ less than the index of X, the resulting constraints on
X and Y are inductive, since o(X’) < o(X) < o()).

Since this rule introduces fresh variables, we need to argue that the rule is only
applied finitely many times given a finite initial system of constraints. The argument
assumes that no other sorts introduce fresh variables. Call the variable X’ a child of X.
Note the domain constraint B Cgq oy associated with the fresh Row-variable X’. The
domain of X’ is strictly smaller than the domain of X, since everything absent in X must
be absent in X/, and additionally B is absent from X’, whereas B is contained in the domain
of X. Since there are only finitely many distinct labels in the constraints, X’ the number
of generations generated from X" is finite. Furthermore, since the index of X’ and all of its
descendants have smaller index than X, they cannot cause the same rule to trigger another
split of X. Thus Rule 5.13 can be applied only finitely many times.

5.4.4 Splitting of Minimal and Maximal Rows

The splitting-approach of closed Row-expressions does not work for minimal and maximal
rows because the domains of the two sides need not be equal in this case. Instead we
transform Row-constraints involving a minimal or maximal row using the following two
basic transformations.

Resolution Rule 5.14 (Split-Left)

(l:El)AoXQ,(S)E <:>(l:El)A00§,(S)E N
(1:0)jea0X Cys) E

The correctness of this rule follows from the fact that
(l:EjacX=(:E)a00 Uy ({:0)40X

Note that we depend crucially on the definition of U . If I_Ir( 5 Were set-theoretic union,
the equivalence would not hold. Similarly, the following rule splits rows on the right side of
the inclusion.



63

Resolution Rule 5.15 (Split-Right)

Eg,(s) (l:El>AOX (:)Eg,(s) <l:El>A01 A
ECi 5 (l:1)icaoX

The correctness of this rule follows from the fact that
(l:EjaoX =(l:E)acl Mgy (l:1)aokX

These rules are correct for all Row-kinds. Note that we only apply these rules if E contains
a top-level variable Y such that o(X) > o()). Otherwise, one of the rules in Section 5.4.2
can be applied.

Rules 5.14 and 5.15 are only the first step in obtaining inductive constraints.
Consider the constraint ([ : 0);c 40X’ C,(5) E obtained by applying Rule 5.14. This constraint
is still not inductive. Intuitively, we need an expression E’ that is equivalent to E. except
that the set A is masked out from the domain, and such that ([ : 0) 40X C,(,) E is equivalent
to X Cy(s) £'. The constraint X C,(,) E' is then inductive.

In general, we need to extend our Row-expression language with two forms of
expressions.

Definition 5.16 Let A be a finite subset of the set of labels L. If E is a well-formed
L-compatible minimal (mazximal) r¢(s)-expression, then E N 0 is also a well-formed L-
compatible minimal (mazximal) r(s)-expression, with the meaning

EAO={f|l€cA = fle L, Al¢gA = fle (u[E]o)(1)} (5.39)

Furthermore, if E is a well-formed minimal (maximal) r(s)-expression, then EV 41 is also
a well-formed minimal (mazimal) v(s)-expression. The meaning of EN 4 1 is

{flleA = fleT,ANl¢€A = fle (u[E]o))}
if B is minimal
{flleA = fleT,U{abs} Nlg A = fle (u[E]o)()}
if B is maximal

p[E V4 1]o = (5.40)

We call expressions of the form E A4 0 L-masks and expressions of the form £ V4 1 R-
masks. Intuitively, £ A4 0 is equivalent to E, except that the rows in £ A4 0 map all labels
in A to L. Similarly, £V 4 1 is equivalent to F, except that for [ € A, no assumptions on
the rows of F V4 1 are made. This last requirement also motivates why we do not define
E V41 when E is closed. The denotation of £ V4 1 when F is closed must be the same
as the one when F is maximal. However, that denotation is not a closed Row-ideal, since
(EVal)(l) = TsU{abs} for I € A. For minimal and maximal Rows the denotations of the
new expression are already present in our type-collections.

The introduction of L-masks and R-masks is governed by the following two rules.

Resolution Rule 5.17 If E' is not closed, then the following equivalence holds.

(l:[))AOEgr(s) E' A ACy a(E) <~ Eg,(s) EIVAl N ACy a(E)



64

Proof: Note that A Cg a(E) implies by (5.16) that pu[E]Jo = u[E V4 1]o for all 0. To
simplify the notation, we drop the u[-]Jo notation in the proof. Furthermore to simplify the
proof, we assume that I'V 41 is defined for closed row-ideals as for maximal row-ideals (5.16).
Note that for any row-ideal I, I Cyyv) I V41, and for any row-ideal I, ([ : 0) 4 0 E Cyye) E.
Also note that - V4 1 as a unary operation on ideals (5.16) is monotone it its argument,
and so is row-composition in its right argument. Direction =— : We first show that
E Cyvs) E' V4 1, and then show that the interface constraints are satisfied. We have that
E Cywsy EVAl = ({I : 0)a0E)Val Cy) E' Va1, where the last step follows from
monotonicity of - V4 1. For the interface constraints, consider [ € dom(E’) — A. Clearly
I € dom(E’), and thus E(l) = ({I : 0)4 o E)(l) Cs E'(I) = E' V4 1(l). Direction <=: Note
that (I : 0)4 o (E' V4 1) Cyvs) E'. By monotonicity of o, we have (I : 0)4 0 E Cyes) (I :
0)a o (E'"Va 1) and thus (I : 0)4 o E Cyus) E'. For the interface constraints, consider
l € A. Clearly ((I : 0)4 0 E)(I) C5 Ls Cs E'(l). Otherwise I € dom(E') — A. We have
((1:0)a 0 B)(I) = B(l) Cy (B VA 1)(1) C, B(D). 0

Resolution Rule 5.18 If E is not closed, then the following equivalence holds.
E g,(s) (I:1)p0 E' N ACy Oz(El) <— ENy0 g,(s) E' N ACy a(E’)

The proof is similar to the previous resolution rule.
Finally, we need one more rule that allows us to move the mask from the left of
an inclusion to the right and vice-versa.

Resolution Rule 5.19 If E and E' are not closed, then the following equivalence holds.
EANpQ gr(s) F < FE g,(s) E Val

Proof: Direction = : We have Vf.f € EAp0 — f € E' we proof Vf.f € E —
f € E'Val. Suppose f € E. If f € EA40 we have f € E' and thus f € E'V41. Otherwise,
there exits f' € E'A40, such that for all [ ¢ A we have f'(I) = f(l). Since f’' € E', we have
f € E'V41. For the interface constraints, first assume E’ is maximal. Then dom(E'V41) =
dom(E')— A, and for all | € dom(E')— A, we have E(l) = (EA40)(l) Cs E'(1) = (EVa1)(1).
If E’ is minimal, then the above argument also holds. In addition, for all I € A, we have
E(l) S5 (E'Va1)(l) = Ts. Direction <=: We have Vf.f € E — f € E' V41 we proof
Vi.f € EANp0 = f € E'. Suppose f € EA,0. Then f € E and thus f € E' V4 1.
By Definition 4.9 and (5.16), we have that f € E’, since for all [ € A, f(I) = L, and
L € E'(l) for all labels I. For the interface constraints, suppose I € dom(E’). If [ € A, then
(ENA0)(1) = Ls Cg E'(I). Otherwise, (EA40)(1) = E(l) Cs (E'Va1)(1) = E'(1). O

Before we show how to apply the above rules to transform the remaining con-
straints into inductive form, we state a number of equivalences involving A 40 and V 41.

1A40=(:0)q01
0Np0=0
(EABO)AA0=FEAauB0
(l: EiepoEB)Aa0=(l: E)icp—ao(EN40)



65

1vyul=1
OVAl={l:1)400
(EVp1)Val=EVapl
({l: E)iepoE)Val={(l:E)iep a0 (EVal)

These equivalences suggest that Row-expressions involving a Row-variable X' can always be
normalized to the form

<l : El)Ao [X]B
where [X]p is X if B=), or

]y = X Ap 0 if [X] appears to the left of ()
B~ xvp1l if [X] appears to the right of Cr(s)

Where convenient, we drop the label set subscript. The remaining non-inductive constraints
are then of the form

(l : E1>A o [X] gr(s) (l : ElI)B o D}]

where AN B = (), at least one of A and B is non-empty, and not both X and ) are closed.
By combining Rule 5.14 with Rule 5.17, we obtain

Resolution Rule 5.20 If ANB =0, A is non-empty, o(X) > o(Y), and Y is not closed,
then the following equivalence holds.

SU{{l: Eieao[X] Cys) (1 Eiiepo [V]} =
SU{(l: E)ao0Cys (I: E)po[Y]}U
{[X] Cus) (2 Eiep—ao (V] Val)}
where S = A Cq a([X])

The resulting constraint involving X and ) is either inductive ([X] = X), or inductive after
applying Rule 5.19. The constraint involving only ) can be transformed into an inductive
constraint using (5.34) and Rule 5.19.

The analogous rule in the case where o()) > o(X) is obtained by combining
Rule 5.15 and Rule 5.18.

Resolution Rule 5.21 If AN B =), B is non-empty, o()) > o(X), and X is not closed,
then the following equivalence holds.

SU{(l: Ep)icao[X] Cus) (L2 Eliep o [V]} =
SU{(l: E})aoc[X] Ce(s) (1: E))pol}U
{l:E)a-Bo([X]AB0) Sy [V}
where S |= B Cq o([Y)])



66

The resulting constraint involving A and Y is inductive ([Y] = V), or inductive after
applying Rule 5.19. The constraint involving only X can be transformed into and inductive
constraint using (5.36) and Rule 5.19.

Since we needed to restrict the above rules to the cases where the lower indexed
variable is not closed, we introduce the following invariant.

Invariant 5.22 The indez of any closed Row-variable X€ is larger than the index of any
minimal or mazimal Row-variable ).

Since it is always possible to choose a variable order satisfying the invariant, we do not
restrict the family of constraints that can be solved.

Due to the introduction of masks, there are still some constraints that we haven’t
dealt with. The equivalences (5.37) and (5.38) need to be extended to the cases

SU{{l:E)aolX"|p Cusy (L Efyco [X D}
SU{{l:E)aolX*p Cus (L1 Ef)c o [X ]}

where A N B. Furthermore, since we never form new composition expressions involving
masks, we know by Invariant 5.10 that S implies the domain constraints A Cgq ay and
C Cq4 ay. Applying Rule 5.14 followed by (5.34), Rule 5.17, and Rule 5.19 we obtain the
equivalent constraints

SU{(l:E)a-po0Cys) X, X Cye) (I : E})c—B o (X Vaupup 1)}
where S = AUC Cq ay

If X is minimal, then the domain constraints imply that X'(I) = {L} in all solutions for
all ] € AU C. Thus the second constraint is always satisfied and the first is equivalent to
{El Cs 0 |l€A—D}.

If X is maximal, then the domain constraints imply that X(I) = T, U {abs} in
all solutions for all [ € AU C. Thus the first constraint is always satisfied and the second
constraint is satisfied if and only if C' C B. The complete set of rules is summarized in
Figures 5.5-5.7.

5.5 Inductive Systems

The resolution rules presented so far allow us to transform an arbitrary system of constraints
into an equivalent collection of constraint systems consisting only of inductive constraints.
This section defines inductive systems, which are systems of inductive constraints closed
under transitivity. We show how to transform an original system of constraints into an
equivalent collection of inductive systems. If this collection is empty, then the original
constraints have no solutions. Otherwise, the original constraints satisfy the constraints up
to any finite level of the type collections S§,S§,S5,... (Section 4.3). We conjecture that
inductive systems always have solutions.

To simplify the presentation, we initially leave out Row-sorts, i.e., we assume that
the constraints contain no Row-variables. We say that a constraint E C; X is L-inductive,



67

I,SU{E" Cy E} =T (5.41)
I,SU{E" C, E*} =T (5.42)
I,SU{E" C,, E*} =T (5.43)
I,SU{E C,,) E} =T, S (5.44)

I, SU{0 Cys) B} =T, S (5.45)

I SU{E C,, 1} =T, S (5.46)

[ SU{X Cy X} =T, 8 (5.47)
I, SU{E iy B} =, SU{E» Cy() B} (5.48)

The rules below assume that AN B =0, ANC =(,BNC =, A and B are non-empty,
and C' may be empty.

F,S U {(l : El)A o0 gr(s) <l : E{)B o E} EF,S U {(l : E1>A o0 g,(s) E} (549)
L,SU{{l:E)aoE Cyqynll: E)co0} =I,SU{E; C, 0|l € A}U (5.50)
{E Cys) (L: Ej)c 00}

T,SU{(l: Ej)co() Ces) (l: E)po E} =T (5.51)
I,SU{(l:E)a0E Cysy (I 1 E))co ()} =STSU{E C, 0|1 € A} U (5.52)
{E Cys) (L E})c 0 0}
T,SU{(l: E)col Cyy (l: E)po E} =T (5.53)
D,SU{(l: EacE Cyy) (1: E)col} =0, SU{E Cyy) (1: Ej)c o1} (5.54)
T,SU(l:E)ao X Cyy (l: E))po X =T (5.55)
T, SU{{l:E)ao[X"]p Ces) (L: Eyco[XT]p}=I,S CCB (5.56)
L, SU{(l:E)ao[X"]p Cys) (L: EcolX]p}=I' C¢B (5.57)
L, SU{{l:E)ao[X)c Cys (L: E)po[XF]p} =I,SU{E, C,0|l€ A—D} (5.58)

Figure 5.5: Resolution of Row-constraints (simple cases).



68

The rule below assumes A N B # () and that S = A Cq a(E) A B Cq a(E')

D,SU{(l: E)icao E Cy) (l: Ef)iepo E'} =, SU{E, C, E) |[le ANB} U (5.59)
{{l: E)ica o ECs(l: E))iep a0 E'}
The two rules below assume o(X€) > o(Y¢), AN B = (), A non-empty, and that S E A Cy4
ayxy N B Cq ay. Variable X’ is a fresh closed variable, X for | € B are fresh variables of
sort s.
T,SU{{l: Ej)soX° Ce(s) (1:E)poY}=I,SU{B Cqaxy}U (5.60)
{{1: X)p o Cysy X} U
{X Gy (L2 X)po XU
{X, Cs E/|le B}U
{{l:E)acX Cyy) YU}
D,SU{(l: E)poY Cue (I : E)ao X} =D, SU{B Cqax} U (5.61)
{{I: 0)poX Cyyy XU
{XC Cy) (1: A)po X'} U
{BiCs X |leBYU
{Y Cus) (12 E)ao X'}

The following rules assume o(X) > o()), Y is not closed, AN B = (), and A non-empty.
S A Caa[X])

D, SU{(l: E)icac[X] Sysy (L: Eiep o [V} =0, SU{(l: Ej) 400 Cy) (L2 E))po [V} U
{[X] Sy (L= Ep)p—ao (V] Val)} (5.62)

D,SU{{l: EpiepolY] Ce(s) (I:E)jeac[X])} =0, SU{{l: E)pol)] Ce(s) (l:E))so0l1}U
{:B)p-ac (Y] A10) Sy [X]} (5.63)

T, SU{X A4 0 Cyy) B} =T, SU{X Cyiy) EVa 1} (5.64)

T, SU{E Cys) X Va1l =T, SU{E A4 0 Cyip) X} (5.65)

Figure 5.6: Resolution of Row-constraints (complex cases).



T, SU{) Cq 6} =T,

[,SU{d Cq b2 U0} =T,
[LSU{dCqa(0)UN} =T,
ILSU{oCqal() UN)} =T,
I'SU{é Cqga(l) UN} =T,
ISU{dCqa(X)UN} =T,
I'SU{ax Cqay UN} =T,
ILSUu{a(()) Cqo} =L,
L,SU{a((l: Ej)s0 E®) Cqd} =T,
T, SU{N; Cq No} =T,

T,SU{N; Cq Ny} =T

F,SU {Nl gd 5UN2} EF,
I,SU{d Cqa({l: E)soEY)UN} =T,

L,SU{N Cqa((l: E)a00)} =T,
L,SU{dCqa((l: Ej)aoE)UN} =T,

ILSU{dCqa(E" VA1)UN} =T,
I,SU{d Cqa(E+Vva1)} =T,
I,SU{dCqa(E" Ap0)} =T,

I,SU{d Cqa(E- A 0)UN} =T,

69

S (5.66)
S (5.67)
S (5.68)
S (5.69)
S (5.70)
SU{§ Cq ax UN} (5.71)
SU{ax NN Cq ay} o(X) < o(Y) (5.72)
SU{~0 Cq4 6} (5.73)
SU{a(E®) CqgdU—-A} (5.74)
S N CN (5.75)

N1 & N (5.76)
SU{N; — Ny Cq 0} (5.77)

SU{0 Cqgal(l: E)a_no00),6 Cqa(EH)UN}

(5.78)
SU{E Cs0|l€ ANN} (5.79)
SU{6 Cq-AUN,i Cqa(E)UN} E+#E*

(5.80)
SU{6 Cqa(ET)U(NUA)} (5.81)
SU{§ Cq-AUN,i Cqa(E)UN} (5.82)
SU{6 Cq-AUN,i Cqga(E")UN} (5.83)
SU{d Cqa(EH)U(NUA)} (5.84)

Figure 5.7: Simplification of domain constraints (complete)



70

if it is inductive and o(X) > o()) for any Y € TLV(E). Similarly, a constraint X Cys E
is R-inductive, if it is inductive and o(X) > o(}) for any J € TLV(E). The following
definitions characterize inductive systems.

Definition 5.23 A system of inductive constraints S is equivalent to a system SU{F; C,
Es}, if applying the resolution rules of Figures 5.2-5.7 presented in the previous sections to
the system S U{FE; Cs E9} yields the collection of systems Sy, So,...,S, with n > 1, and
S =S, for some i =1..n.

Definition 5.24 (Inductive System) A system S of constraints is inductive, if every
constraint E Cy E' in S is inductive, and furthermore for each pair of L-inductive constraint
Ey C5 X and R-inductive constraint X Cg5 Eg in S, S is equivalent to S U {E; Cs Es}
according to Definition 5.23.

The algorithm below transforms an arbitrary system S of constraints into a col-
lection of inductive systems.

Algorithm 5.25 Let I' = S. Repeat the following steps until no new constraint is added.

1. If I' contains any system with a constraint that is not inductive, apply the earliest
resolution rule appearing in one of the Figures 5.2-5.7 and let I' be the new collection
of constraint systems.

2. If S € I contains an L-inductive constraint £ C; X and an R-inductive constraint
X Cs Eo, add the transitive constraint E; Cg; FEs to S, unless it has been added
before.

The algorithm terminates, since the number of distinct inductive constraints is bounded by
the size of the original constraints S. Inductive systems have a pleasing property that each
constraint forms either a lower or an upper-bound on a variable. Note that a constraint
X C; Y between two variables can either act as a lower-bound on ), or as an upper-
bound on X. We disambiguate these cases using the ordering o(-) on variables by stating
that all L-inductive constraints are lower-bounds, and all R-inductive constraints are upper
bounds. Thus a constraint X Cy Y is a lower-bound on Y if o(X) < o(Y), otherwise it is
an upper-bound on X. An inductive system S then has the form

LigULypl-- ULy CXy Co U MUgU--- MU,

Loy ULooll-- ULy, CeXo CsUg 1 MUz -+ MUz, (5.85)
5.85

Ln,l U Ln,2 u---u Ln,ln ngn Cs Un,l M Un,2 U---n Un,un

where each constraint L; ; C, &; is L-inductive (j = 1../;) and each constraint X; C; U; ; is
R-inductive (j = 1..u;). Note the use of joins and meets to combine the lower and upper-
bounds on each variable. Even though not all sorts have syntax for these operations, they
are semantically well defined for all sorts, and two lower-bounds Ly C; X, Lo C; X have
the effect of constraining X to be larger than L; LI Ly in all solutions, and similarly for



71

meets of upper-bounds. We thus use M and U as syntax for meets and joins of all sorts in
this section. The meaning function p is extended naturally by adding the cases

plEy N Ex]o = p[Ei]o Ng p[Es]o
plEy U Exlo = p[Er]o U, p[Es]o

Let £; be the set of lower-bounds of variable X; and U; be the set of upper-bounds
of X;. Without loss of generality, we can assume that for all Set-variables Xj, no L € L;
contains any top-level unions and no U € U; contains any top-level intersections (a top-level
union Ly U L9 in £; can be split into separate expressions L; and Lo of £;, and similarly
for intersections in U;).

We briefly review the technique of Aiken-Wimmers used to show the existence of
solutions for Set-constraints alone (Section 2.2.2). Consider the family of equations obtained
from (5.85) by equating each variable X; with the join of its lower-bounds, joined with the
meets of its upper-bounds and a fresh auziliary variable Y; (meets have precedence over
joins)

X :Ll,l L LLQ - Ll,ll HRZEN U171 [ U1’2 [Te--T1 Ul,u1

Xo :Lg’l L L272 - L2,l2 LYy M U271 [ UQ’Q [Te--T1 Ugﬂm ( )
5.86

Xp=LpyULpoU---ULyp,, UY,MUp1 MUpo M- MUy 4,

Each assignment for the auxiliary variables );..), selects an assignment for the variables
Xp..X, in between their lower and upper-bounds. To show that inductive systems have
solutions, it is sufficient to show that there exist assignments for the auxiliary variables
V1. Yy such that the equations (5.86) have solutions for X;..AX,, and that these solutions
satisfy the constraints of the inductive system .S from which the equations were constructed.

We first show that for every choice of Y;..)),, the induced assignments for X; sat-
isfy the constraints up to any finite level j. Section 5.5.2 then discusses contractive systems
of equations and shows that—unlike for pure Set-constraints (Section 2.2.2)—not all assign-
ments of Y;..), induce contractive equations for inductive systems of mixed constraints.
We form a conjecture that there always exist assignments for the auxiliary variables Y;..),
such that the equations induced by (5.86) have solutions. We provide support for this con-
jecture in Section 5.5.3 and Section 5.5.4. Finally, Section 5.5.5 briefly sketches how the
results of Section 5.5.1 can be extended to Row-sorts.

5.5.1 Level Semantics

The following definitions formalize what we mean by satisfying the constraints “up to level
97

77,
Definition 5.26 (Assignment Sequence) A variable assignment sequence is a sequence
of variable assignments (0;), such that the domains of the o agree, and for each variable
X; of sort s in that domain, o; maps X; to an element of S, i.e., 0i(X;) € S;-



72

Definition 5.27 For every level j, assignment sequence {(o;) defined up to level j, and
mized expression E of sort s, the meaning function p; of the family of meaning functions
defined below, assigns to E an element of S, i.e., u;[E[(0;) € S3.

MJ<0[[E Kooy = Ls
il Joi) = T
ni[0°oi) = Ls

oi) = 0j(X)

Nj[[c(Elﬂ"' s )]] i
i [Ey 1 Es] (o

B

be(pj—1E1[{0i), - - s pj—1[En]{0:))
pilE1]{oi) Ny pilEa]{oq)

NJIIEI U Es](o;

(

(

(

Hj [[XS]K
(

(

(
cnt]{oi

)
)
)
i)
)
)
)
pil~den - )

1510 °1(o:)
pildl = En) gy © El{o:)

il En]{oi) Us pjlE2](oi)
T— U ¢e(T....

ce{ciye..sCn}
abs,(s)

piy Mepj—1[E1]{0i)) o pi[ET{o:)

? TLa(c) )

Note that our definition of p;[E] is careful in assigning meaning to each sub-
expression E' of E according to the nesting depth of E’ within E.

Definition 5.28 (Inductive Assignment Sequence) Let S be an inductive system over

a set of variables X1..X,. Consider the system of equations (5.86) obtained from S by

introducing auzxiliary variables Y1..), and let {o;) be an assignment sequence for V1. V.
The inductive assignment sequence 1AS(S, {(0;)) of S with respect to {(o;) is the

sequence (o) defined inductively by
o(X;) =L X, ¢
O’(,)( i) s ' of sort s (5.87)
o0(Vj) = 00(Y;)
and
oi(¥;) = 0i(Y;)
(5.88)

U:(X]) = lu‘l[[I_I SLiUg Vi M, |_|su1]]<o-;>

Note that equation (5.88) in the definition of IAS(S, (o;)) is non-recursive since the top-level
variables appearing in £; and U; have indices smaller than j and appear already in o;.

X; has sort s

Definition 5.29 An assignment sequence {o;) satisfies a system of inductive constraints S
up to level j, if for each k < j, and each constraint Fy Cg Ey in S

pklErl(oi) Cs prlE2]{o:)

Theorem 5.30 If S is inductive, then the inductive variable assignment |1AS(S, (0;)) sat-
isfies the constraints of S up to any finite level j for any auziliary assignment sequence

(03)-



73

Proof: By induction on the level j and the variable order o(-). Let (o)) = IAS(S, (0;)).
For j =0, pu;[E]{0’) = L, for any expression E of sort s, thus the constraints are satisfied
at level 0. Suppose the constraints are satisfied up to level j — 1. To make the non-recursive

nature of (0;) in Definition 5.28 explicit, consider the assignment o’ ; defined as follows.

2

05.i(Vk) = 05 (Vk)

! (Xk) — { len_lﬁk I—lykﬂﬂuk]KO'U,... ,O’jfl,Uj’Z',ﬂ if k<1
)i

7j undefined otherwise

At the boundary case, let 0,9 be undefined for all X}. To simplify the notation, let (o} ;)
denote the sequence (0, ... ,0j_1,0;;). Consider variable X; and 03-’1(2\,’1) defined by

(A1) = il | £1 0 N[ |eh](e0)

The definition is well-formed since no expression in £ or ; contains any top-level variables
and thus no lookup on o is performed. We need to show that

1. the lower-bound constraints are satisfied at level j, i.e.,

will | £al(o) ) Cs o1 ()
and that

2. the upper-bound constraints are satisfied at level j, i.e.,
o1 () Co sl |Ual(o)
The lower-bound constraints are satisfied, since
K [[l_l L] (09,1> = Hj [[l_l L] <0§,0>
Cs il | £10oj.0) U [V N[ Jthoj0)

= wl| | Lrud nf Jthl(o)0)
= 01(X1)

For the upper-bounds, we have that
oi1(20) = il | £1u Y[ th o)
=l | £11(o5.0) U I N[ |eh](es0)
Since IUJ Cy K <— I Cy K N K Cy K, we can break up the relation into two relations

willl | £11(os0) Ss sl |thIo) 1)
pi[Y M |—|U1]]<0j,0) Cs Mj[[l—l U ]{oj1)



74

Since ;[ 1U1](051) = pjl[ 1U1]{07 o), the second relation is trivially satisfied. For the first
relation, we need to show that for all E € £1 and E' € U,

1ilEN( 0% o) Cs i [E1(0% o)

Since S is inductive, S is equivalent to S U{E C, E'} according to Definition 5.23. Thus
if £ = 1, then either I/ is empty, or £/ = 1. Similarly if B = 0. If E =0 or E' = 1, the
constraint is trivially satisfied. We split up the remaining cases according to the sort of Xj.

e Suppose X is of Term-sort. Then E = ¢(Ey,...,E,) and E' = J(Ey,... ,E}).
Since S is inductive, S is equivalent to SU {¢(E1, ..., Ey) Sy (B, ..., El)}. Thus
¢ = ¢ and S contains constraints equivalent to Ey C,, E; and E; C,, Ej for all
k = 1..n (by Rule 5.27). Since the constraints are satisfied at level j — 1, we know
that pj1[Ex](0] o) = pj-1[E(0} o) for k = 1.n, and thus p;[c(Ey, ... , Ey)|(0} o) =
pile(Er, ..., Ey)l{0j0), which is equivalent to y;[E](07 ) Ct p;[E'](0] ) (Definition
of C; in Section 4.4).

e If X is of FlowTerm-sort, then E = ¢(E1,... ,E,) and E' = ¢ (E, ... , E],). Since S is
inductive, S is equivalent to SU{c(En,... ,E,) Cy d(E},... ,E.)}. Thusc=c and S
contains constraints equivalent to Ej, C,, E; for all k = 1..n (by Rule 5.21). Since the
constraints are satisfied at level j —1, we know that p;1[E](07 o) Cuy pj—1[E1]{(07 0)
for k = 1..n, and thus y;[c(E1, ..., Ey){0% o) Ca pilc(EY, ... Ey)]{0]j0) (Definition
of Cg in Section 4.4).

e If X} is of Set-sort, then there are a number of cases for the forms of E and FE'.
We can focus on the cases where E or E’ contains variables, since S is equivalent
to SU{E Cs E'} and constraints between ground expressions are either satisfied in
all solutions or in none. We focus on the most interesting case F = c¢(Ey,...,E,)
and E' = Pat[d(E!,... ,El),M,]. This constraint is equivalent to EN M Cg E' by
Rule 5.4. There are two cases. If the intersection ¢(T,,,..., T, )NM is empty, then the
constraint is trivially satisfied. Otherwise the intersection is equal to ¢(My,... , My,),
and by Axiom 5.8 the constraint is equivalent to

C(E1 ﬁMl,... ,EnﬁMn) gs CI( {, ’E;n)

If ¢ # ¢, then by Rule 5.8, ¢ must be strict and S contains constraints equivalent
to Ep N My, C,, 0 for some k. Since the constraints are satisfied at level j — 1, we
have pj 1[Ey N Mgl(0j,0) = Lo, and pj[c(Er 0 My, ..., B, N My)[(05,) = Ls. Thus
the constraint is satisfied at level j. Otherwise, we have ¢ = ¢’ and by Rule 5.8, we
are either in the above case, or S contains constraints equivalent to Ey N M, C,, E;
for & = 1..n. Since the constraints are satisfied at level j — 1, we have p;_[E; N
MJ{o% o) Cu pj,l[[E;C]]<a;70)_and thus by i&xiom 4.1 (¢’s interpretation observes the
declared variance) p;fc(Er N My, ..., By 0 M) 050) Cvs pile(Er, ... Ey)og)-
If ¢ is non-strict, then for any interface path p = (¢, k)q!, if ¢ = ¢, then the in-
terface constraint (e, k) H(uj—1[E] (05.0)) Cu (e k)" t(uj—1[E'] (0}0)) is equivalent to
pri—1[Ex 0N Mg(05 o) Cup pj—11EL]{07 o) and is satisfied. Otherwise, we know that the
interface constraint g is satisfied by p;—1[Ex N Mg](07 ) C,; pj-1[E;]{0] o) and thus
the interface constraint on path p is satisfied.



75

We proceed by induction on the variables Xs..X,,. Assume that U},i—l satisfies the constraints
up to level 5 — 1 for all variables, and up to level j for variables X;..&; ;. Consider the case
for variable X;. The only additional case not covered above for variable X} is when E or E’
contain a top-level variable. Suppose that £ = Xj,. Then since S is inductive, a constraint
equivalent to X C; E' is in S. There are two cases, if the index of X} is larger than the
index of any top-level variables of E’, then S contains the inductive constraint X Cg F’.
Since k < i and (0}, ;) satisfies the constraints up to level j for all variables ) with index
less than 4, the constraint is satisfied at level j. Otherwise, E’ contains a top-level variable
Xy with index higher than &. Then the constraint is equivalent to an inductive constraint
E" C, Xy and since k' < 1, the constraint is also satisfied at level j. For Set-sorts, E can
be of the form X, N M and E’ can be of the form Pat[Xy/, M], but the basic argument does
not change. O

Definition 5.31 A series of assignments {(o;) is Cauchy, if for every variable X in the
domain of the series, the sequence og(X),01(X),09(X),... is Cauchy with respect to Defi-
nition 2.1 and the metric on ideals given in Section 2.1.

Theorem 5.32 (Solutions) If IAS(S,{0;)) is Cauchy, then the limit of 1AS(S, (0;)) is a
solution of S.

Proof: Note that the expressions in S have a maximal height, say k. By definition of

tj, pilE]{o;) only requires assignments (0j_,... ,0;) (assuming j > k). If IAS(S, (0;))

converges to @, then ug1[E](7,...,d) is equal to u[FE]a (Section 4.5), and thus 7 is a
N—_——

k + 1 times
solution of the constraints S. O

5.5.2 Contractive Systems of Equations

Aiken-Wimmers prove the existence of solutions for pure Set-constraints by showing that
the solutions of an inductive system of Set-constraints are equivalent to the solutions of a
family of contractive equations. We describe why this proof cannot be adapted to mixed
constraints and then provide support for a conjecture that inductive systems of mixed
constraints nevertheless have solutions.

Consider again the family of equations (5.86) obtained from an inductive system
S. Each assignment of the auxiliary variables Y;..)), selects a system of cascading equations

{X; =RHSi,... , X, = RHS,}

from (5.86). An equation X; = RHS; is cascading, if every top-level variable X} in RHS; has
lower index than &; (o(X%) < o(&;)). The equations are cascading since they were obtained
from the inductive constraints of S and thus the top-level variables in L;; and U; . have
indices strictly lower than o(X;). Due to this property, we can transform cascading equations
into equations without top-level variables. To see this, order the equations according to the
variable order o(-), i.e., let the indices of the variables match the order o(-). Then, clearly



76

RHS; has no top-level variables. Assume that we have transformed all RHS; into RHS),
where RHS), has no top-level variables for k = 1..; — 1. Then RHS; can be transformed into
RHS; without top-level variables by replacing each top-level variable X} in RHS; by RHS.
Since the equation X; = RHS; is cascading, each top-level variable X in RHS; has index
lower than X; and thus RHS), has already been computed.

The only operations in RHS] are joins, meets, and constructor applications. If all
expressions denote pure Set-ideals, the joins and meets are set-theoretic union and inter-
section. These operations are non-expansive (Section 2.1). Since all variables appear inside
constructors in RHS] and constructor interpretations are contractive (Axiom 4.1), the sys-
tem of equations X; = RHS] is contractive and thus has a unique solution (Section 2.1).

Unfortunately, in the case of mixed constraints, the meet and join operations are
not always non-expansive, i.e., for some arguments, the meet and join operations can be
expansive. The resulting equations are thus not contractive. The culprits are the meet and
join operations for Term-ideals I M, J and I L, J which are expansive if the two operands
are of the form I = ¢.(I1,... , 1), and J = ¢p.(J1,... ,Jn), and I differs from Jj, for some
k. In this case, I U, J = Ty and I, J = L. These operations are expansive in I and
J, meaning that if I and I’ have distance d, then the distance between between the join
I L, J and the join I' U, J may be larger than d, and similarly for the meet and the second
argument (Section 2.1). The expansiveness of the meet and join for Term-ideals then induces
expansiveness for the meet and join of other sorts. As an example, consider the inductive
system S

C(Xl) l—lt C(XQ) gt Xl

(5.89)
Ty Gt X

where ¢ : t — t is a unary Term-constructor. The family of equations associated with S are

X = C(Xl) Ly C(XQ) Ly Vi

(5.90)
Xo =Ty Uy Vo

The cascading equations obtained from the above family through the auxiliary variable
assignment V; = 1t and Vo = 1 is

Xl = C(Xl) I_ltC(XQ)
XQ - Tt

This system is not contractive, since the join ¢(X;) U, ¢(X2) is expansive for some assign-
ments of X7 and Xs. To illustrate the problem with non-contractive equations, consider the
function

F(o)(%) = u[RHS,]o (5.91)

transforming any variable assignment o into a new variable assignment ¢’ through the
equations. A fix-point of F' is a solution of the equations. Contractiveness guarantees that
F has a fix-point, and that the fix-point is reached by the sequence of variable assignments
0g,01 = F(0g),00 = F(F(0q)),... ,0; = F(0g),... starting from an arbitrary assignment
0o. The sequence of variable assignments obtained in our example starting with [X; —
1, X — J_] is



7

Assignment o¢ 0 o9 03 04 Oy
X L (L) T ¢T) T ¢T)
Xy 1 T T T T T

which doesn’t converge. However, there are different choices for the auxiliary variable
assignment of ) so that the equations obtained from (5.90) are contractive and thus have
solutions. For example, choosing ); = T, results in the equations

X 1 - Tt
XQ — Tt

which clearly define a solution of the inductive system (5.89). Thus, in the case of mixed
constraints, not all auxiliary variable assignments )); induce contractive equations and solu-
tions. However, in order for the series (F(dg)) to converge, contractiveness is not necessary.
It is sufficient if the series (F?(0g)) is Cauchy according to Definition 5.31.

We conjecture that there always exist choices for ); such that the equations induced
by the family (5.86), generate a series of assignments that is Cauchy.

Conjecture 5.33 If S is an inductive system of constraints, then there exists an auxiliary
variable assignment for Y, such that the equations induced by the family (5.86) generate a
series of assignments that is Cauchy.

To support this conjecture, we proceed as follows. Section 5.5.3 shows how to
eliminate all joins and meets appearing directly in bounds of Term-variables in an induc-
tive system S by generating contractive equations for Term-variables. We show that these
equations together with the equations (5.86) for the FlowTerm and Set variables satisfy
the constraints up to any finite level for any auxiliary variable assignment. Section 5.5.4
then proposes a construction of auxiliary variable assignments );..),, for each FlowTerm
and Set-variable &; such that the induced equations (5.86) combined with the equations on
Term-variables should generate a series of variable assignments for X; that is Cauchy and
thus converges towards a solution of the constraints.

5.5.3 Contractive Term-Equations

This subsection shows how to eliminate meets and joins appearing directly in bound of
Term-variables. We proceed by induction on the order of the Term-variables, creating a
contractive equation X; = RHS! from the upper and lower bounds U; and L£;, such that
L1 £; St E; Ci [ |U;. Consider the Term-variable &} of minimum index with lower bounds
L1 and upper bounds U; (Without loss of generality, we can assume that Term-variables
have indices 1..m — 1). Recall that no expression L in £ or U in U; contains any top-level
variables. Thus each L is of the form 0, 1, or ¢(... ) and similarly for each U in U;. Let U] be
Uy —{1}, and let £} = £,—{0}. The removed expressions 1 from /; and removed expressions
0 from £; do not constrain the solutions for X;. Now, if £] = ), we set RHS] = L. Clearly,
L C¢ MUy, and also | | £ C¢ L. Analogously, if U] = 0, we set RHS| = T. Otherwise,

! and U] contain only constructed expressions (if 1 € Ly, then by transitivity, U] = 0,
and similarly, if 0 € ¢/,). Thus, consider the expressions ¢;(E; 1, ... , Ej o)) in L] for some



78

. . . ' p
set of indices ¢ € I, and the expressions c; (Ej,p . ,Ej’a

Since our system S is inductive, it is closed under transitivity, and we can conclude that
c = c;. for all 4+ and 5. Then by Rule 5.27 for Term-constructors, S contains constraints
equivalent to E; ; Cg, E;k and Eik Cs, Ei for all k =1..a(¢;), i € I, and j € J. Suppose
we have an assignment sequence <U§—1> that satisfies the constraints up to level j — 1. Then
we have pj 1[E; k](0;_1) = pj-1[£] J{o7_) for all k = 1..a(¢;), i € I, and j € J. Thus,
expressions ¢;(Vi1, - s Vi a(e;)) and (V... ,y]'.ja(cg_)) are equal at level j. We can thus
set RHS| = ¢;(Ei1,... , Ej o)) for an arbitrary i € I, and & will satisfy the constraints
at any level j, provided all other variables satisfy the constraints up to level 7 — 1. Now
the same construction can be performed for the next Term-variable A5 in the order, using
RHS to expand any appearance of X} at top-level in Lo or Us. Proceeding in order on all
Term-variables, we obtain a system of Term-equations

Xl =t RHS&
XQ —t RHSI2

(C/_)) in U] for some indices j € J.
J

(5.92)

mel =t RHS,Irn_l

where all RHS! are of the form 0, 1, or ¢;(...) for some constructor ¢;. Since these equations
contain no meets or joins and all variables appear inside constructors, the equations are
contractive. Similarly to X}, the assignment of &; for ¢+ = 2..:m — 1 satisfy the constraints
at any level j, provided that all variables satisfy the constraints up to level j — 1.

5.5.4 Generating Set and FlowTerm-Equations

Unfortunately, even if we eliminate all meets and joins in bounds of Term-variables as
outlined in the previous subsection, we still don’t have contractive equations for all variables.
Joins and meets on Term-ideals may appear in joins and meets of FlowTerm and Set ideals.
As an example, consider the inductive system
c(X3) G X1 Ci c(A3)
c(Xy) G Ao G c(Xy)
d(X) Ud(Xy) Cs A3
d(1) Cg Xy
where X} and X5 are Term-variables, X3 and X are Set-variables, ¢ is a Term-constructor,
and d a Set-constructor with signatures
c:s—t
d:t—s
Using the construction above, we transform the constraints on the Term-variables A} and
X5 into the contractive equations
Xl = C(Xg)
XQ = C(X4)



79

Choosing the auxiliary variable assignment [V5 +— L1,)4 — 1] we obtain the system of
equations

(5.93)

This system is not contractive, since the join d(X})Ugd(X>) involves the join &) Ly X5 which
is expansive for some assignments of X} and X,. The sequence of variable assignments
obtained starting with [X; +— L] for i =1..4 is

og o1 092 o3 o4 o5 [ofi] a7 8
X Loe(d) e(d(L)  eldle(L)  e(d(T))  e(d(T))  e(d(c(d(T))))  c(d(c(d(T))))  c(d(T))
Ay Loe(L) e(dT)  ed(T))  ed(T))  e(d(T)) c(d(T)) c(d(T)) c(d(T))
Az Lod(L) d(e(L)) d(T) d(T)  d(e(d(T)))  d(c(d(T))) d(T) d(T)
Xy 1 d(T) d(T) d(T) da(T) d(T) da(T) da(T) d(T)

which clearly doesn’t converge, since assignments 4-7 are repeated ad infinitum.

Observe that we can obtain a system of equations generating a converging series
of assignments in the example of the previous subsection, if we choose a different auxiliary
variable assignment where Y3 = d(T). In that case, the induced equations are

The right-side of equation X3 is now contractive, since it results in d(Ty) for any assignment
of Xl and XQ.

In this section we construct auxiliary variable assignments for each ); where AXj is
a FlowTerm or Set-variable. The assignments for ); are defined through their own system
of equations. The basic idea is that if we choose V.., to contain only Ty and 1 for all
projections of Term-interface paths p, then all problematic meets and joins of Term-ideals
arise from Term-variables syntactically present in the upper and lower-bounds of FlowTerm
and Set-variables. This follows from Definition 3.1 which restricts the Term-arguments to
FlowTerm and Set-constructors to be either 1t, 0, or a Term-variable X. Since Term-meets
and Term-joins involving 1 and 0 are non-expansive, the potentially expansive meets and
joins involve the denotation of a Term-variable.

Our construction is based on the following idea. For every FlowTerm or Set-variable
X;, we choose ); such that the projection p~!());) is T; for every even Term-path p where
p (L Lec, L) is determined in part by a Term-variable X', and X is defined by an equation
X = c(E1,... ,Eyqy)), i-e., X is non-empty in all solutions (recall from Axiom 4.1 that
Term-constructors are non-strict). If &; is defined by

X=|]|rouyng []U

LeL; U€eU;



80

then for any even path p with interface Term, the projection p~!(X;) depends on p~! (Myew, U)-
It p_l(HUeui U) is Ti in all solutions, i.e., the upper-bounds of &; do not constrain the so-
lution of X; at interface p, then

p M (&) =p7 (L] D Uep™ ) ep™ ([ ] V)
LeL; U€eU;
:p_l( |_| L) I_lt Tt I_lt Tt
LeL;
= Tt

Otherwise, the upper-bounds U; constrain the solution of &; at interface p to be less than
some Term-variable X’, and since p~ (| ez, L) Ce p ([, U) (transitivity of inductive
systems), X’ is defined by an equation X’ = ¢(Ey,... ,E! ( C)) involving the same constructor
as the equation of X which constrains A; at interface p from below. Furthermore, the
inductive system S constrains the arguments of the constructed expressions ¢(Fy, . .. ,Ea(c))
and c(EY,. .. ,E;(C)) to be equal (Ej, = Ej, for k = 1..a(c)).* Since this argument holds for
all pairs of such variables X and X', we know that these variables denote equal Term-ideals
I in all solutions and their meet or join is thus non-expansive. The projection of X; at
interface p is then

p &) =p (L] Dep @) Nep (] U)
LeL; Uel;
- I I_lt Tt |_|t I
=1

The idea for odd paths is similar. To simplify the presentation, we assume that the original
constraints are in normal form, where the arguments F; of each constructed expression
c(E1,... ,E,) are variables, unless the entire expression is an M-expression M. Since the
only new constructor expressions introduced by the resolution rules of the previous sections
arise in simplifications of L-intersections ¢(Eq,... ,E,) N M to ¢(Ey N My, ... ,E, N M,),
we can assume that each argument FE; of a constructed expression ¢(FEy,... , E,) is either
a variables X', or a variable intersected with an M-expression X N M. The latter case only
arises for Set-variables.

Definition 5.34 A non-strict Term-path p is a path with interface t (Section 4.2). We
say that p is syntactically present in variable X; of an inductive system S and leads to
Term-variable X; (written presents(X;, p, X;) when S is understood), if one of the following
conditions hold.

1. p =€ and X is a Term-variable, thus presentg(X;, €, X;).

2. p = (c,k)q and X; is a FlowTerm or Set variable, and L; contains an expression E
such that one of the following cases applies:

4Note that X’ cannot be 0, for otherwise the transitive constraints through X; lead to the inconsistent
constraint ¢(En, ... , Eq)) Ct 0 and inductive systems do not contain any inconsistent constraints.



81

(a) E =c(E,...,Eqq)), where c is non-strict, B, = Xy, and presents(X;, q, Xy).

(b) E = c(Er,...,Ey)), where c is non-strict, By = Xy N M, g Y(M) =T, and
presents(X;, q, Xi).

(¢c) E =Xy and presents(X;,p, Xy).
(d) E=XyNM, p~"(M) =T, and presents(X;,p, Xy).

If a path p is syntactically present in X; of inductive system S and leads to Term-
variable X}, then the projection p~!(o(X;)) is determined in part by o(X;) for any solution
o

Definition 5.35 The expansive interface variables of X; w.r.t. non-strict Term-path p is
the set
EIF(X;,p) = {X; | presents(X;,p, X;) ARHS) =¢(...)}

i.e., the set of Term-variables X; syntactically present in X; w.r.t. path p, and for which the
equation Xj = RHS;- derived in Section 5.5.3 is of the form X; = c(...) for some constructor
c.

The expansive interface variables EIF(X;, p) are the Term-variables whose join (if p is even)
or meet (if p is odd) may be expansive. In our example equations (5.93) at the beginning
of this subsection, the syntactic interface variables for X5 and path (d, 1) are

EIF(X,(d, 1)) = {X1, Xy}
which are defined by the equations

Xl = C(Xg)
XQ = C(X4)

and it is the join of ¢(X3) U, ¢(Xy) which is expansive for some assignments of A5 and Xj.
Note that Term-variables X; such that RHS; =1or RHS; = ( are not considered expansive,
since meets and joins involving 0 and 1 are never expansive.

Our goal is now to construct the auxiliary assignments );, such that for every
path p for which EIF(X;,p) is non-empty, p~*();) = Ty if p is even, and p~}();) = L, if p is
odd. In essence, the projection of every even Term-path p is raised to Ty and the projection
of every odd Term-path p is lowered to 1 through the assignment );. As a result, the
combined join | |EIF(&;, p) Up~'(Yi) = | |EIF(X;,p) U Ty = T is non-expansive (for odd
paths p the meet is 1y). The complete argument needs to take the upper-bounds U; of X;
into account, since X; is defined by

Xi:Llﬁil_lyiﬂl_lui

and the meet ); N[ |U; may eliminate some raised or lowered projections p~!();). However,
if p~'(|t;) # T for some even path p, then either p~();) = L;, or the denotation of
variables EIF(X;,p) are all equal. In either case, the meet or join of these variables is
non-expansive, and similarly for odd paths p.



82

Before we construct the auxiliary variable assignments );, we need to know which
FlowTerm-variables X} are Tg in all solutions. This information is easily extracted from
the inductive system S by creating a map Ming, associating with each FlowTerm-variable a
unique constructor ¢, 0, or 1. Start with the FlowTerm-variable Xy, of lowest index. Ly, has
no top-level variables, so Ming(Xf,) = 0 if Ly, contains only 0. If L, contains only 0 and
expressions c(. .. ), then Ming(Xf,) = c. Otherwise, L, contains 1 or two expressions c(... )
and ¢/(...) where ¢ # ¢’. In that case Ming(Xf,) = 1. Proceed according to the ordering
o(-) for all FlowTerm-variables. Assume we have constructed Ming (X)) for all FlowTerm-
variables X}, such that o(X}) < o(A&;). Construct Ming(X;) as for Xy, using the mapping
Ming to replace all top-level variables X} appearing in £; with 1 if Ming (X)) = 1, with 0 if
Ming (X)) = 0, and with ¢(1,... ,1) if Ming(X%) = c.

We now construct equations for ;. We require an extra set of auxiliary variables
Y.~ to provide distinct projections for odd paths.

Definition 5.36 Fach auzxiliary variable ); associated with a FlowTerm or Set-variable X;
is defined by the equation

yi= || TH(B) (5.94)

EcL;
where TIT(E) is defined on expressions of all sorts s as follows:

1Y X; is a Term-variable with equation X; = d(...)
TIT(x;) =< 0% X; is a Term-variable with equation Xj; =¢ 0 or X; = 1
Yj &jis a FlowTerm or Set-variable
THX,NM)=Y,NM
0° if ¢ strict or a(c) =0
+ _
TI (C(El, Ce ,Ea(c))) - { C(lel (El)a o aTIZa(C)(Ea(c)))
TIT(E) =0° otherwise
where z, = + if ¢ is covariant in k, and zx = — if ¢ contravariant in k.
Similarly, we define ;- by the equations

ft PV : A
V- { 1 if X; is of sort FlowTerm and Ming(X;) = 1 (5.95)

|_|Ee£,- TI"(E) otherwise
where TI™(E) is defined on expressions of all sorts s as follows:

0t X, is a Term-variable with equation Xj =y d(...)
TI7(X;) =< 1Y Xj is a Term-variable with equation Xj =¢ 0 or Xj =¢ 1
y; X; is a FlowTerm or Set-variable

TI=(X; N M) = Pat[y;, M]

1% if ¢ strict or a(c) =0
T (c(Ers. .. s Eyey)) = § Pat[E c(1, ..., 1 @)] df ciug---tq) — S
E' if ciirige) — ft

T (E)=1° otherwise



83

where E' = c(TI*'(Ey), ..., TI*)(Ey())) and z, = — if ¢ is covariant in k, and z = + if
¢ contravariant in k.

The equations for J; and ), of Definition 5.36 define an assignment sequence (o)
constructed analogously to the inductive assignment sequence built in Definition 5.28.

Now consider the system of equations below where we assume that Term-variables
have indices 1..m —1 and FlowTerm and Set-variables have indices m..n, and that the indices
match the variable order o(-) of X;..A,. The equations for Term-variables are the equations
described in the previous subsection.

X = RHS/,

mel =t RHS,I’nil

)%l:: LJ 11+(E)
Ee»cm

J% = LJ 11+(ED
EecLl,,

vo— [ B (5.96)
Ee»cm

yo= [T ®

EeLl,

X =| | Lo UV O] |Unm
X =| | Lou Y[ U

Let the relative order of variables ); be given by their indices and similarly for variables
Y; . Note that each top-level variable in the right-hand side of an equation Y; | |pc .. TIT(E)
contains only top-level variables }; with j < ¢, and similarly for J;". This follows from the
the fact that any top-level variable X; in £; has index j < ¢ and that the indices of vari-
ables ); and y; in the construction in Definition 5.36 mirror the indices of X;. Thus
the right-hand side of equation ), has no top-level variables. Let Ey,, = | |pc. TIT(E).
Now proceed in the order Vp,..),. Assume we have constructed expressions Ey, equiva-
lent to | |z, TIT(E) but without top-level variables for & = m..j — 1. Now let Ey, =



84

|—|Ee£j TIT(RHS(E)), where

RHS(Yx) = Ey,
RHS(V, N M) = Ebkmﬂi
RHS(Pat[Yy, M]) = Pat[Ey, , M|
RHS(E) =FE otherwise

Since each top-level variable Vi, of E € L; has index lower than );, we have already
constructed Fy, and the expansion RHS(E) is well-defined.

Similarly, the right-hand side of equation },, has no top-level variables and we
can construct E,- without top-level variables for £k = m..n. Finally, the right-hand sides

of X,,,..X, can bektransformed into Ey, without top-level variables by noting that | | £, L
Yo N[ Uy contains only Y, as a top-level variable. Since we have computed Ey_, we
can replace Y, by Ey, in the right-hand side of X}, thus obtaining Ey,_ without top-level
variables. In a similarly fashion, we can obtain Ey, ,,..Ex,.

We have thus transformed the set of equations 5.96 into the equivalent system
below, where no top-level variables appear in the right-hand sides.

Xl =t RHS&

Xp_1 =¢ RHS! _,

ym = Eym

_ 5.97
o (5.97)
Yy =By,
Xm —EXm
X, = Eyx,

We conjecture that the assignment series generated by these equations is Cauchy and thus
defines a solution of the constraints. Note that by Definition 5.36, the expressions Ey,, ..Ey,
and E — E - contain no variables besides V,,..V, and Y,,..), . Since the auxiliary vari-
ables are of sorts FlowTerm and Set, we know that for any Term interface path p, the
projections p~!'();) and p~ (yk ) result in meets and joins involving only Ty and L1 and
are thus non-expansive. Thus the equations for the auxiliary variables ); and Y,  are
contractive.



85

5.5.5 Solutions For Row-Constraints

We briefly sketch how the result of Section 5.5.1 adapts to constraint systems with Row-
constraints.

In light of our addition of domain constraints and the assumption that each Row-
variable has a fixed kind, we refine our definition of a well-sorted variable assignment given
in Section 4.5, to well-kinded assignments.

Definition 5.37 A well-sorted variable assignment o is well-kinded, iff for every Row-
variable X of kind K, o(X) is of kind K, and furthermore,

dom(u[X]o) =L — o(ax) if X is closed
dom (u[X]o) CL —o(ay)

A well-sorted and well-kinded variable assignment o is a solution of a system of
constraints S, if for every constraint Ey Cs Ey in S, the relation p[EJo Cs p[Fs]o is
satisfied (the semantic relation for Cq is simply set-theoretic inclusion) The notion of an
inductive system is extended to guarantee that well-kinded assignments for Row-variables
exist.

Definition 5.38 (Inductive System with Row-Constraints) A system S of constraints
is inductive, if every constraint E Cg E' in S is inductive, and furthermore for each pair of
L-inductive constraint E1 Cs X and R-inductive constraint X Cs Es in S, S is equivalent
to SU{E Cs Ea} according to Definition 5.23. Furthermore, S is equivalent to each of the
following systems:

1. SU{a(X) Cq a(EL)} if X is a minimal or closed Row-variable.
2. SU{a(X) Cq a(E2)} if X is a closed or mazimal Row-variable.
3. SU{a(E1) Cq a(X)} if X is a closed Row-variable and E is a closed Row-ezpression.
4. SU{a(Ey) Cq a(X)} if X is a closed Row-variable and Es is a closed Row-expression.

For minimal Row-variables, Condition 1 guarantees that the labels ay are absent from the
minimal domain of all lower-bounds £y on X'. This condition is necessary since pu[FE1]o Cy(y)
o(X) in all solutions o, implying that dom | (u[E1]o) C dom | (o(X)). Similarly, for maximal
Row-variables, Condition 2 guarantees that the labels ay are absent from the domain of all
upper-bounds Fs on X'. This condition is necessary since o(X') Cy(,) p[E2]o in all solutions
o, implying that dom(u[E2]o) C dom  (o(X)). Similarly, Conditions 1-4 guarantee that
the domain constraints for closed Row-variables are satisfiable.

If we choose the auxiliary assignments ); such that for all Row-variables X;, the
minimal domain of ); satisfies the domain constraints on &j, i.e.,

dom(u[Yi]o) =L —o(ax,) if X; is closed
dom  (u[Yilo) € L — o(ax;)



86

we can show that the equations induced by ); on the family (5.86) satisfy the constraints
up to any finite level j, analogously to the development in Section 5.5.1. Definition 5.27 is
easily extended over domain-complement expressions as follows.

pi<olé](o;) = L
pilax]{o;) = oi(ax)
pila((l: Byao ENos) = (nila(BF) o) — {1 | pi 1 [E{oj) # Ls})
pile((l: By ao BE){ (o) = (uila(B)]{o;) —A) E # E+

pila(0)]{o;) = L

pila(())(oj) = L
pila(1)]{o;) = L

1[0 U N{oj) = pild]{o;) UN

pild N N)(oj) = pi[d]{o;) NN



87

Chapter 6

Practical Aspects of Constraint
Resolution

The transformation of constraint systems into a collection of inductive systems
as presented in the previous chapter involves splitting of constraint systems. Such an
approach is completely impractical for an implementation since the split systems share most
constraints and a large fraction of their resolution is duplicated. Furthermore, the rewrite
formulation of constraint resolution serves mainly a didactic purpose but is not practical as
an implementation strategy. This chapter addresses these two issues. Section 6.1 introduces
conditional constraints as a way to delay splitting of constraint systems during resolution.
Section 6.2 presents constraint resolution as the construction of a closed constraint-graph
and characterizes when constraint-graphs are consistent. The chapter concludes with a
discussion of constraint resolution and related work.

6.1 Conditional Constraints

To avoid splitting constraint systems during resolution, we encode splits using conditional
expressions. Conditional set-expressions were originally introduced by Reynolds [74]. Aiken,
Wimmers, and Lakshman [4] use conditional set-expressions to capture certain aspects of
control flow in a soft-typing system. A conditional expression has the form C' SN E, where
FE is an L-compatible conditional expression, and C' is a condition. The conditions used
by Aiken et al. [4] are simply L-compatible expressions. Given a solution o, the meaning
function p is extended to conditional expressions as follows:

o = w1 = { {117 (LR

i.e., the meaning of C =4 E is the meaning of E if C is non-empty, and {1} if C is
empty. The resolution rule proposed by Aiken et al. [4] for constraints involving conditional
expressions is

[,SU{C == E, C,E;)}=T,5U{C C,0},SU{E, C, Es} (6.1)



88

The system S U {C == B, C, E,} is split into two systems, one where the condition is
false SU{C C; 0}, and one where the inclusion holds S U {E; Cg E}.

Some of the resolution rules we have presented in the previous sections intro-
duce splitting. We can reformulate these rules without splitting by introducing conditional
expressions. The resolution rule for resolving constraints between strict constructor expres-

sions (Rule 5.7)

[,SU{c(E1..Ey) Cs ¢(Ey..E;)} =D, SU{E; C,, Ej | ciug---in — s},
SU{c(E..E,) Cs 0} ¢ strict

is reformulated as
I, SU{c(E1..E,) Cs c(E,..E!)} = T,SU{c(E:..E,) = ¢ (E\..E,) C, ¢ (E}..E\)}

where ¢’ is an auxiliary constructor with the same signature as ¢, but non-strict in all argu-
ments. This rule in conjunction with the rule for splitting conditional expressions (6.1) and
the resolution for non-strict constructors (Rules 5.6, 5.21, and 5.27) has the same behavior
as the original rule for strict constructors: either the left-side is empty (the condition is
false), or the inclusions between the corresponding constructor arguments hold.

The only other rule that splits constraint systems is Rule 5.8 which has the form

I'NSU{c(Er..E,) Cs E} = { r €ty lp — s non-strict

I'SU{E, C, 0},... ,SU{E, C,, 0} ¢ strict
where E is 0 or d(..) where ¢ # d

If ¢ is strict, then one of Ey, ... , E, must be 0. This choice can be encoded by the following
constraint
(ByANEyA---NEy_1) = E, C,0

where the conjunction F1 A Es--- E, 1 is a condition that is true if all of Eq,... , E, 1
are true. Note that a conjunction of two conditions E; A Es is equivalent to the condition
p(E1, E3), where p is an arbitrary strict constructor. Conjunctions in this context are thus
merely a syntactic convenience and we make free use of them. We reformulate Rule 5.8 as
follows

r c:l1°° Ly — S non-strict
I,SU{(EiA--ANEy_1) = E, C,, 0} cstrict (6.2)
where E is 0 or d(..) where ¢ # d

T,SU{c(B..B,) Cy B} = {

Applying Rule 6.1 n times to the system
SU{(ELANEyA---NE,_)) = E, C, 0}
produces the same collection of constraint systems as the original rules
SU{E; C, 0},...,SU{E, C,, 0}

Now the only rule that splits constraint systems is Rule 6.1 for conditional expressions.



89

Before proceeding, we introduce a normal form for conditions. Conditions are
conjuncts of atomic conditions which take the form X N M, i.e. a variable intersected with
an M-expression. An atomic condition X N M is true for a solution o, if o(X) N u[M]o
is non-empty. By non-empty, we mean a set distinct from {L}, since every denotation
contains |. Thus, no atomic conditions involving Row-variables need to be formed, since
Row-variables are always non-empty. Furthermore, if X is a Term or FlowTerm variable,
then M = 1. An empty list of conjuncts represents the trivial condition #rue. A conjunct
of conditions C7 A Cy A -+ A C}, is true if each individual condition is true. Note that
this form of conditions is more restrictive than allowing any L-compatible expression to
be a condition. In particular, L-compatible expressions as conditions can directly express
disjuncts: for example assuming c is a strict constructor, ¢(E; U Es) is true if Ey or Ej is
non-empty. However, by normalizing ¢(F; U E3) to ¢(X), where X is a fresh variable with
the associated constraint £ U FEy Cg X the same condition can still be expressed. Moreover,
if L == E is a conditional expression and L an arbitrary L-compatible expression, then
we can form an equivalent union (J;(C; = E) of conditional constraints, where the C;
adhere to our restriction and without the need to introduce fresh variables. The conditions
C; are simply the disjuncts of the condition L.

Conditions are introduced every time one of our reformulated resolution rules is
applied to a strict constructor. Instead of generating the conditions implicitly in these reso-
lution rules, we can add the normalized conditions directly to the expressions involving strict
constructors in the original constraints. Replace all expressions ¢(Ey,. .. , Fy,) appearing in
an L-context of the original constraints and where c is strict, by the conditional expression
(ELA---ANE,) == ¢(By,...,E,), where ¢ is again a constructor with the same signature
as ¢, but non-strict in all arguments. Replace all remaining occurrences of ¢ by ¢ in the
constraints. If we perform this step for all strict constructors in the original constraints,
and the resolution does not produce new constructor expressions, then we obtain the same
inductive systems. However, L-intersection simplification may introduce new constructor
expressions, i.e., when simplifying ¢'(E1,... ,E,) N M to d(E1 N My, ... ,E, N M,) and ¢
was originally strict, the simplified L-intersection should be transformed into the conditional
expression (C1 A--- A Ch) == d(EyNMy,...,E,NM,), where C; is the normalized con-
dition for E; N M;. Note that this process terminates, since there are finitely many atomic
conditions X N M that can be formed. As a final step, we can remove the cases for strict
constructors from the resolution rules above and modify the rule for splitting constraints
with conditional expressions to deal with conjuncts directly:

[LSU{(CiA---ACp) = Ey C, By} =I', SU{C; C, 0},

l (6.3)
SU{CQ/\"'/\CH) = F; QSEQ}

Since C] is atomic, the constraint C; Cg 0 does not require the use of Rule 6.2. Thus, by
putting conditions into normal form and adding conditions explicitly to the original con-
straints, we can avoid the introduction of conditional expressions during resolution (except
when intersections of strict constructors are simplified), and the only rule that splits con-
straint systems is the rule for conditional expressions. Special resolution rules for strict
constructors are no longer needed.

We now show how to avoid splitting constraint systems by delaying the use of



90

Rule 6.3. The basic idea for avoiding the splitting is to transform constraints with condi-
tional expressions into conditional constraints and vice-versa. Before proceeding, we extend
our conditional expressions to R-compatible expressions. If R is an R-compatible expression,
then C == R is a conditional R-compatible expression with the meaning

r | wlE]o if p[C]o is true
me = Elo= { T otherwise
Conditional constraints now have the form C = (L C; R). A solution o satisfies such a
conditional constraint if either u[Co is false, or if u[L]o Cs p[R]o. The basic idea is then
to use the equivalences
(C == L)C,R = C = (LC,R)
LCs(C = R)

to transform constraints with conditional expressions into conditional constraints, and vice
versa. The above equivalences are trivial: suppose C' is true, then all three forms are
equivalent to L Cg; R. If C' is false, then we have

(C = L)S,R = 0GR
“no constraint”
LC,1
LC,(C = R)

Thus a conditional constraint true = (L C; R) is equivalent to L C; R. These equiva-
lences motivate the replacement of Rule 6.1 with the two transformation rules depicted in
Figure 6.1.

The new transformations introduce conditional constraints and we need the struc-
tural rewrite rule of Figure 6.2 to deal with them. Intuitively, given the constraint C —
(L Cs R), we strip off condition C and solve the non-conditional constraint in the standard
way. If this constraint is equivalent to {C1 = (L1 Cg, Ry),... ,Crh = (Ln Cs, Rn)},
then we add the condition C' back onto each individual constraint, yielding {C A C; =
(L1 Cs; R1),...,CNC, = (L, Cs, Ry)}. It is immediate that this rule is sound, but
not complete in the case where L C; R is inconsistent. We will address this case shortly.

The algorithm for transforming constraints into inductive form can now be adapted
to constraints with conditional expressions. Instead of transforming constraints into induc-
tive constraints, we transform them to conditional inductive constraints, i.e. constraints of
the form C = (L C4 R) where L C; R is inductive. To solve conditional constraints,
repeat the following two steps until either an inconsistency is found, or all constraints are
conditional inductive.

e For any constraint that is not conditional inductive, apply one of the equivalences in
Figure 6.1, 6.2, or the standard resolution rules.

e For any pair of conditional inductive constraints ¢y — (L Cs X) and Cy —
(X C5 R), add the transitive constraint C; A Cy = (L Cs R).



91

l

(CZ}L gsR)
LC,(C = R) =

C = (L CsR)
C = (L CsR)

Figure 6.1: Transforming constraints with conditional expressions into conditional
constraints

(LS, RY={C) = (L1 Cy, R1),... ,Cp = (Ln Cy, Rn)}
SU{C — (LG, R)}=SU{CAC: = (L1 Cy, R1).... ,CACy = (Ln Cy. Rn)}

Figure 6.2: Structural rewrite rule for conditional constraints

{L Cs R} = Inconsistent
SU{(ANizo.nCi) = (L S5 R)} = SU{(A

CZ') — (CO Cs 0)}

i=1..n
Figure 6.3: Structural rewrite rule for inconsistent constraint

The transitive constraints combine the conditions of the two constraints involved. The
justification behind this rule is as follows: If both conditions are true, then we have an
ordinary transitive constraint. Otherwise, the transitive constraint need not be satisfied.
As in the original algorithm, the final form of a solved system of constraints can
be expressed as lower and upper bounds on variables £; C; &; Cs U;, where £; and U; are

L;i={C = L|C = (L C, &) is L-inductive}
U;={C = R|C = (X; Cs R) is R-inductive}

Thus in the final result, no conditional constraints remain, only conditional upper and lower
bounds on variables.

As described, the algorithm gives up as soon as an inconsistent constraint is found,
no matter whether the inconsistent constraint was conditional or not. E.g. any system
containing the constraint C = (¢ C; d) is inconsistent under this algorithm, provided
constructor ¢ is distinct from d. This approach does not find all solutions, for in the above
example, there could still be solutions where C' is false and the constraint satisfied.

The form of conditions is simple enough so that we can encode the fact that a
condition is false with appropriate set-constraints. If C is of the form A,_, , &X;NM;, then
we can express the fact that C is false with the constraint C' = (X; N M; C, 0), where
Xj N Mj is an arbitrary atomic condition of C, and ¢’ = /\z':l...j—l,jﬂ...n X; N M;. In other
words, either X; N M; is empty implying that C is false, or C' is false. If C' is true, then
the constraints have indeed no solution. Figure 6.3 contains the structural rewrite rule to
handle inconsistent systems.

The conditional inductive system is obtained without applying Rule 6.1 for split-
ting systems with conditional expressions. As a result, we can transform a constraint system



92

into a single conditional inductive constraint system. If the original inductive systems are
desired, the splitting rule can be applied to this system. Thus we essentially delay the
splitting until the constraints are almost in inductive form. Applying the splitting rule only
introduces additional constraints of the form E C; 0.

6.2 Graph Formulation

This section describes a graph-based representation of constraints and an algorithm to
transform a constraint system into a fully-closed constraint graph. We also characterize when
fully-closed constraint graphs are consistent, in which case, they correspond to a conditional
inductive system. Inconsistent constraint graphs and their associated constraints have no
solutions.

Even though the previous section presented constraint resolution as a rewrite sys-
tem, constraint resolution is usually presented as a graph closure. The graph formulation
presented here makes it convenient to study different constraint resolution algorithms based
on graph closure.

In principle, given a set of mixed constraints S, the fully-closed constraint graph
corresponding to S is a collection of disjoint graphs G*, one for each sort s. To simplify the
presentation here, we only show the graph construction for Set-constraints. A restriction of
this construction can be applied to the Term and Flow Term-constraints. For Row-constraints,
the graph formulation is similar but sets of labels are used in place of M-expressions.

Definition 6.1 (Set-Constraint Graph) A constraint graph G = (V, A) consists of a set
of nodes V' which are Set-expressions F with the restrictions that F is of the form

E:=Xc(X,..., %) |1]0]|~{c1,...,cn}

i.e., V contains no unions or intersections, and the arguments to constructors are variables.
An edge (or arrow) of A is a quadruple of V.- xV x M x C, where M is an M-expression,

and C a normalized condition. We write Fy Me, Es for the edge (Ey, B9, M,C). A non-

variable node is called a source if it occurs to the left of an arrow, and is called a sink, if
it occurs to the right of an arrow.

Definition 6.2 (Graph Path) We say that there exists a path of length n in G from E
to E' under M-expression M and condition C, if there exists a sequence of edges in G

M,,Cr M>,C2 M;,,Cr,

E ‘XQ--'Xn,1—>E,

X1

and

c= A\ Ci
1=1..n
M= (1 M

i=1..n

If }f\ffzec intermediate nodes are mot of interest, we refer to such a path using the notation
E—=*FE'".



93

We now show how to transform a system of constraints S into its initial con-
straint graph. The first step is to normalize constructor expressions ¢(Fy, ... , E,) where
some E; are not variables. Replace each expression ¢(F1,... , E,) in the constraints with
c(X1, ..., X,) where X)..A,, are fresh variables, and add the constraints E; C,, &; to S
if the occurrence ¢(F1,... , E,) being replaced appears in an L-context in the constraint.
Otherwise (the occurrence appears in an R-context), add the constraints X; C,. E; to S.

Constraints Fq Cg Fy of S where Fq and Ey adhere to the node-restrictions in
the definition above can be directly added to the graph, by adding F; and Fs and their

. . 1, .. .
sub-expressions to V', and adding the edge E; LN FE5 to A. The remaining constraints

are of the forms

E, UE, C, Es
Ey Cs BT B3
XNMC, FE
B, C, Pat[E», M]
C = E C,E,
E,C,C = E,

We show how to normalize each of these in turn:

e [L-union| If By U Ey C4 E3 is in S, remove it and add E; C; E3 and Ey Cs E3 to S.

[R-inter| If Ey C4 Eo M E3 is in S, remove it and add Fy C4 Fy and Ey Cg E3 to S.

[L-inter] If X N M C; E is in S, and E adheres to the node-restriction, then the
constraint is normalized. Otherwise, apply one of the other rules matching E.

e [R-Pat] If Ey C, Pat[Fy, M] is in S, and E; and E, adhere to the node-restriction,
then the constraint is normalized.

Otherwise, apply the other rules to normalize F,. If E; adheres, but Ey does not
adhere to the node-restriction, remove the constraint from S and add the constraint
Ey N M C; Es to the constraints, normalizing the intersection £ N M if necessary.

e [L-cond] IfC = E, C, Eyisin S and E; or Ey do not adhere to the node-restriction,
remove the constraint from S and add E; Cg Es to a new system S’ and normalize
it. Then for each normal constraint C; = (E; C,; E!) in S’ add the conditional
constraint C A C; = (E; Cs E!) back to S.

e [R-cond] If By C; C = E, is in S and F; or Ey do not adhere to the node-
restriction, remove the constraint from S and add E; C, Es to a new system S’ and
normalize it. Then for each normal constraint C; = (E; Cg E!) in S’, add the
conditional constraint C' A C; = (E; C; E|) back to S.



94

After normalization, S contains constraints of the form

C = (XﬂM Cs EQ)
C = (E1 Cs Pat[EQ,M])
C = (E1 G, EQ)

where each F; and FE, adhere to the node-restriction, and C' is a conjunction of atomic
conditions. (Recall that the empty conjunct is equivalent to true). These constraints are
then added to G using the following three rules

o [L-inter] If C = (X NM Cs E) is in S, remove it and add X, E, and their
sub-expressions to V, and add the edge X M—’C> E to A.

e [R-Pat] If C = (E; C; Pat[Ey, M]) is in S, remove it and add E;, Es, and their
sub-expressions to V and add the edge E; M—’C> FEsy to A.

e [Cond] If C = (E; C5 E») isin S and E; and Ey adhere to the node-restriction,
remove the constraint and add E;, Es, and their sub-expressions to V', and add the

edge By 5 By to A.

We now present the rules for closing a constraint graph under transitivity and
structural constraints.

Transitive Closure Rule If F; M X and X M Ey are edges in G, add the

. M10Ma,C1AC
transitive edge F % Fs to the edges of G.

The structural closure rules cover all combinations of source-sink pairs.

Structural Closure Rules If F; ﬂ FE5 is an edge of G between a source 7 and a sink
FE», apply the closure rule that applies to F, F2 below.

M,C
° C(Xl,... ,Xn) — C(yl,... ,yn) and Mﬂc(TLl,... 7TLn) = U] C(Mjl,... ann)

!

M;i,CAC!,
where each ¢(M;1,... , Mj,) # 0, then add edges X; — 3 y; for all j, where

C = { N; &N Mj;  if c strict

J true otherwise
o c(Xy,..., ) M, —{c1,... ,¢p} and ¢ € {¢q1,... ,¢,}, then add the edge
(... x) XS0

o (X1, ) MY By where By =0, or By = d(...) with ¢ # d.



95

L. if n >0, e strict, and M Ne(Tyy, ..., T,,) = U; e(Mj1, ..., Mj,), where each

!

1,CAC!
co(Mj1,... ,Mj,) #0, then add edges 1 —— 0 for all j, where
C]’ = /\ X; N Mji

MNe(T,y e ,TLn),C\ 0

2. otherwise add the edge 1

—{c1,... ,cn} M, Es, and Ey is ¢(...), 0, or ={dy,... .d,}, then add the edge

—{e1,.. ,en }NM,C

1 Ey

129 (&, X,) add the edge 1 71 o and it MO e(T,,, ..., To,) =

Uj c(Mj1, ... ,Mj,) where each c¢(M;i,... ,M;,) # 0, then also add edges

M;;,C
1= X;
for all 7.
o 1 M5 —{c1,... ,¢n}, and n # 0, add the edge 1 MOMC, 0, where
M= |J T, T)
c€{ciy..sCn}

lM—’C>0,M7EO, and C=Cy A--- ANCp, n >0, then add the edge

My,C!
—

X 0

where

Ci =X NM
C'=Con---NC),

Definition 6.3 (Graph Consistency) A constraint graph is consistent, if its closure does

not contain any edge of the form 1 Mrue, 0, where M # 0.

If a graph is consistent, then there exists an equivalent conditional inductive system .S,
obtained as follows:

e if x X Eisin G and Eis a sink, then add the inductive constraint X C, C ==
Pat[E, M,] to S.

o if B ﬂ X is in G and F is a source, then add the inductive constraint C =
(ENM) Cs X to S.



96

o it ¥ M5 Yisin G and o(X) > 0o()), then add the inductive constraint X C; C ==
Pat[Y, M, to S.

o if ¥ X% Yisin G and o(Y) > o(X), then add the inductive constraint ¢ ==
(XﬂM) CsYtoS.

The resulting system S is inductive, since all constraints above are inductive, and the
transitive closure rule of the graph adds all edges added by Algorithm 5.25.

On the other hand, if the closure of the constraint graph G corresponding to the
normalized constraint set S is inconsistent, then applying Algorithm 5.25 to S also results in
no inductive systems. To see this, observe that the structural graph closure rules correspond
to the resolution rules given earlier, and that Algorithm 5.25 has the following property.

Property 6.4 If E and E' are expressions without top-level variables and there is a path

E M1,C X Ms,Cs My,Cr, B

XQ "'Xn—l

in the initial graph G corresponding to the normalized constraint system S, then Algo-
rithm 5.25 applied to S generates the constraint C — (EN M) Cs E', where

0:/\@

i=1..n
M= () M,
i=1..n
.. . Mq,Cq
Proof: If n = 1 the result is immediate. Note by edge £ ——— A} we have
that S contains the conditional inductive constraint constraint C; — E N My C, AXj.

. . . . . TL’CTL
Call this constraint the source constraint. Similarly by edge X,,_1 MnCr B1 we have that

S contains the conditional inductive constraint C,, = A, 1 C, Pat[E’, M,]. Call this
edge the sink constraint. If n = 2, then X} = X,,_1, and Algorithm 5.25 adds the transitive
constraint C; ACy = ENM; C, Pat[E’, M5], which is equivalent to the sought constraint.
We now proceed by induction on the length of the path. Assume the property holds for
paths of length k. We show that it also holds for paths of length k + 1. Suppose n = k+ 1.
There are three cases to consider.

1. If the index o(AX}) is greater than the index o(Xs), then by edge X} ELEEN Xy we

know that S contains the conditional inductive constraint Cy = A C; Pat[Xs, Ms).
This constraint together with the source constraint produces the transitive constraint
CiNCy = ENM; C; Pat[Xy, Ms], which is transformed to the conditional inﬂc}%ctive
constraint C1 ACy = EN(M1NMs) Cg Xy. But now there exists a path E——*E'
of length £ and by induction the constraint C = EN M C, E’ is added.
2. If the index o(X,—1) is greater than the index o(X},—2), then by edge X, Mn—1,Cn1,
X,,_1 we know that S contains the conditional inductive constraint C,,_; — A}, 9N
M,_1 Cg X,—1. This constraint together with the sink constraint produces the tran-
sitive constraint C,_1 A C,, = X,—o N M,,_1 C; Pat[E’, M,,], which is transformed



97

list ———— list

Figure 6.4: Unnecessary edges in full graph closure

to the conditional inductive corﬁtgaint Cho1 NC, = X Cy Pat[E', My N Ma).
But now there exists a path E——*E’ of length k£ and by induction the constraint
C = ENMC, E'is added.

3. Otherwise o(Xs) > o(X1) and o(A,— 2) > 0(X,—1). Thus there exists a variable
with maximum index among A5..A), 5. Assume this variable is X;. Then the edges

.C
Xj_q —> X; and Xj Mi+1Gin Xj+1 correspond to the initial conditional induc-

tive constraints C; =4 X,.1NM; Cg Xj and X; C5 Cjpq1 = Pat[Xj11, Mj1q].
Thus Algorithm 5.25 adds the transitive constraint (Cy A Cy) = X;_1 N M1 C,
Pat[X} 1, M;11], which is transformed into the conditional inductive constraint (C; A
Co) = (X1 N (Mj_1 N Mjt1) Cs Xjqa) if o(Xj41) > o(Xj_1), or into the con-
ditional inductive constraint (C7 A Co) = Xj_1 Cy Pat[Xj41, Mj_1 N Mj44] if
o(Xj—1) > o(Xj41). In either case there is now a path E—=*E' of length k and by
induction the constraint C = ENM C, E' is added.

|

The full closure of the constraint graph contains many edges that are not really
necessary to decide whether the graph is consistent or not. Edges between sources and
sinks that are not inconsistent and for which the corresponding structural closure rule has
been applied can be removed from the graph. Consider the example in Figure 6.4. The
graph represents the closure of the constraint list(X) Cg list()), where the vertical edges
relate constructors with their arguments and horizontal edges are inclusion edges. Applying
the structural rule to to the inclusion edge between the two list constructor nodes adds the
dashed inclusion edge between X and ). After this step, the inclusion edge between the
two list constructors is never needed again and can be deleted.

This optimization is easy to implement. Simply apply the structural rules imme-
diately whenever a new source-sink edge is to be added. Furthermore, the transitive closure
rule can be restrlcted so as to add only edges between a source F; and a sink FEs, if there
is a path Eq —>*E2 in the graph. In fact the transitive edge needs only be added, if the
M is non-empty and the condition C is true in all solutions. Transitive edges where one
end-point is a variable can be avoided since they do not trigger any structural rules and do
not make the graph inconsistent. One can thus formulate a minimal transitive closure rule:

- oy . ,C
Minimal Transitive Closure Rule If there exists a path EMCx B between a source E
and a sink F' in G, and M # 0, and C is true in all solutions of the constraints, then

add the edge E ME B o G



98

The minimal transitive closure rule does not yield a practical algorithm however, since
whenever a new edge is added to the graph by the structural closure rules, all paths would
need to be reexamined. Furthermore, deciding whether a condition is true in all solutions
requires information about paths from sources to variables, and this information may be
expensive to compute and maintain in itself.

The distinguishing feature between different algorithms for computing constraint
graph consistency is thus the transitive closure rule. Practical algorithms usually use a local
rule, where only a small constant number of edges need to be considered, instead of paths of
arbitrary length. We have already seen one alternative transitive closure rule that is local,
namely the one applied by the algorithm computing inductive systems.

. .. . Mi,C M,,C
Inductive Transitive Closure Rule If G contains two edges E; ——+ X and X —>2

Es5 such that any top-level variables of 1 and E5 have indices lower than o(X), then

oy ,C1A\C:
add the transitive edge E; oM, G AC, FE5 to the graph.

MG It is instructive to examine where exactly sources and sinks meet on a path
E——=*FE' using the above rule. From the proof of Property 6.4 we know that the clo-
sure rule adds transitive edges between variables so as to guarantee that there exists a

path

M;y,Cq Ma,C

E X, XQ---Xn_an—’QL>E'

where no variable &; among X..X,_o has index larger than its neighbors, i.e., o(X;) %
o(Xj_1) and o(&X;) # o(X;j41). Consider thus the sequence of indices o(X1), 0(&X2), ... ,0(X,)
and the variable X; with minimal index. Then the sequence o(X}),... ,o(&;) is strictly
decreasing, and the sequence o(&Xj),... ,0(A,) is strictly increasing. As a result, the edges
Xy M X; with ¢ < j are R-inductive and the source F is propagated forward along this

. . . . . . Mz 7Ci
path to each &; up to the minimal indexed variable &;. Similarly, the edges &; e,

X; 11 with 7 > j are R-inductive and the sink E’ is propagated backward along this path
to each &; down to the minimal indexed variable &;. Thus the inductive transitive closure
rule produces the two inductive constraints

(CLA--ANCj) = EN(Myn---NM;)Cs X;
(Cj+1/\---/\0n) = & G, Pat[E’,Mj+1ﬂ---ﬁMn]

from which a final application of the rule produces the edge E ME gy,

The inductive closure rule is rather non-standard in that sources move forwards
and sinks backwards along certain, but not all paths. Most published algorithms for this
kind of graph closure use something akin to the following rule, which we thus call the
standard transitive closure rule.

Standard Transitive Closure Rule If G contains two edges Ey M v oand X 22

. .. M1NMs,C1 AC
E5 such that F; is a source, then add the transitive edge F; M FE5 to the

graph.

This standard closure works rather differently from the inductive closure rule. The rule
uniquely propagates sources forward along paths until they meet up with a sink. One could



99

imagine a dual rule that propagates sinks backwards until they meet a source. However,
the standard rule has the advantage of computing an explicit form of the transitive lower
bound for each variable which we discuss in the following section. Empirical results on the
practical tradeoffs of using the inductive transitive closure rule over the standard transitive
closure rule are studied in more detail in Chapter 9.

6.2.1 Transitive Lower Bound

In many analyses, it is often desirable to answer queries such as, “does X contain an ideal
¢e(In, ..., I,) # {L} for some I; in all solutions of the constraints?” To answer such queries
easily, the transitive lower bound of X (written TLB(X)) can be computed.

Definition 6.5 (Transitive Lower Bound) The transitive lower bound of X, consists of
the union of all non-empty expressions in the intersection ENM where E—=*X is a path
in G, and C s true in all solutions. Formally,

TLB(X) = | J{TLB(C == EnM)|EXS% X}
where B = c(Xy,... . X,), MO (T, ..., T,) =U;e(Mj1,... , Mjn), and

TLB(C == ENM) = {c(X1 N M1, ... X, N Mjy,) | C ACj is true in all solutions}

C = true ¢ non-strict
771 AN Mjy N--- NX, N Mj, otherwise

Computing TLB(X) thus involves deciding which conditions are true in all solutions. An
atomic condition YNM is true in all solutions, if TLB(Y)NM is non-empty. Thus, computing
the transitive lower bound and resolving conditions that are true in all solutions depend on
each other. We tackle both problems by first considering the conditional transitive lower
bound of X (CTLB(X)) which essentially consists of all conditional expressions C = E
where E is a candidate for TLB(X) if C is true in all solutions. The transitive lower bound
TLB(X) is related to CTLB(X) by

¢(E1,... By) € TLB(X) < C == ¢(Ey,... ,E,) € CTLB(X) A
C' true in all solutions

Definition 6.6 (Conditional Transitive Lower Bound) The conditional transitive lower-

bound of X consists of the union of all co&dgtional expressions in CTLB(C == EnN M)
where E is a source and there is a path E——*X in G. Formally,

CTLB(X) = | {CTLB(C =% ENM) | EXS x)
CTLB(C == En M) :U(C/\Cj L c(meﬂ,..,Xanjn))

J
where E = c(X1,..., &), MNe(Tyy,... . T,) =U;e(Mj1,... , Mjn), and

C = true ¢ non-strict
N B <l Mjy N--- NX, N Mj, otherwise



100

The next section describes how to identify conditions that are true in all solutions of the
constraints using the conditional transitive lower bounds. In the remainder of this section
we show how to compute the conditional transitive lower bounds when constraint graphs
are closed under the standard transitive closure rule, and when constraint graphs are closed
under the inductive transitive closure rule.

Suppose G is closed under the standard transitive closure rule (SA’/l;gR) Recall that
STCR propagates sources forward along all paths. If there is a path E—=*X in G, then

G also contains the edge E ME . Therefore, to compute CTLB(X) for a variable X’ from

G it suffices to compute CTLB(C = E N M) for all edges E M X in G

Now suppose G is closed under the inductive C‘yransmve closure rule (ITCR). Recall
from above that if G is closed under ITCR and E—2%*X is a path from a source F to X,
then G contains a path

M17CI\ M27CQ MTL:CTL

E s Xy oo Xy —— X

Xy

where the sequence of indices o(X}),0(Xs),... ,0(X,—-1),0(X) are strictly increasing. This
suggests an inductive strategy to compute CTLB(X):

e Compute CTLB(Y) for all Y with index lower than X.
o Let

CTLB(X) =| JICTLB(C == EnM)| E X5 X € G. B a source}

ulJICTB(CAC =% EnM)| Y 25 X A o) < o(X) A
C' = E e CTLB()))}

The strategy is well founded since if X is the variable with minimal index, then for every

path EMCxx in @ where E is a source, there is an edge F M ¥ in G, and CTLB(X)
does not depend on the CTLB of any other variable.

The CTLB computation on a graph closed under I'TCR is similar to computing the
transitive closure of an acyclic graph. Consider the simple case where all conditions in G are
true, all M-expressions are 1, and all constructors are non-strict. Then computing CTLB(X)

corresponds exactly to computing the transitive closure of the acyclic subgraph G’ formed

by all variables and sources of G, and containing all edges £ —— LY ¥ of G where E is a

source, or £ =) and o(Y) < O(X), i.e., CTLB(X) ={E | E—— ’true *X € G'}. There exist
efficient algorithms for computing the transitive closure of an acyclic graph with worst-case
time complexity O(ne™), where n is the number of nodes of G, and e~ is the number of
edges in the transitive reduction of G [84]. We now present an algorithm for the general
case that has this complexity in the above restricted case.

The algorithm computes a set R(X;) for each variable X;, which is a set of triples
(E, M, C) such that there is a path B C *X;in G'. The condltlonal transitive lower bound
CTLB(&j) can then be computed from R(X ) by

CTLB(X;) = ICTLB(C = ENM)|(E,M,C) € R(X;) A E a source}



101

The extra elements of R(&X;) that are ignored for CTLB(AX}) are used to prune transitive
edges in G', and thus to avoid merging redundant sets into R(X}).

Algorithm 6.7 Suppose R(X})) has been computed for all X} with index less than o(X;).
Compute R(X;) as follows.

Initially, let R(X;) = {}. Consider each edge F Me, X in G’ in turn, ordered by
decreasing top-level variable index of E (expressions without top-level variables come last
in no particular order). If (E, M,C) € R(X}), ignore this edge. Otherwise add (E, M, C)
to R(X;) and if E = Xy let I = {(E',M'NM,C' NC) | (E',M',C") € R(X};)} and add set
I to R(X}) as well. Note that if M =1 and C = true, then I = R(A}).

. . " M,C
We now show how the algorithm avoids transitive edges X; —— A&; when there are

edges X; e, Xy, and X Lirue, Xj in G’. Suppose we are computing R(Xj). Then

the above edges imply that any triple (E,M’,C") added to R(X;) through X % A,
is also an element of R(Xj). The algorithm avoids merging these elements twice into
1,true

R(X;) by considering edge A, ——— &; before &; M X; since o(&;) < o(&y). Af-
ter merging R(Xy) into R(X;), R(X;) contains the triple (X;, M,C). Thus when next

. . ,C . . . .
considering the edge X; M, X, the algorithm skips it correctly, since all elements

{(E,CANC",MnM)|(E,C',M) € R(X;)} are already present in R(X}).

6.2.2 Condition resolution

Given a system of constraints S, certain conditions C will be true in all solutions of S. Such
information may be equally interesting to a program analysis as the explicit bounds on set
variables themselves. This section describes how to resolve the status of all conditions in a
closed constraint graph G. It is possible to classify conditions into two categories: 1) either
a condition is true in all solutions, or 2) it is false in some solution. It is interesting to
note that for the conditions of the 2nd category, there exist solutions of G for which these
conditions are all simultaneously false.

For notational convenience, we define CTLB(X)N M = [J{CTLB(C == ENM) |
C == E e CTLB(X)}. Assume that we have computed CTLB(X;) for all variables X).
Recall that a condition A; &; N M; is true in all solutions if each atomic condition X; N M;
is true in all solutions. An atomic condition X N M in turn is true, if the set CTLB(X) N M
contains an element true == E, or some element C' = FE' where C is true. We use
this observation to build a condition dependency graph G¢ as follows. Let the nodes of
G ¢ be the set of all conditions (conjuncts and atomic) appearing in CTLB(X;) for some X;.
There is an implication edge from condition C to atomic condition X N M, iff C == e(...)
appears in CTLB(X) N M. Furthermore, there is a containment edge from atomic condition
X N M to every condition C’ containing X N M as a conjunct.

Algorithm 6.8 The following naive algorithm marks all conditions that are true in every
solution:

Repeat until no more conditions are marked



102

For each condition C in G¢
if C is not marked then
if C is atomic of the form AN M then

if CTLB(X)N M contains true = FE, then
mark C
fi
else (C is not atomic)
inspect all C' s.t. C' - C is a containment edge.
If all C' are marked, then mark C fi
fi
else (C is marked)
for all implication edges C' — C’, mark C'
fi
endfor
endrepeat

Clearly, if the algorithm marks a condition C, then C' is true in all solutions. On the other

hand, suppose there is an atomic condition X N M not marked by the algorithm. Then we

M . . . .
can add the edge X M 0 to G without making the graph inconsistent.

There is clearly a better algorithm which visits each edge in G¢ at most once.

Algorithm 6.9 Associate a counter cnt(C') with each condition C. For atomic conditions,
set the counter to 1. For non-atomic conditions, set the counter to the number of its atomic
conjuncts.

dec-and-propagate(C) =
if ¢nt(C) > 0 then
ent(C) := ent(C) - 1
if ent(C) == 0 then
mark C
for each outgoing edge C — C’ in G¢
dec-and-propagate(C")
endfor
fi
fi

For each atomic condition C' of the from AN M
if CTLB(X)N M contains an element true = F, then
dec-and-propagate(C)
fi

The identification of conditions that are true in all solutions can be performed
incrementally and at the same time that the constraint graph closure is computed. It is
then possible to take advantage of the information about conditions to add only edges

E M E' to the graph where the condition is true. Heintze describes such an algorithm
for computing the results of Set-Based Analysis in his dissertation [38]. This algorithm
is based on a variation of the standard transitive closure rule that adds only edges whose
condition is true. The algorithm requires substantial book-keeping of suspended edges, i.e.,



103

edges L’C E’ that would normally be added through the transitive or structural closure,
but where C' is not known to be true. Furthermore, whenever a new edge is added to the
graph, the condition of some suspended constraint may become true, and thus suspended
edges need to be examined.

The implementation of BANE described in the second part of this dissertation
does not suspend conditional constraints. It is based on the inductive transitive closure
rule (ITCR) and solves conditional constraints as described in Section 6.1. Algorithm 6.9 is
used to explicitly solve conditions when computing the transitive lower bounds TLB from
the conditional transitive lower bounds CTLB. As we show in Section 9.4, this approach
enables computing the TLB on-demand, resulting in substantially smaller constraint graphs
than obtained using the standard algorithm for Set-Based Analysis.

6.3 Complexity

We briefly discuss the worst-case time complexity for deciding the consistency of set of mixed
constraints. The general problem of deciding the consistency of the closure of a constraint
graph is at least NEXPTIME. This lower bound follows from a result by McAllester and
Heintze [59], who show complexity bounds for various refinements of Set-Based Analysis
(SBA). The hardest form of SBA they study is NEXPTIME-complete. Since all their SBA
variations can be formulated using the Set-constraint part of mixed constraints, resolution
of mixed constraints is at least NEXPTIME.

6.4 Discussion and Related Work

The use of inclusion constraints in program analysis goes back to an early paper by Reynolds.
Reynolds [74] describes an analysis for inferring the shape of data-structures in Lisp pro-
grams. It provides the basic idea of later analyses based on inclusion constraints [48, 2, 41],
although the same ideas were independently rediscovered in some cases.

Jones and Muchnick [48] describe an abstract interpretation approach to inferring a
description of list data-structures at each program point of imperative flow-chart programs.
Their system is very similar to the one of Reynolds, but is not expressed using constraints.

Decidability and complexity results for a number of variations of set constraints
have been studied by numerous researchers [40, 33, 34, 10, 5, 13, 14, 6]. Heintze popular-
ized set-constraints for program analysis through his work on set-based analysis (SBA) of
logic and functional programs [38]. He expresses set-based analysis using constraints of the
form op(X;..X,) C X, where the right-hand side of all constraints is a set-variable, and
the left-hand side is an arbitrary monotone set-operator op. His formulation of solutions to
the constraints is somewhat non-standard, since the interpretation of certain set-operators
constrains the solution. As a result, his formulation only applies to the least solution of
the constraints. Least solutions always exist since all set-operators are monotone. The con-
straint resolution proposed by Heintze differs from our approach in that it uses the standard
transitive closure rule we described earlier. We will contrast our implementation of Set-
constraints with the standard set-constraint resolution described in Heintze’s dissertation
further in Chapter 9, where we show that constraint resolution based on standard transitive



104

closure is severely limited in its ability to scale to large constraint problems due to the fact
that it explicitly computes the transitive lower bound of all variables.

Independently of Heintze, Aiken and Wimmers developed set-constraint decision
procedures for type inference of FL [2, 3]. The Set-constraint resolution of mixed constraints
is based on their work, which we already described in Chapter 2.

Flow Term-constraints can be viewed as constraints arising in the type inference sys-
tem PTB,+int studied by Palsberg and O’Keefe [67] and Palsberg, Wand, and O'Keefe [69].
The system PTB,+int stands for partial types with top and bottom and integer types. It
is an extension of Thatte’s system of partial types [81] with bottom. Constraints arising
in this system are non-structural subtyping relations, meaning that two types can be re-
lated even if they don’t have the same structure. The non-structural relation matches our
inclusion relation on FlowTerm-ideals. Palsberg et al. [67] show that their type system is
equivalent to a flow analysis and give a cubic time algorithm to infer the flow relations. The
algorithm is essentially the full constraint graph closure we described in this chapter.

Term-constraints are most similar to equality constraints between first-order terms,
but augmented with top and bottom. Without top, Term-constraints correspond to the
conditional unification constraints proposed by Steensgaard [79]. A constraint F; < FEs
in his system is satisfied, if either F; is bottom, or E; = FEs, but there is no top in his
language. Steensgaard describes a nearly linear time algorithm for solving such constraints.
The constraints proposed by Henglein for inference of global tagging optimization of Lisp
programs [46] and for binding-time analysis in partial evaluation [45] are similar to Term-
constraints with top, but no bottom. A constraint Fq < FE in these systems is satisfied if
either FEy is top, or £y = E5. However, in certain variations of the tagging and binding-
time analyses, further constraints are placed on E; if Ey is top, namely that if £; has the
form ¢(Ej,.., E}), then E! = T for i = 1..n. Henglein shows that such constraints can be
solved in nearly linear time. These extra constraints on the sub-expressions of E; cannot
be expressed in our current formulation of mixed constraints.

The notion of row types was introduced by Wand [86]. He later pointed out
that his algorithm for solving equality constraints between type and row expressions may
not terminate due to the introduction of fresh row variables [87]. The fix to Wand’s non-
termination problem is similar to the termination argument we used for splitting closed rows.
Both ideas are based on the formalization of record types by Rémy [73]. Rémy proposed an
extension of the ML type system with extensible record types. Rémy recognized that Row-
variables need an annotation indicating the set of labels that may not be present. He writes
this annotation as a superscript x’, whereas we introduced domain constraints. Type
inference for Rémy’s record extensions are based on equality constraints between closed
rows. Record subtyping is obtained in his system solely through parametric polymorphism.
Jategaonkar and Mitchell [47] consider a type system and type inference for an extension
of ML. with records and atomic subtyping. They provide an inference algorithm based
on unification [75] and atomic subtype resolution [63]. Ohori [65] presents a type system
similar to the one of Rémy for adding extensible records. Type inference is again based on
equality constraints and implemented through an extension of unification. Record subtyping
is obtained through bounded parametric polymorphism. So far, all record type inference
systems described are based on equality constraints that are solved through an extension to



105

the unification algorithm. The only type inference system we are aware of that uses inclusion
constraints between records is by Stansifer [78]. He studied type inference in the presence
of record and variant types. The constraints arising in his type derivations between variant
rows correspond to constraints between minimal Row-expressions, and the constraints on
record types correspond to constraints on maximal Row-expressions. Stansifer did not give
any constraint resolution rules or consistency criteria for the generated constraints. The
resolution of minimal and maximal Row-constraints presented here can be seen as filling in
that gap.

Particular instances of mixed constraint systems have been described in the litera-
ture in the past. Type systems with record types have already been described above. They
fall into the category of mixed Term and Term-Row expressions and constraints. Another
category of mixed expressions and constraints arise in effect systems [54, 55, 49, 80, 82]. Ef-
fect systems generalize type systems in that they also infer a description of some behavioral
aspects of evaluation, usually side effects. Examples of side effects are reads and writes
to the store, sending or receiving messages, and non-local control transfers (for example
exceptions). Effects are naturally described as sets. Classic effect systems are instances of
mixed Term and Set expressions and constraints, with the additional property that there
are no mixed Set-constructors, i.e., Term expressions don’t appear in effects. Lucassen and
Gifford [55] describe type and effect inference rules using a subset relation on types induced
by the subset relation of effect sets contained in the types. Such constraints correspond to
mixed FlowTerm-Set constraints. However, they do not show how to solve such constraints
and, in fact, in a later paper drop the subset constraints for equality constraints, obtaining
a Term-Set instance of mixed constraints, which they solve with generalized unification [49].
Similarly, Tofte and Talpin [82] use a mixture of types and sets in an effect system to in-
fer allocation and deallocation points of memory regions at compile-time. Their inference
rules are also based on equality constraints which they solve using a generalized unification
procedure. In Section 8.2 we describe an effect system for computing uncaught exceptions
in Standard ML programs based on three different mixed constraint systems, one of which
we have published earlier [25]. The exception inference system generalizes previous effect
systems in that effect sets also contain mixed constructors.

Mossin [64] independently studied a form of mixed constraints in the context of
flow analysis for higher order functional programs. In his formulation, flow analysis com-
putes information about how values flow through a program. Every expression constructing
a value is tagged with a label. The result of a flow analysis is then a mapping of program
points to sets of labels. He formulates flow analysis as a type system, where standard types
for functional programs are augmented with label annotations. Constraints between anno-
tated types are similar to mixed FlowTerm-Set constraints. However, Mossin’s formulation
separates the type inference from the flow analysis. During flow analysis, the type structure
of the program is already known, and only constraints between the label annotations are
generated and solved. Furthermore, his resolution algorithm is based on the fact that the
label sets only contain constants and variables and that no non-trivial upper bounds on
label sets are added as constraints. As a result, the label set constraint graph is trivially
consistent and needs not be closed under transitive or structural rules. This property results
in an pseudo-linear time algorithm for computing the flow graph. Pseudo-linear refers to



106

the fact that the algorithm is linear in the size of the type structure of a program, but the
type structure itself can be exponential in the program size. However, many researchers
have argued that in practice programmers don’t write programs with huge types, for such
programs would be hard to understand. Thus in practice, the size of the type structure is
often of the same order as the program size. Individual queries about labels sets can be
answered in linear time by a depth-first search in the flow graph. Computing all queries
results in a quadratic algorithm.

Independently, Heintze and McAllester [42] developed essentially the same idea
for performing closure analysis of ML programs. Each lambda expression is labelled and
types are augmented with label annotations. They compute a flow graph similar to Mossin
in pseudo-linear time and are able to answer individual queries in linear time.

There is a large body of work on atomic subtyping constraints starting with
Mitchell [63] and later Fuh and Mishra [32], which we do not review here since the current
formulation of mixed constraints does not have a notion of atomic subtyping. It would
however be entirely plausible to add another sort for expressions with an atomic subtype
relation.



107

Part 11

BANE






109

Chapter 7

BANE: An Implementation of
Mixed Constraints

This chapter describes the implementation of the BANE library, discussing impor-
tant engineering decisions and algorithmic ideas supporting the resolution of large constraint
problems. BANE (the Berkeley ANalysis Engine) implements a resolution engine for mixed
constraints based on the algorithm for solving conditional constraints presented in Chap-
ter 6.

BANE is implemented as a library in Standard ML of New Jersey [9] and encom-
passes about 20,000 lines of code.

Section 7.1 describes implementation aspects common to all sorts, in particular
the representation used for constraint graphs. The subsequent sections describe aspects
specific to the implementation of each sort. Finally, Section 7.6 describes BANE’s support
for polymorphic constraint-based analysis.

7.1 Constraint Graph Representation

This section describes BANE’s representation of constraint graphs. Recall from Chapter 5
and Chapter 6 that constraints can be simplified to inductive constraints on variables. In
terms of graph edges, each inductive constraint represents an edge between two mixed ex-
pressions, where at least one endpoint is a variable. This fact enables a graph representation
where edges are stored as adjacency lists on variable nodes. Note that graph representations
based on adjacency matrices are not practical since they require space quadratic in the num-
ber of nodes even if the graph is sparse. BANE’s basic assumption is that the final (closed)
constraint graph is sparse, i.e., the number of edges will be roughly linear in the number of
nodes. Constraint problems with inductively closed graphs containing a quadratic number
of edges are not expected to scale well. As we show in later sections, BANE uses techniques
to restrain the blowup of edges and maintains sparse graphs for many constraint problems
that would otherwise exhibit a quadratic number of edges.

We use ML datatype declarations to specify the shape of the data structures
described in this chapter. An ML datatype declaration has the form



110

datatype dty = C; [of ty1] ... Cp [of ty,]

where dty is the name of the declared datatype, and the C; are value constructors.
Value constructors are either constants, or they carry an argument of type ty;. A value of
a datatype dty is either one of the constants Cj;, or a constructor C; applied to a value of
type ty;.

The next subsection describes the representation of nodes in our constraint graphs,
followed by a subsection on the representation of edges. Section 7.1.3 describes alias edges,
a special kind of edge to represent equality constraints. Section 7.1.4 describes how sets
of mixed expressions are represented efficiently. Section 7.1.5 describes a technique for
performing online cycle elimination in the constraint graph which forms one of the core
techniques of BANE for scaling to large constraint problems.

7.1.1 Nodes

Nodes are essentially mixed expressions. The datatype for mixed expressions used by BANE
has the following form

datatype me = Var of varinfo

| Cons of {con:constructor, args: me list}

| Row of {fields: {l:1label, e:me} list, rest:me}
| EmptyRow

| Zero

| One
|

|

|

|

|

|

LUnion of me list

RInter of me list

LInter of {v : me, m : me}
RPat of {e : me, m : me}
Cond {co:condition, e : me}
Neg of constructor list

The value constructors for mixed expressions consist of a variable constructor Var
with associated information of type varinfo which we describe in the next section, a value
constructor for constructor expressions Cons with an argument record containing a value
for the constructor con and the list of argument mixed expressions (args). A record in
ML {1, : ty1, ..., 1, : ty,} is similar to a struct in C with fields /y../, containing
values of types tyi..ty,. An ML type of the form ty 1list is a datatype for lists of elements
of type ty. The value constructor Row is used to represent Row-composition (I : E;)4 o E,
where fields is the list of label-expression pairs (I : E;) and rest holds the composed
expression F. The constants EmptyRow, Zero, and One represent the empty Row (), the
minimal expression 0, and the universal expression 1. Value constructor LUnion forms L-
unions for Set-expressions, i.e., unions appearing in L-contexts. Similarly, RInter forms
intersections appearing in R-contexts. Value constructor LInter represents L-intersections.
This constructor thus makes the invariant explicit that L-intersections must be of the form
X N M, i.e., a variable intersected with an M-expression. Similarly, constructor RPat forms
R-patterns Pat[E, M] which abbreviate the R-union E N M U~-M. Value constructor Cond

is used to represent conditional expressions C = Eand C == E. The particular kind



111

is always apparent from the context. Finally, constructor Neg represents cofinite negations
of Set-constructors —{cy,... ,c,}. We don’t give the explicit form of constructor values,
conditions, and labels. Constructor values simply contain the name and the signature of a
constructor, and conditions are sets of atomic conditions of the form X N M.

A couple of remarks about the expression representation are in order. The actual
implementation uses a less verbose representation, where the constants EmptyRow, Zero, and
One are represented as special cases of the other constructors. L-unions and R-intersections
formed by LUnion and RInter are never empty, i.e., 0 and 1 are uniquely represented by
Zero and One. M-expressions are formed using the constructors Zero, One, Cons, Neg, and
LUnion. BANE uses a common datatype to represent expressions for all sorts. Expressions
for a particular sort only use a subset of all the value constructors given above. The
use of the common datatype is motivated by the need to avoid code blowup. There is
a good amount of code that can be shared among the sorts s, ft,t, and among the Row-
sorts r(s), r(ft), r(t). If each sort is given a separate datatype, we end up with six distinct
mutually recursive datatypes and code for one sort cannot be applied to expressions of other
sorts. Since constructor arguments can refer to any other sort, an extra common datatype
that represents expressions of any sort is needed nevertheless. Although a clean separation
of sorts at the ML-typelevel would be desirable, ML’s lack of mutually recursive modules
makes such an approach impractical.

For similar reasons, we do not use separate datatypes to represent L-compatible
and R-compatible expressions. It is important to note that the common representation of
mixed expressions is only visible internally in BANE. At the library interface, expressions
of different sorts are given distinct ML types. Thus an analysis written using BANE as a
library enjoys the benefits of ML-typechecking for avoiding programming errors related to
the confusion of distinct sorts.

The nodes of constraint graphs are now represented by mixed expression val-
ues of type me, with the restriction that Set-expressions do not contain L-unions and R-
intersections at top-level. Constraints involving L-unions and R-intersections are readily
broken up into constraints without L-unions and R-intersections using the resolution rules
given earlier

E1UEy Cs B3 < Fi1 Cy E3 N Ey C, B3
E.CsEBoNEy < FEi Cy By N By C, B3

7.1.2 Edges

As outlined before, edges are represented as adjacency lists on variable nodes. The adjacency
lists are stored in the variable information varinfo associated with each variable node.

datatype varinfo = LU of {lb : meset, ub : meset}

The field 1b contains a set of mixed expressions (type meset) representing lower
bounds on the variable, i.e., if £ € 1b of a variable X, then the edge F — X is present.
Similarly, ub contains a set of mixed expressions representing upper bounds on the variable.



112

Each graph edge is represented uniquely as either a predecessor edge, or a successor
. . M,C
edge. Recall from the previous chapter that edges are either of the form £ —— X where

FE is a source, X L’C FE where F is a sink, or the constraint contains top-level variables on
both sides. (Recall that sources and sinks E are mixed expression of the form 0, 1, ¢(...),
(l:EjaoK,or ~{ci,...,cp}, where K is 0, 1, or ().)

The first form is always represented by placing the expression C' == ENM
in the set of lower bounds of X. Similarly, the second form is represented by placing
C = Pat[E, M] in the set of upper bounds of X.

Recall that we associate an index (a unique integer) o(X) with each variable X
thus creating a total order on the variables. The representation of edges where both sides
contain top-level variables depends on the respective order of the top-level variables. These

remaining edges are of the form (I : Ej)4 o [V] REEN X, X RN (l:E)ao[Y], and X ELEEN
Y, where [)] stands for Row-mask expressions involving variable } (Section 5.4.4). The
resolution of Row-constraints in Section 5.4 guarantees that we can transform constraints

into inductive constraints, i.e., o(}) < o(X) in the edges (I : Ej)4 o [V] A X, and

x5 (I: Ej)a0[Y]. Thus, the first form is represented by adding C == (I : E}) 40[)] to
the lower bounds of X, and the second form is represented by adding C == (I : E;)40[)]
to the upper bounds of X.

Finally, an edge X M—’C> Y is represented by adding C == XN M to the lower
bounds of Y, if o(X) < o(Y), and by adding C = Pat[), M] to the upper bounds of
X, if o(Y) < o(X). We call this representation of the edges the inductive form (IF) of the
graph. Inductive form graphs have the property that the top-level variables ) in any lower
or upper bound expression of variable X have indices strictly less than X. We thus call all
edges in an inductive graph inductive edges since they correspond to inductive constraints.

The order o(+) on variables used by BANE is simply the order in which the variables
are generated, and we call this order the gen order. The particular choice of o(-) influences
the number of edges in the closed graph. In practice, we have compared the gen order to
randomly generated orders and found that there was no significant difference. The gen order
however has some pleasing properties that we exploit to prove termination when introducing
fresh variables.

7.1.3 Alias Edges

In the subsequent sections it is convenient to use an additional kind of graph edge called
an alias edge. An alias edge X — E is a directed edge from a variable X' to an expression
E. An alias edge X — E is inductive, if each top-level variable ) € TLV(E) has index
lower than o(X). We only consider constraint graphs with inductive alias edges. An alias
edge abbreviates an equality between X and F that could be represented with two edges
E — X and X — E. Note that if the alias edge is inductive, so are the two constraints it
abbreviates. The advantage of alias edges however does not come from saving a single edge
in the graph. Instead, we maintain an invariant on X, that if ¥ — F is an inductive alias
edge in a constraint graph G, then there are no other alias edges X — E’, no L-inductive
edges E' — X and no R-inductive edges X — E’ in G. If there exists an alias edge X — E



113

100000 g

Frequency ©
o Percent Total Edges  +
10000 | o o
o
1000 | ‘
o
.
100 MWW+WW*WMH
e o
£
+ o .
10 | % .
000 o o
1k . o= J
1 10 100 1000 10000
Bound size

Figure 7.1: Example frequency of bound sizes

in G, then we say that X is aliased in G.
This invariant is enforced by the varinfo datastructure on variables by adding a
variant Alias containing the aliased expression E.

datatype varinfo = LU of {lb : meset, ub : meset} | Alias of me

The advantage of alias edges comes from the possibility to compress alias paths.
An alias path X —=*E is a sequence of alias edges and variables X; ... X, such that X = A,
and X; — X1, and X, — E. If G contains an alias path X—*E, then the unique alias
edge X — X, may be replaced by X — E without changing the solutions of the constraints
represented by G. This path compression is equivalent to Tarjan’s path compression in the
union-find algorithm.

For the moment we only consider non-recursive aliases that are L- and R-compatible.

Definition 7.1 An alias edge X — E is non-recursive, if E is non-recursive in X. We
say that E is non-recursive in X if X does not appear in E, and for all aliased variables Y
in E with alias paths Y—*E', E' is non-recursive in X.

Assuming that X is not aliased in the current graph, and its lower bounds are
1b(X) and its upper bounds are ub(X), an alias edge X — E can be introduced into
a graph by replacing the variable info associated with X by Alias F, and adding the
constraint L C; E for each L € 1b(X) and the constraint E C; U for each U € 1b(X).

7.1.4 Expression Hashing and Bound Representation

Edges in the constraint graph are represented as sets of mixed expressions in the upper
and lower bounds of variables. During constraint resolution, some of these sets grow to
substantial size. Even if we assume that the final graph is sparse, there can still be many
nodes whose lower or upper bounds have size proportional to the number of nodes in
the graph. Such cases do happen in practice, and it is thus crucial that operations for
membership test and element addition on these sets be constant amortized time. Figure 7.1



114

shows an example edge distribution for a constraint graph obtained with the points-to
analysis described in Section 8.1. The graph contains 59600 variables nodes and 209139
edges. The x-axis represents the size of a variable bound (number of expressions in lower
and upper-bounds). The frequency plot represents the number of variables in the graph
with a particular bound size. There are numerous variables with bound sizes larger than
100 and even larger than 1000 expressions. Note that there is one variable with a bound
size of 4500. The second plot (Percent Total Edges) shows that most edges appear on
variables with small bounds. A point (z,y) of the second plot states that y percent of the
total number of edges appear in bounds of variables with bound size less or equal to x.
For example, 12% of edges appear on variables with only one expression in their upper and
lower-bounds.

Since expressions themselves can be large, we do not want to structurally compare
them. Instead, we associate a unique integer id(E) with each mixed expression E built
in BANE. The association of expressions and their id’s is stored as an extra field on the
expression itself. In order to generate the same id if the same expression is built twice,
BANE uses hash-consing, i.e., each syntactically distinct expression is represented at most
once in memory. Hash consing guarantees the unique mapping between expressions and their
id’s, and furthermore supports maximal sharing of expressions, thereby reducing memory
requirements. The expression hash table is implemented using weak pointers, (pointers that
do not keep an object alive when otherwise unreachable) in order to reclaim storage of
expressions no longer in use. The hash table grows dynamically when full by doubling the
table size and rehashing.

The unique id associated with each expression E enables the use of hash-tables to
represent sets of expressions. A set is represented as a pair of a list and a small hash-table.
The list contains the elements in the set (no duplicates), and the hash-table contains the
unique ids of all expressions in the set. To test membership of E in the set, it suffices to
test whether id(FE) is in the hash-table. Adding an expression E to a set reduces to testing
membership of F, and if not present, consing F onto the head of the list and adding id(E)
to the hash-table. The hash tables used for sets are initially very small (2 elements) and
grow dynamically by doubling the table size when full and rehashing.

The use of individual hash tables per bound instead of using a global hash table
representing the presence of edges in the constraint graph is motivated by the desire to
prune unreachable variables from constraint graphs efficiently (Section 7.6). Using local
hash tables, unreachable variables and their edges can be left to the garbage collector. In
the presence of a global hash table, edges incident on unreachable variables would have to
be removed individually.

7.1.5 Online Cycle Detection and Elimination

The performance of constraint resolution can be improved by simplifying the constraint
graph at various times during the resolution. Prior work on constraint graph simplification
has shown that periodic simplification performed during resolution helps to scale to larger
analysis problems [24, 30, 58], but absolute performance is still unsatisfactory. One problem
is deciding the frequency at which to perform simplifications to keep a well-balanced cost-
benefit tradeoff. Simplification frequencies in past approaches range from once for an entire



115

module to once for every program expression.

BANE contains a novel technique for a particular constraint graph simplification,
namely detecting and eliminating cycles. As we will show in the chapter on experiments,
cycles in the constraint graph are a key inhibitor for scaling to large Set-constraint problems.
This section describes the algorithm used in BANE for detecting and eliminating cycles in
constraints. The algorithm is applicable to all sorts.

. . 1, 1, 1
Cycles in the constraint graph are sequences of edges X} frue, Xy e, L e
X, where X7 = X,,. Such cycles imply that X} = X, = --- = A}, 1 in all solutions of the
constraints. In general, let V' be a strongly connected component in the graph, i.e., V is a

set of variables such that for all pairs (X, )) of variables in V, there is a path A ﬂv‘y
and a path yi%*x in G. Then the variables of V' are equal in all solutions. The idea is
to collapse the strongly connected component V to a single representative variable of V.

BANE takes the extreme approach to simplification frequency by performing cycle
detection and elimination online, i.e., at every update of the constraint graph. At first
glance, this approach seems overly expensive, since the best known algorithm for online
cycle detection performs a full depth-first search for half of all edge additions [77]. The
detection algorithm used by BANE is actually only partial and does not detect all cycles.
It is the partial aspect of it that makes it practical. Section 9.2 will show that our partial
detection costs only a small constant overhead per edge addition by only traversing a few
edges during the search. Nevertheless, many cycles are detected, boosting performance by
more than an order of magnitude for large constraint problems.

Note that it is not sufficient to use the well-known linear time algorithm to elim-
inate cycles in the initial unclosed constraint graph. The structural rules used during
constraint graph closure add new edges to the graph which may form cycles that are not
apparent in the initial constraint graph. Thus cycle detection needs to be performed during
the resolution.

We first show how to perform the detection of cycles, and then how cycles are
collapsed.

Partial Detection Algorithm

We would like to know whether adding an edge X —— Litrue —_— Y tota constraint graph G closes a
cycle. Thus we need to know whether G contains a path yiﬂ*x This question may be

answered in several ways. If we maintained transitive edges between all variables, then we

could simply query the presence of edge Y —— Loy However, maintaining full transitive

closure is expensive to compute and requires quadratic space in practice. Another way to
answer the query is to perform a depth-first search on the graph, starting at ), searching
for X, or doing a depth-first-search on the reverse graph starting at X and searching for
Y. Doing a full depth-first search however is still expensive, since on every edge addition a
very large part of the graph may be explored. What we would like is a way to restrict our
search by traversing only certain kinds of edges.

Fortunately, the inductive graph representation provides a very natural restriction.
1,true

Recall that each edge X —— Y is stored as a lower bound on Y if o(X) < o(})), or
as an upper bound on X if o(}) < o(X). Thus, inductive form doesn’t even allow a



116

Figure 7.2: Cycle detection in an example graph

standard depth-first search, since not all successors of a variable X are apparent in the
upper bounds of X'. Only successors with lower index than & are present. Similarly, only
predecessors with lower index than X’ are present in its lower bounds. Performing a forward
depth-first search in the inductive graph using only the inductive edges corresponds to a
restricted forward depth-first search in the graph, where an edge X — ) is only traversed
if o()) < o(X). Similarly, performing a backward depth-first search in the inductive graph
using only inductive edges corresponds to a depth-first search in the reversed graph, where
again an edge X — ) is only traversed if o()) < o(X).

Let an inductive path from ) to X be a sequence of edges 2y — Z9 — --- Z,
such that Y = 21, Z, = X, and the sequence of indices 0(Z1),0(2s),... ,0(Z,) is strictly
decreasing. Similarly, let a reverse inductive path from ) to X be a sequence of edges Z; —
Zy — -+ Z, such that ) = 2, Z, = X, and the sequence of indices 0(Z1),0(25),... ,0(Z,)
is strictly increasing.

Algorithm 7.2 The observation on depth-first search in inductive graphs translates into
the following strategy for detecting cycles when adding an edge X — ).

o If o(X) < o(Y) search for an inductive path Y—*X along successor or alias edges,
starting from the upper bounds of ). Prune the search whenever a variable Z is
reached with index lower than o(X), since in that case there are no inductive paths
from Z to X.

e If o(Y) < o(X) search for a reverse inductive path Y—*X, but search for the path
in reverse, i.e., starting from X, following predecessor or alias edges to lower indexed
variables. Prune the search whenever a variable Z is reached with index lower than
0()), since in that case there are no reverse inductive paths from Y to Z.

We illustrate the search algorithm using the example graph of Figure 7.2. The
edge X -----») is the edge we are about to add and which triggers the cycle detection. Plain
edges in the graph represent successor edges, i.e., edges Y——Z where the index o(}) is
larger than the index o(Z). Dotted edges represent predecessor edges, i.e., edges U «+--->W
where the index o(U) is smaller than o(W). The example assumes that the index o(X) is
smaller than o()). We are thus in the first case of Algorithm 7.2, searching for an inductive
path Y—*X along successor edges. In our notation, this path corresponds to a path using



117

AR - 1

Figure 7.3: The two kinds of cycles detected

only plain arrows from ) to X. The search finds such a path through Z. Note that the
search also explores node U, since it is reachable along a plain edge from ). However, node
W and it successors are not explored, since o(W) > o(U).

The above strategy only detects cycles of the two following kinds, illustrated in
Figure 7.3.

1. G contains an inductive path X;—*X,, and we add edge X, — AXj. In this case
o(X,) < o(X1) and we find the inductive path by searching along successor edges
starting from AX.

2. G contains a reverse inductive path X} —*4,, and we add edge &,, — X}. In this case
o(X1) < o(X,) and we find the reverse inductive path by searching along predecessor
edges starting from AX,.

Clearly cycles of length 2 are always detected. For larger cycles, this approach
seems overly restrictive, since the probability given a random index assignment of closing one
of the above cycles decreases exponentially in the size of the cycle. However, the inductive
transitive closure rule (ITCR) used to close the constraint graph adds some transitive edges
between variables. In fact, if X;..A,, form a cycle that has not been detected with the above
strategy, then ITCR adds the transitive edge X; 1 — &)1 1, through &), where & is the
variable with maximum index on the cycle. As a result, the cycle length is shortened by one
edge, giving cycle detection another chance. In the worst case, a cycle of length 2 will be
found between the two variables of minimum index on the cycle. Thus, inductive transitive
closure and the above cycle detection mechanism always finds a sub-cycle of every strongly
connected component in the graph.

We illustrate this mechanism for cycles of length 3. Every 3-cycle has the form
of one of the cycles in Figure 7.4. In the figure, the variable order assumed is given by
the variable indices. Variable X3 is thus the variable with maximum index on these cycles.
Consider the 3-cycle on the left of Figure 7.4. Since Xy C; A3 is an L-inductive constraint
and X3 C, A is an R-inductive constraint, inductive transitive closure adds the transitive
edge Ao——A to the graph. This edge addition generates a 2-cycle &p, Xy which is de-



118

Xy -, . ——

X3 X3

Figure 7.4: Possible 3-cycles

tected. Similarly, inductive transitive closure adds the edge & -----=X5 to the right graph of
Figure 7.4, forming a 2-cycle that is detected.

Collapsing Cycles

Once a cycle X;..4&, is found, it can be collapsed to avoid performing redundant work on
the cycle’s edges in the future. Collapsing the cycle requires choosing a representative X
among Xj..X, and introducing alias edges from the remaining variables on the cycle to the
representative. Furthermore, the lower bounds of each variable on the cycle must be added
as a lower bound constraint on X, and similarly for the upper bounds.

The choice of the representative X, for inductive graphs is given by the invariant
that alias edges must be inductive, i.e., X — X, implies that the index of X is larger than
o(X;). Thus the representative must be the variable with minimum index on the detected
cycle.

For the cycles we detect with the above strategy, the representative is the lower
indexed variable of the edge &, — X} that triggered the detection. Furthermore, there is
an important optimization that we can do when adding the bounds of the variables on the
cycle to the representative. If X;..X,, is the cycle we detected while adding edge X,, — X1,
then either o(&,,) < o(&}), in which case A, is the representative and the lower bounds of
the variables on the cycle are already present on A, or o(X1) < o(A},), in which case A} is
the representative and the upper bounds of the variables on the cycle are already present
on Xj. The reasoning is as follows:

e If o(X,) < o(X7) then there is an inductive path X;—*A,, and X, is the variable with
minimum index on the cycle. The inductive path implies that for any edge £ M—’C> X;

of a source E to a variable &X; on the cycle, there is already an edge £ M—’C> X, in
the graph (Section 6.2).

Similarly, for any edge Z M X; where o(Z) < o(&X,) the transitive closure has
already added the edge Z M Xy,. For any edge Z M X; where o(Z2) < o(&j),
but o(Z) > o(X,), there exists a variable X; on the cycle with index larger or equal
to o(A),) and index less than o(X;), such that the edge Z Me AX; is R-inductive,
i.e., represented as an upper bound on Z. Since &; is aliased to &), after the cycle is

. . . M,C . .
collapsed, it is not necessary to add the R-inductive edge Z —— X&), involving the
representative explicitly.



119

The above discussion establishes that when collapsing a cycle involving an inductive
path to the minimum indexed variable, only the upper bounds of the variables on the
cycle must be added to the representative. The lower bounds are already present.

e otherwise, o(X1) < o(X},) in which case there is a reverse inductive path X; —*X,, and
X1 is the variable with minimum index on the cycle. Analogously to the above case
one can establish that all upper bounds of variables on the cycle are already added as
upper bound constraints on X7 and only lower bounds must be added to Xj.

On Searching for Cycles

The choice of the minimum indexed variable as the representative for the cycle was given
by our invariant on inductive alias edges. Here we argue that this choice is actually crucial
to keep the cycle detection cost low. Consider for each variable X' in a constraint graph G
the set of reachable successors and the set of reachable predecessors defined as follows. A
variable ) is a reachable successor of X if 0()) < o(X) and there is a successor edge X — )
or alias edge X — Y in G, or there exists a variable Z with index o()) < o(Z) < o(X)
and an edge X — Z or alias edge X — Z, and ) is a reachable successor of Z. Reachable
predecessors are defined analogously, i.e., a variable ) is a reachable predecessor of X if
0()Y) < o(X) and there is a predecessor edge ) — X or alias edge X — ) in G, or there
exists a variable Z with index 0()) < 0o(Z) < o(X) and an edge Z — X or alias edge
X = Z,and ) is a reachable predecessor of Z. The cycle detection cost is essentially
defined by the number of reachable successors and predecessors of each variable in the
graph. When adding an edge Y — & and X is the higher indexed variable, cycle detection
visits each variable Z of index equal to or higher than o()’) in the reachable successors of X.
Similarly, when adding an edge X — ) and X’ is the higher indexed variable, cycle detection
visits each variable Z of index equal to or higher than o()’) in the reachable predecessors
of a variable X.

Collapsing cycles to the minimum indexed variable on the cycle decreases the size
of the reachable predecessor or successor sets of the variables on the cycle. Suppose we
detect a cycle X;..X, when adding edge X,, — X; and the index of A is less than the index
of X,,. Then variables X;..&,, form an anti-inductive path. We add alias edges from each X;
to A1. Since X is in the predecessor set of every &; on the cycle, the set of predecessors of
X is reduced to the set of predecessors of X;. Consider the predecessor edges that are added
to A1 as a result of collapsing the cycle. These edges are the predecessor edges Z — &; of
variables X; on the cycle where o(Z) < o(X). These edges are also added as predecessor
edges on A if we add the edge &,, — X instead of collapsing the cycle, since the inductive
transitive closure will add edges X; — &) for each X on the cycle.

Now consider the reachable successors of each X;. After collapsing the cycle, the
reachable successors of each X; are equal to the reachable successors of X;. We’ve already
seen that closing the graph under the edge X,, — A} instead of collapsing the cycle adds
edges X; — X for each A;. Thus the set of reachable successors of each X includes X} in
that case. Collapsing the cycle can only make the set smaller.

The argument for the case where we collapse a cycle X;..&, and o(X1) > o(&},)
is analogous. Now consider what happens, if we collapse the cycle to the highest indexed



120

variable &, instead of &X;. Collapsing the cycle involves adding all successor edges of each
X; to X,. Since o(X,) > o(X;), the reachable successors of X, after collapsing the cycle is
the union of reachable successors of any AXj. This set is potentially very large. A similar
argument applies to the reachable predecessors when collapsing the dual kind of cycles to
the maximal index variable.

7.1.6 General Constraint Resolution Algorithm

This section briefly describes how constraints are transformed into inductive constraint
graphs. The algorithm given incorporates cycle detection and alias edges, topics not dis-
cussed in Chapters 5 or 6.

Algorithm 7.3 Given a constraint system S, let the constraint graph G be initially empty.
Apply the function resolve below to each constraint C — E; Cg Eo in S.

resolve(C,E;, E>)

if Ey Cs; BE> is L-inductive (F; = A5) then
if X, is aliased to FE)}, then
resolve(C,E,,E})
else if F; is a variable X; and C is true then
run cycle detection on A} — A,
if there is a cycle X, ..A;, then
for each & # Ay in A&j .4, do
add an alias edge & = X
add upper-bounds of X; to A
endfor
else
update_lower_bound(C, Xy, A5)
endif
else (F; is a source)
update_lower_bound(C', E;,As)
endif

else if F; C; E» is R-inductive (F; = AX}) then
if X) is aliased to Ej, then
resolve(C,Ef,E»)
else if Fy is a variable X5 and C is true then
run cycle detection on A} — A
if there is a cycle A&, ..A;, then
for each &; # A5 in &j; . 4&;, do
add an alias edge A& S Xs;
add lower-bounds of A; to A
endfor
else
update_upper_bound(C, X}, Xs)
endif
else (F> is a sink)
update_upper_bound(C, X, E>)



121

endif

else (Fy Cg4 E5 is not inductive)
apply a resolution rule of Chapter™5
if the constraint is inconsistent, stop.

else
Ey Cs E5 is equivalent to a set of simpler
constraints C; = (E11 Cs, Eo21),...,C, = (E1n Cs,, Ean)

for each 1 =1..n do
resolve(C A C;,E; ,E)

endfor

update_lower_bound(C,E,X)

if ¢ = F not in 1b(X) then

add C = FE to 1b(X)
for each U in ub(X) do
resolve(C,E,U)
endfor
endif

update_upper_bound(C, X, E)

if ¢ = FE not in ub(X) then

add C = FE to ub(X)
for each L in 1b(X) do
resolve(C,L,E)
endfor
endif

Our restriction to inductive alias edges guarantees that the constraint Fy C; Fo
that results from expanding an aliased variable X has top-level variables with indices strictly
lower than o(X’). Thus, if the constraint has any top-level variables left, further rewrite
steps must eventually transform all constraints involving top-level variables into inductive
constraints. For constraints without top-level variables either the constraint is trivially
satisfied, the constraint has no solution, or one of the structural resolution rules 5.7, 5.59,
5.21, or 5.27 is applied, which generate constraints on sub-expressions of Fy and Fs. The
restriction to non-recursive aliases guarantees that any variables in the sub-expressions of
FEq and E5 can be expanded as well without generating an infinite expansion.

In practice, BANE implements a specialized resolve function for each sort. The
specific details of these functions are discussed in the following sections. The resolve
functions are mutually recursive due to the need to invoke resolution of constraints of other
sorts at sort interfaces. To avoid having to write the resolve functions as a set of mutually
recursive functions in BANE (which would hinder extension and modularity of the code),
constructor signatures contain a set of function pointers, akin to a dispatch table in object-
oriented language implementations.



122

7.2 Set Sort

This section describes implementation features of BANE specific to the resolution of Set-
constraints. The implementation of Set-constraint resolution corresponds closely to Algo-
rithm 7.3 given above. Besides online cycle detection that is applicable to all sorts, BANE
contains another novel technique called projection merging that improves the scaling be-
havior of Set-constraints even further.

We first introduce projections and then describe the projection merging algorithm.

7.2.1 Projections

Projections come up frequently in program analysis problems where they correspond to
selecting a particular component of a data-structure.

A projection ¢ *(E) denotes the set J{u[Ai]o | ¢(A1,... , Ay) C E}. Projec-
tions are not primitive expressions in BANE, but can be expressed indirectly by a trans-
lation of a projection ¢ *(E) into a fresh variable X, along with the constraint E Cg
Pat[c(1%,... , X, ..., 1*7),¢(1*, ... ,1**)], where ¢ : t1---1, — s and X appears in the
ith position. The notation 1% stands for 1 if 1; = ¢, i.e., c is covariant in the jth argument,
and 0 if ,; = ¢, i.e., ¢ is contravariant in the jth argument. If ¢ is covariant in the projected
position (7), the constraint on the fresh variable X only requires X to be a superset of
the desired projection. In practice, this is not a limitation as long as X is only used in
L-contexts. To see this, note that if X appears only in L-contexts, then every constraint on
X is of the form X C; E, constraining X by an upper-bound. Thus, the lower-bounds on
X arise solely from the projection. Similarly, if ¢ is contravariant in the projected position
(1), then the constraint on X only requires it to be a subset of the projection. Again, this
is not a limitation as long as & is used only in R-contexts.

The resolution of the Pat constraint proceeds by filtering out all sets of the form
c(Eq,...,E,) from E and making them a subset of ¢(1*,... ,X,... 1),

E Cq Pat[c(1M,..., X, ... 1), (11, ..., 1')]
= Enc(l4,...,1m) Coe(lh,...  X,... 1)

Given a constraint ¢(Ey,... , E,) C E, the following sequence of constraints is generated:

c(Ery... ,Ey)Ne(l,... 1) Cge(1,... , X, ... 1)
— c¢(By,...,Ey) Coe(11,...,X,... 1)

The Pat formulation of projections imposes a fair amount of overhead. BANE thus introduces
an abbreviation for projection patterns of the form Pat[c¢(1,... ,E,... ,1),¢(1,... ,1)] with
the syntax ProjPat(c, 4, ), along with the resolution rule:

E,C,, FE ifc=d
j

C j '
d(En, aEa(d)) C ProjPat(c,i, B) <= { 0C,1 otherwise

The resolution of the abbreviation avoids an intersection and only accesses the position that
is being projected.



123

E, —i/~y!
Y . o)
| ) ALI 777777777 >W/
i)
E1.-\_4
AR .
|
|

Figure 7.5: Transitive edges to projection patterns

7.2.2 Projection Merging

As shown in the previous section, a projection c~*(E) is translated by BANE into a fresh
variable X, and the constraint £ C ProjPat(c,i, X’). Since ProjPat(c,i,X) is a sink, it
may propagate backwards in the constraint graph along reverse inductive paths through
the inductive transitive closure rule (ITCR). As a result, large numbers of these projection
patterns may accumulate on a single variable. Together with large numbers of forward
propagated lower bounds, this accumulation can cause a quadratic work and space blowup.

Figure 7.5 depicts the backward propagation of projection patterns. The graphs
contain a number of sources F;..E}, variables, and projection patterns. Projection patterns
ProjPat(c, i, E) are abbreviated in the graphs by ¢ *(E). The top graph depicts the situation
before transitive closure is applied. The relative order of the variables is again shown by
using dotted or plain edges. The bottom graph shows some of the edges added by the
inductive transitive closure rule. Note how the closure adds edges from variable X to
all projection patterns, since there are reverse inductive paths from X to all variables
with projection patterns in their upper bounds. On the other hand, the sources E;..Ej
are propagated forward along edge Y——X. The bottom graph does not yet show the
transitive constraints through variable A that are now added between all sources E;..E}j
and all projection patterns. The apparent redundancy is that the projection of X w.r.t. ¢
and argument ¢ is computed multiple times, once for each projection pattern.



124

The basic idea behind projection merging is that a set of projection constraints
{X Cs ProjPat(c,i, Eq), X Cs ProjPat(c,i, Es),... ,X Cg ProjPat(c,i, E,)}

is satisfied if all constraints ¢ }(X) C,, E; for j = 1..n are satisfied. Observe that for
any solution o, the projection of a fixed variable w.r.t. a fixed constructor ¢ and index 7 is
unique, and that we can replace the above system of constraints with the following system:

{X Cq ProjPat(c,i, &), X' C,. E1, X' C,, By,... , X' C,, E,}

where X! is a fresh variable generated as a function of X. The number of constraints is
the same, but consider the transitive constraints that ensue. Given lower-bounds Y; C
X,..., W C X, the original system propagates the n projection patterns to all ); where
o(Y;) < o(X). In the new constraint system, the only projection pattern propagated to
each ) is ProjPat(c,i, X'!).

This transformation introduces fresh variables. Consequently, the termination of
the resolution algorithm must be proven with the addition of this new rule. We first need
to be more precise in the formulation of the new resolution rule. Assume that each variable
X is part of a family A'®, where s is a sequence of constructor-index pairs.

S U{X* C ProjPat(c,i, B)} <= SU{X*® C ProjPat(c,i, X*(*)), x*(¢) c B} (7.1)

This rule applies before any transitive rules so that ProjPat(c, i, F) is not propagated. Note
that since the rule generates the variable X*(¢) as a function of X, constructor ¢ and index
1, there is only a single projection pattern per variable, constructor, index triple.

For the proof of termination, we restrict ourselves to the case where projection
expressions only contain variables ProjPat(c,7,)). The following invariant relates the indices
of variables appearing in projection constraints:

Lemma 7.4 Let Sy be a system of initial constraints. All variables in Sy are assumed
to have indices < 0. Further assume that variables generated by Rule 7.1 are assigned
consecutive indices starting from 1. Let S be any system of constraints obtained from Sy by
applying some of the resolution rules. The relation (o(X) > 0Vo(Y) > 0) = o(X) < o(Y)
holds for any constraint X C ProjPat(c,4,)) in S.

Proof: Note that the lemma holds for Sy, since o(X’) < 0 for all X. We show that any
new constraints involving a projection maintain the invariant.

Rule 7.1 We have o(X*) < o(X*(¢)) for the constraint X* C ProjPat(c,i, X*(°)) generated
from X* C ProjPat(c,i,)), since X*(¢) is generated after X.

Transitivity: From X C Z C ProjPat(c,7,)) transitivity generates X C ProjPat(c,,))
whenever o(X) < o(Z). By assumption, (o(Z) > 0V o(Y) > 0) = o(Z) < o(Y),
thus (o(X) >0V o(Y) >0) = o(X) <0o(Y).0

O Say that ) is a parent of X*(¢) whenever Rule 7.1 is applied with E = ). Let the

ancestor relation anc(X, Y*(“)) be the transitive closure of the parent relation.



125

Lemma 7.5 Given a constraint X C ProjPat(c,i, Y*(¢)) it holds that o(X) < o(Z) for any
ancestor Z of Y5 with o(Z) > 0.

Proof: By induction on the length of the ancestor relation anc”.

Base: Z is a parent of Y*(°): Then ) C ProjPat(c, 4, Z), and o()*) < o(Z) by Lemma 7.4.
If X # Y?, then we must have X C Y* and also o(X) < o()?) for transitivity to apply.
In any case o(X) < o(2).

Induction: Assume there exists an ancestor Z, such that anc”*!(Z, X), and not anc™(Z, X).
Then there exists a parent WH%) of Y5(¢) such that anc®(WH%), Z). The constraint
V¢ C ProjPat(c, 1, Wt(dj)) must result from transitivity of J)* C W' and the constraint
Wt C ProjPat(d, j, WH%)). This implies o(}*) < o(W') and by induction we have
o(W?') < 0(Z) and thus o()?) < 0o(Z). If X # Y* then X C Y* and o(X) < o(Y*). In
either case, o(X) < o(Z).0

O Now let Vj be the set of variables appearing in the original

finite constraint system Sy, and let I be the set of initial generated variables X, i.e., the set
of variables {X | 3V € Vj,s.t. ) parent of X'}. Since for each occurrence of an expression
ProjPat(c,7,)) in the original constraints, there is exactly one variable X, such that ) is
a parent of X', the set I is finite. Also note that every generated variable has an ancestor
in I. Now consider any constraint X C ProjPat(c,, Z) obtained during resolution. From
Lemma 7.5, we know that the index of X is less than the index of Z and all ancestors of
Z, and thus there exists W € I, such that o(X) < o(W). But this implies that X € I U Vj.
Termination follows directly.

Theorem 7.6 (Termination of Projection Merging) The number of variables gener-
ated through projection merging during resolution is bounded by 2A|Sy| - |C|, where C is the
set of constructors appearing in Sy and A is the mazximum arity of any constructor in C.

Note that termination is also guaranteed in the case where the resolution of other sorts
introduces fresh Set-variables (for example Rule 5.13), since any fresh variable X will have
index o(X) > 0 and the only constraints the resolution of other sorts can add on X is
a variable constraint X Cg Y or Y Cg X. Then Lemma 7.4 still holds, since a constraint
X Cg ProjPat(c, 4, Z) on the fresh variable X’ can only be generated by applying the inductive
transitive closure to X Cg Y and Y Cg ProjPat(c, i, Z), in which case ) has higher index
than o(X).

Section 9.3 shows the impact of projection merging on constraint resolution times.
For very large constraint problems, projection merging can improve resolution times by an
order of magnitude.

7.3 Term Sort

BANE’s implementation of Term-constraints makes two simplifying assumptions.

e Solutions where a Term-variable must be T; are not of interest and can be discarded.



126

e Conditions on conditional constraints are assumed to be eventually true in all solutions
and are discarded.

These two assumptions enable a faster constraint resolution algorithm which is essentially
the algorithm proposed by Steensgaard for conditional unification [79)].

Note that the above assumptions retain soundness of the resolution, but discard
completeness in favor of efficiency. These assumptions represent only the current implemen-
tation of BANE and are not fundamental limitations of the mixed constraint approach. To
avoid unexpected effects due to the assumption on conditions, BANE resolves the condition
status of any conditional Term-constraint using the algorithm given in Section 6.2.2 and
issues a warning if the condition cannot be proven true in all solutions.

To take advantage of Steensgaard’s algorithm, Term-constraints are not repre-
sented in inductive form. Instead, constraints of the form X C; E are always represented
as a successor edge in the graph, by adding E to the upper bound set of X (ub(X’)). The
algorithm essentially assumes that each variable X is | until proven otherwise by a lower
bound of the form ¢(...). A constraint of the form ¢(E1,... ,E,) C¢ X causes X to be
equal to ¢(FE1,...,Ey,) by the second assumption above. The constraint resolution thus
replaces the varinfo of X with an alias edge to ¢(FE1,...,E,) and adds the constraints
c¢(Eq,... ,Ey) C U for all U € ub(X). An occurs check guarantees that the alias is non-
recursive.!

Figure 7.6 gives the pseudo-code for Term-constraint resolution. Note that the
only transitive constraints are generated when an alias edge is introduced. No lower bounds
are ever added to any variable. For a variable &, the algorithm traverses each successor
edge of X at most once, i.e., exactly when an alias edge for X is introduced.

The non-inductive representation defies the cycle detection strategy outlined ear-
lier. If desired, inductive edges can be added to lower bounds solely for cycle detection. So
far, we have not encountered the need to add cycle elimination to Term-constraints.

Constraints of the form ¢(E1,... ,E,) Cy ¢(EY,... , E) are simplified by generat-
ing equality constraints E; =,, E. for i = 1..n. The equality constraints between E; and E!
are implemented using Robinson’s unification algorithm whenever possible [75]. Since Term
and FlowTerm expressions can be identified structurally, unification applies to them in all
cases. For Set-expressions, equality can be implemented using unification as long as both
sides are structurally equal up to variables. When the structure doesn’t match, symmetric
constraints E; Cg E! and E] C, E; are asserted.

7.4 FlowTerm Sort

BANE’s implementation of FlowTerm-constraints makes similar simplifying assumptions as
for Term constraints.

e Solutions where a FlowTerm-variable must be Lg or Ty are deemed uninteresting and
are discarded.

L1f recursive unification is used for the structural constraints and no mixed constructors of sort Term are
used, then recursive aliases can be permitted.



127

term-resolve(C,FE.,FEs)

if C not true in current constraints, issue warning endif
if Fy = A, then
if X; is aliased to Ej then
term-resolve(true, B, Es)
else
add E» to ub(X)
endif
else (E1 = C(Ell, .. aEln))
if Fy = X5 then
if Xy is aliased to E)} then
term-resolve (true, E , EY)
else
add alias edge X» S E
for each U € ub(X,) do
term-resolve(true, B, ,U)
endif
endif
else (EQ = d(EQl, .. ,Egm))
if ¢# d stop, no solution
else
for each 1 = 1..n
s is sort of ith argument of c
dispatch-unify(FEi;,Fs;) to sort s
endfor
endif
endif
endif

Figure 7.6: Specialized Term resolution



128

e Conditions on conditional constraints are assumed to be true in all solutions and are

discarded.

Again, these assumptions present implementation choices and are not fundamental. As
for Term-constraints, BANE issues a warning for conditional FlowTerm-constraints whose
condition cannot be proven true.

The first assumption above (discarding lg and Tg solutions) enables the use of
the following resolution rules:

(Bry... By C X = X =c(X%,... , X" A E; C, &%
X Cre(By,... By <= X =c(X,... X" A X9C,. E;

where the variables X are fresh variables similar to the fresh variables introduced during
projection merging. These variables are uniquely determined by variable X', constructor c,
and index 7. The first resolution rule above is justified by the fact that in all solutions where
X # Tg, X must be of the form ¢(X¢!,...  X°"). The second rule is justified similarly.

The equality constraint on X can be represented using an alias edge as outlined in
Figure 7.7. Termination of the resolution using the specialized rules can be proven similarly
to the case of projection merging, by showing that only a finite number of fresh variables
are generated. Termination hinges crucially on the fact that we expand the aliasing of a
variable X only when an inductive constraint on X is found and not when X is merely
an upper or lower bound on some other higher indexed variable ). Consider the example
constraint ¢(X) Cg X which forces a naive algorithm into an infinite loop. The resolution
of this constraint proceeds as follows: (assuming no other initial constraints)

¢ The constraint is L-inductive, so the algorithm in Figure 7.7 generates the fresh vari-
able X°! and adds the alias edge X — ¢(X°!).

e Then the constraint X Cg AX°' is generated. Since X! was generated after X, we
have o(X*“!) > o(X) and the constraint is L-inductive. Thus the algorithm checks the
aliasing of X“!, which is not aliased and we add X to the lower bounds 1b(X*!) of
xet,

If the algorithm expanded the aliasing of the lower indexed variable & instead, the algorithm
would enter an infinite loop.

The intuitive termination argument is that whenever a variable & is found to be of
the form c¢(X°,... , X"), the addition of the alias edge X — c¢(X°!,... , X°") only causes
variables ) with lower index than X to be expanded as well, since all upper and lower
bounds of A in inductive form have lower indices.

The above algorithm is novel to the best of our knowledge. Similar previously
published constraint resolution algorithms based on the expansion of a variable A to
c(Xe, ..., X") are restricted to non-recursive constraints [42, 64].

7.5 Row Sorts

BANE implements only one kind of Row-variable for each of the three Row-sorts r(s),r(t),
and r(ft), namely closed Row-variables. Minimal and maximal Row-expressions can still be



129

flowterm-resolve(C, FE;,Es)

if C not true in current constraints, issue warning endif
if Ky Cq Fy is L-inductive then
FE> is a variable Ab
if X, is aliased to E) then
term-resolve(true, E , E))
else
if By = C(Ell, M. aEln) then

add alias edge X» — c(X°!,... ,X°") and transitive constraints
for each 1 =1..n
s is the sort of the ith argument of ¢
dispatch—resolve(ﬂue,Eli“XCU
endfor
else
update_1b(true, Fy,X)
endif
endif

else if F; Cq F5 is R-inductive then
F{ is a variable X;
if X; is aliased to Ej then
term-resolve(true, B, Es)
else
if By = C(Egl, e ,E2n) then

add alias edge A} — ¢(X°!,... ,X°") and transitive constraints
for each 1 =1..n
s is the sort of the ith argument of ¢
dispatch—resolve(ﬂue,ﬁwj,EQJ
endfor
else
update_ub (true, X', E»)
endif
endif

else (E1 = C(Ell, e aEln) and E2 = d(Ezl, e ,EQm))
if ¢# d stop, no solution
else

for each ¢ =1..n
s is sort of ith argument of ¢

dispatch-resolve(true, Fy;, Es;) to sort s
endfor

endif
endif

Figure 7.7: Specialized FlowTerm-resolution



130

used, but are always of the forms ([ : Ej;)4 00 and ([ : E;) 4 o 1. Conditional constraints are
handled as for Term and FlowTerm-constraints.

Besides these assumptions, the resolution of Row-constraints is implemented using
the general resolution algorithm given above and the resolution rules described in Sec-
tion 5.4. The only implementation optimization is the use of an alias edge when a variable
X is split into (I : X)) 4X’. Note that the absence of minimal and maximal Row-variables
obviates the need to represent Row-masks.

Domain constraints are not currently implemented in BANE. With the absence
of minimal and maximal Row-variables, termination can be guaranteed if the original con-
straints observe the following invariant: If a Row-variable X appears in two composition
expressions (I : Fj)4 o X and (I : Ej)p o X in the original constraints, then A = B. This is
an idea of Rémy (for example [70]).

7.6 Polymorphic Analysis

BANE provides support for polymorphic constraint-based program analysis through poly-
morphic constrained mixed expressions. Polymorphic constrained expressions have the form

VX)X, .E\S

where X;..X, are the quantified variables, E is the underlying mixed expression, and S is
the system of constraints of the polymorphic expression.

Polymorphic constrained expressions are the natural generalization of polymorphic
types. Polymorphic types arise in languages supporting parametric polymorphism. For
example, in ML one can write a function length that returns the length of lists containing
any type of elements. The type of such a length function is Va.« list — int, where « is a
type variable standing for the type of elements of the list. The type of the length function is
polymorphic in the element type c. One way to think about the type of the length function
is that it has all types 7 list — int for any type 7. The justification for the polymorphic
type of length is that the length function does not assume anything about the element
types. In other words, the type of the elements is not constrained. One thus refers to the
quantified variables of such polymorphic type as universally quantified variables.

In languages with parametric polymorphism and type inference, polymorphic types
are usually inferred for let-bound variables, i.e., variables x bound in expressions of the form

let x = e
in

el
end

Here, the x is the let-bound program variable, e is the let-bound expression, and
e’ the let-body. The standard semantics of such let-expressions is that x is bound to the
value v which is the result of evaluating e. Occurrences of x within the let-body €’ then
refer to the value v. The let-ezpansion of the body €’ is the expression €'[e/x], i.e., €' where
all occurrences of x are replaced with e (while avoiding name capture). In conventional
programming language semantics, the let-expansion is equivalent to the let-expression



131

provided that e has no side-effects. Type systems for such languages generally state that a
let-expression is well-typed if and only if the let-expansion is well-typed (assuming e has
no side effects).

The basic idea of polymorphic type inference is to infer that the let-expansion
of a let-expression is well-typed without repeatedly performing the type inference for the
let-bound expression e at all occurrences of x in €’. This is achieved by inferring the most
general polymorphic type V.@.7 for e and instantiating this type to possibly different types
7; at each occurrence of x within ¢’. Instantiating a polymorphic type means replacing
the quantified type variables & with actual types in the underlying type 7. Coming back
to our example of the length function, instantiating the polymorphic type Va.a list — int
corresponds to selecting the appropriate type 7 list — int among all types of length such
that 7 is the type of the elements to which length is actually applied in the particular
occurrence.

For improved accuracy, program analyses are sometimes performed on the let-
expansion of a program. The let-expansion of a program may in principle be exponential
in size w.r.t. to the original program size, although in practice such blowups seem rare (at
least for standard type systems). The idea of polymorphic type systems can be carried
over to constraint-based program analysis. In this scenario, the analysis of the let-bound
expression e may yield a mixed expression FE along with a constraint system S. Let V
be the set of variables in S that were generated as part of the analysis of e and are not
shared with the analysis of any other part of the program. Call V' the local variables of
S. If we performed the same analysis on the let-expansion of the 1let-expression, we would
infer a mixed expression E; and constraint system S; for every occurrence ¢ of x in the
body ¢'. Furthermore, E;, S; and E;, S; will differ in exactly the local variables only. Thus,
we can achieve the same effect if we generate the quantified expression VV.E\S for the
analysis of the let-bound expression e and instantiate the quantified expression at each
occurrence of x in the body. In this case, instantiation refers to replacing each quantified
variable v € V with a fresh variable in E¥ and S. Note that this step is only valid if the
program semantics are such that the let-expansion is actually equivalent to the original
let-expression. Furthermore, the constraint system .S inferred for the let-bound expression
e must usually be consistent.

To support this style of polymorphic analysis, BANE provides the following fea-
tures:

e Multiple constraint graphs and automatic tracking of local variables.
e Quantification and instantiation
e Constraint simplification

The next subsections deal with each of these aspects in turn.

7.6.1 Multiple Constraint Graphs

If a mixed expression F and associated constraints S are to be generalized it is convenient
to keep the constraints S separate from other constraints S’ that may arise in other parts of



132

an analysis. To guarantee that constraints .S have a solution, they need to be solved before
quantification. Solving the constraints means building a closed inductive constraint graph
for S. In order to keep several systems S and S’ in solved form, BANE provides the ability
to maintain several distinct constraint graphs.

BANE’s approach to multiple constraint graphs is imperative. BANE has the no-
tion of a current constraint graph (CCG). Constraints are always added to the current
constraint graph. There are operations to create fresh empty constraint graphs and to
make a constraint graph current. The information associated with a constraint graph is a
set of variable-varinfo pairs, where the variable information associated with each variable
X contains the predecessor and successor edges of X or an alias edge.

Each variable node has a special field called the varinfo-cache. A variable X is
deemed current, if its varinfo-cache points to the varinfo data associated with X in the
current constraint graph. The varinfo-cache enables direct access to the edges of the CCG
through variable nodes without the need for a lookup operation. A constraint graph G
is made current by making each variable of G current, i.e., for each variable-varinfo pair
(X, i) in G the varinfo-cache of X is set to vi.

Each variable in a constraint graph G is either local or free w.r.t. to G. When a
fresh variable X is created, it is added to the current constraint graph and is then local to
the CCG. When a constraint £ Cg E’ is to be added to the current constraint graph, each
variable occurring within E or E’ that is not current must be added to the CCG as a free
variable with an initially empty varinfo structure. Thus the local variables of G are the
variables created while G is the current constraint graph.

7.6.2 Quantification and Instantiation

BANE provides a function to form a polymorphic constrained expression VV.E\S from a
given mixed expression F and the current constraint graph. The quantified variables V' are
the local variables of the CCG, and the constraints S are simply the constraints represented
by the edges of the CCG.

It is not always desirable to quantify all local variables, for example variables that
are later inspected to extract results from the analysis should not be quantified. Variables
to be excluded from quantification can be explicitly mentioned during the quantification
step.

Instantiation of a polymorphic constrained expression VV.E\S proceeds by creat-
ing a substitution o from V to a set of fresh variables V', adding the constraint o(E) C;
o(E') to the current constraint for each constraint £ C; E' in S, and returning the instan-
tiation o(E). The set of fresh variables V' are local to the current constraint graph.

7.6.3 Simplification

Naively quantifying mixed expressions and their constraint graphs obtained from the analy-
sis of let-bound expressions and instantiating the resulting polymorphic expressions at each
occurrence of the let-bound variable in the let-body as outlined at the beginning of this sec-
tion is often not practical. The constraint graphs associated with polymorphic expressions



133

may be large, containing many quantified variables. Since each instantiation generates fresh
variables, it is fairly simple to obtain an exponential blowup of variables and graph edges.

This blowup is reduced by simplifying the set of constraints S extracted from
the current constraint graph when quantifying over the local variables. Simplification of a
polymorphic constraint system VV.E\S w.r.t. the set of variables V' involves computing a
hopefully smaller constraint system S’ that is equivalent to S w.r.t. the free variables of
VV.E\S, i.e., variables occurring in S or E but not in V. We say that S and S’ are equivalent
w.r.t. to a set of free variables F, if for any solution o of S, there exists a solution o’ for S’
that agrees with o on F, and for any solution o’ of S’ there exists a solution o of S such
that o and ¢’ agree on F.

We make use of an alternative formulation of equivalent constraint systems. We
characterize a constraint system S not by its solutions, but by the local (or quantified)
variables and the possible consistent extensions of S. We say that S and S’ are equivalent
w.r.t. a set of local variables V, if for any set of constraints S” such that no variable of V
occurs in S”, the constraints S U S” are consistent if and only if the constraints S’ U S” are
consistent.

Simplification of constraint systems has been studied in the past by several re-
searchers, including the author [24, 29, 72, 7, 58]. BANE takes a less sophisticated approach
to constraint system simplification than for example Flanagan [29] or Pottier [72] in that no
entailment relation of constraint systems is used. BANE only prunes unreachable variables
and constraints, and performs minimization-mazimization.

Reachability classifies each variable in the current constraint graph as unreachable,
L-reachable, R-reachable, or both L- and R-reachable. We represent these four choices by
two bits associated with each variable, an L-bit and an R-bit. The reachability of a variable
X in a polymorphic constrained expression VV.E\S states in what contexts variable X may
appear in any extension of the constraints S with S” not involving any variables of V.

If a variable X is unreachable in a consistent system S, then no future constraints
can further bound X. Thus, X has no influence on whether an extension SUS” is consistent
or not. Thus, S is equivalent to S’ where X and all edges involving X’ have been deleted.

If variable X is L-reachable, but not R-reachable, then future constraints can
only add upper bounds on X. In this case X may be minimized without affecting the
consistency of any extensions S U S”. Similarly, if X is R-reachable, but not L-reachable,
future constraints can only lower bound &X. In this case & may be maximized without
affecting the consistency of any extensions S U S”.

The following algorithm computes the reachability of variables for a polymorphic
constrained expression YV.E\S obtained from a constraint graph G with local variables V'
and expression F.

Algorithm 7.7 Let L-mark and R-mark be the two procedures defined below. Initially,
mark the L- and R-bit of each free variable and call L-mark and R-mark on E. Then apply
the following steps until no more variables can be marked.

e If X is L-reachable, then call L-mark on each lower bound L in 1b(X) or on E if X is
aliased to F.



134

e If X is R-reachable, then call R-mark on each upper bound R in ub(X) or on E if X
is aliased to E.

where

L-mark(FE)
case E of
X => mark L-bit of X
|C(E1,...,En) =>
for each 7 =1..n do
if ¢ is a Term-constructor then
call L-mark(F;) and R-mark(FE;)
else
if ¢ is covariant in ¢ then
call L-mark(E;)
else (¢ contravariant in )
call R-mark(FE;)
endif
endif
endfor
|<l:El>AOE =>
call L-mark(FE);
for each [ € A do
call L-mark(E;)
endfor
| YNM => call L-mark(X)
| Pat[E, M] => call L-mark(FE)
| _=>;
endcase

and R-mark is the dual of L-mark.

If we know that each instantiation E' of the polymorphic constrained expression VV.E\S
generated from G will only appear on the left of a constraint, then we don’t need to call
R-mark on E, and analogously if each instantiation only appears on the right.

The marking correctly captures the reachability of variables in the constraint graph
since L-mark(F) correctly classifies the reachability of variables during the resolution of a
constraint £ Cg E' using the structural resolution rules, and similarly for R-mark. Further-
more, the repeat steps correspond to applying the inductive transitive closure rule.

To minimize a variable X, add an alias edge X — | |1b(X) from X to the union
of its lower bounds, provided this union is expressible in the sort of X and | |1b(X) is
not recursive in X. Minimization is always possible for Set-variables. Term variables never
have lower bounds, so they can be minimized to 0. FlowTerm and Row-variables can be
minimized only if their lower bound is empty or contains a single expression E. In the first
case the variable is aliased to 0, in the second case to E.

Similarly, to maximize a variable X, add an alias edge X — [|ub(&X) from X to
the intersection of its upper bounds, provided this intersection is expressible in the sort of
X and [ |Jub(X) is not recursive in X. Maximization is always possible for Set-variables.
Term, FlowTerm and Row-variables can be maximized only if their upper bound is empty



135

or contains a single expression E. In the first case the variable is aliased to 1, in the second
case to E.



136

Chapter 8

Example Analyses

This chapter describes two example program analyses expressed using mixed con-
straints and implemented using the BANE library. The first analysis is a points-to anal-
ysis for C based on Andersen’s algorithm [8]. It uses inclusion constraints between Set-
expressions and Row-expressions. The second analysis is an exception inference for ML
developed by the author [25, 26]. We study three distinct versions of this analysis. The
versions differ in their use of particular sorts and constraints. Experiments involving these
analyses are used in the next chapter to evaluate the scaling ability of BANE and the impact
of particular implementation techniques.

8.1 Points-to Analysis for C

Points-to analysis for C computes for each expression in a program a set of abstract memory
locations (variables and heap) that the expression may evaluate to. From this information,
a points-to graph can be derived. Graph nodes represent abstract memory locations and
edges represent points-to relations. More precisely, an edge from a location /; to a location
lo in the points-to graph states that the abstract location /; may at some point during
evaluation of the program contain a pointer to abstract location l5. Abstract locations refer
to program variables or syntactic occurrences of applications of memory allocation func-
tions (for example malloc). Figure 8.1 shows the points-to graph computed by Andersen’s
analysis for a simple C program.

Points-to analysis has been well studied (for example [88, 15, 53, 44, 23, 79]). Here
we examine the particular points-to analysis proposed by Andersen [8], which is based on
Set-constraints. Our interest in this study is not primarily the precision of the points-to
information computed, but the execution time required to compute the information. Past
implementations of points-to analyses based on Set-constraints suggest that the approach
does not scale to large programs. As we will show through extensive measurements in
Chapter 9, points-to analysis derived by solving a system of set constraints is practical even
for very large programs.

Andersen’s points-to analysis is formulated as a non-standard type inference sys-
tem, based on a collection of constants representing abstract locations {l1,..,1,} and a
collection of Set-variables, one per location {X},.., X, }. Set-constraints are used to model



137

a = &b; b

a = &c; a< \d
xa = gd; "

Figure 8.1: Example points-to graph

the flow of abstract locations through the program. The analysis infers a non-standard type
from the following language for each expression e in the program.

E:=1|X|*E

A type is either a location [, a type variable A} associated with a location [, or a derefer-
ence type *E. Type variables X; denote the set of locations pointed-to by location [. A
dereference type *E refers to the set of locations |J{X] | | € E}, i.e., to locations I’, such
that there exists [ in the set of locations of E, and [ points to I’ (or I’ € A}). The type of an
expression denotes the set of locations that the expression may evaluate to. The minimal
solution of the example in Figure 8.1 using Andersen’s formulation is

X, = {lp, lc}
Aflb = {ld}
X, = {la}

Andersen’s analysis is a global context and flow-insensitive analysis. The analysis
is global in that it requires the entire program to derive the pointer relationships. Context
insensitive means that the effect of a function call on the points-to relation does not depend
on the particular call-site. In other words, the effect of all calls to a particular function
are merged. Context insensitivity is generally faster than context-sensitive approaches but
may result in less precise information, since information from one call site flows back to all
other call-sites of the same function. Flow-insensitive means that the analysis treats the
statements of a C program as an unordered collection, evaluated in no particular order.

The crux of any points-to formulation using Set-constraints is in the handling of
indirect assignments of the form

*e1 = e2;

Andersen’s formulation uses a non-standard Set-expression *FE to refer to the locations
pointed to by E. The above statement is typed in Andersen’s formulation using the following
type rule:

€1 : E1

€9 . E2

Ey C xEy

*e1 = e9 : By

where the constraint Fy C *FE; expresses the intuitive meaning of assignment, that any
location e should be in the points-to set of each location pointed to by e;. The presence of



138

the non-standard Set-expression *E forces Andersen’s algorithm for solving the constraints
to be specialized to this application. Andersen uses thus a non-standard resolution rule
associated with *E for closing constraint systems:

FEq{ C xFy /\ZQEQ :>E1§/Yl

The rule should be read as follows. If F4 C *FE5 and | C FE» are constraints in S, then add
the constraint Fy; C X to S. As is apparent in this rule, Andersen’s formulation contains
an implicit association between each location [ and the Set-variable X; that represents the
points-to set of I. It is this implicit association that results in a specialized resolution
algorithm for Andersen’s points-to analysis. To express Andersen’s analysis in BANE, we
first show how to reformulate the types and constraints such that BANE’s generic Set-
constraint resolution can be applied. Section 8.1.2 then describes the constraint generation.
Finally, Section 8.1.3 illustrates the points-to analysis with a complete example.

8.1.1 Re-Formulation using Standard Set Constraints

The association between a location [; and its points-to set Aj, is implicit in Andersen’s
formulation and results in an ad-hoc resolution algorithm. We use a different formulation
that makes this association explicit and enables the use of BANE’s generic Set-constraint
solver. We model locations by pairing location names and points-to set variables with a
constructor ref(l;, Aj,) akin to reference types in languages like ML [61].

Unlike the type system of ML, which is equality-based, Andersen’s points-to anal-
ysis uses inclusion constraints. It is well known that subtyping of references is unsound
in the presence of update operations (e.g., Java arrays [35]). A sound approach is to turn
inclusions between references into equality for their contents: ref(L;, X) C ref(Lg,)) <
LiCLy N X =).

We adapt this technique to a purely inclusion-based system using a novel ap-
proach.! We intuitively treat a reference I, as an object with a location name and two
methods get : void — A)_  and set : &}, — void, where the points-to set of the location
acts both as the range of the get function and the domain of the set function. Updating a
location corresponds to applying the set function to the new value. Dereferencing a location
corresponds to applying the get function.

Translating this intuition, we make ref a ternary constructor. The first argument
captures a set of location names, the second argument corresponds to the get function (rep-
resented by the range), and the third argument corresponds to the set function, represented
by its domain. Since functions are contravariant in the domain, ref is contravariant in
this third argument. Our location constructor is thus a pure Set-constructor with three
arguments having the signature

ref:sss—s

A location for a variable x is then represented by an expression ref(l,, A, &) (to improve
readability we overline contravariant arguments). We now show how to dereference and
update these locations using constraints. Dereferencing an expression E representing a set

Tt has recently come to our attention that this idea has also been suggested to Pottier by Cardelli and
independently by Trifonov and Smith as described in Pottier’s dissertation [72], page 154.



139

of locations is equivalent to computing the projection of the second argument to the ref
constructor. We have already seen how to model projection in BANE (Section 7.2.1) by
generating a fresh variable T (in this section we use T for temporary variables that are not
associated directly with abstract locations) and adding the constraint

E C Pat[ref(1,7.0),ref(1,1,0)]

The constraint makes 7 an upper bound on all locations pointed to by E. As explained in
Section 7.2.1, BANE provides a specialized abbreviation for this common pattern, called a
projection pattern. We can thus use the equivalent constraint

E Cg ProjPat(ref,2,7T)

Updating the points-to set of each location represented by an expression E with a set
of locations represented by E’ is similar to a dereference, but involves the contravariant
argument of the ref constructor. It suffices to assert the constraint

E C Pat[ref(1,1, E), ref(1,1,0)]

To illustrate how the above constraint adds E’ to the points-to set of any location in E,
consider the following example. Suppose E = T and ref(ly, X; , &, ) Cs E. Then the
transitive constraint ref(l,, X, , X)) Cs ref(1,1, E') generated through 7 and the above
constraints is equivalent to E' Cg A}, (due to contravariance), which is the desired effect.
As above for dereference, we can express an equivalent constraint with a projection pattern

E Cs ProjPat(ref, 3, E')

To extract the points-to set as a set of location names of a location ref (I, A, , A7, )
it suffices to project the first field of all ref constructors of A} . Let V), stand for the location
names in the points-to set of location ;. Add the constraint

X, Cs ProjPat(ref,1,)).)

The location names in the points-to set of x is the minimal solution of variable ) which
coincides with the transitive lower bound TLB()),) in this case, since the solution only
contains location constants.

8.1.2 Constraint Generation

Types and constraints are generated by applying the type rules in Figure 8.2 to the abstract
syntax tree of a C program. The rules assign a type (Set-expression) to each program
expression and generate a system of Set-constraints as side conditions. C has the notion of 1-
and r-values, where an I-value is a location that can be updated, whereas r-values are values
that cannot be updated. Quantities with l-values (such as variables) are automatically
converted to r-values if the context requires it. For example the assignment y = x; of a
variable x to a variable y implicitly converts the location of x (an l-value) to the value stored
in location x (an r-value) whereas y is not converted, since it is the location y that must



140

x : ref(ly, X, XL,) (Var)

e: B
&e :ref(0, B, 1)

e: E FE CqProjPat(ref,2,7) T fresh

(Addr)

o (Deref)
€1 E1 €9 . E2
Ey Cs ProjPat(ref,2,7) E; Cs ProjPat(ref,3,7) (Asst)
T fresh 5
€1=€9g ! E2
t :ref(le, X,,0) % :ref(ly, A, , AL)
lam(Ag, Rs) Cs A,
As Cos) (@i Xy, )i=1.m 0 1 (Fun)
Az, R¢ fresh
f(xy,...,%x,) {...}:0
e: E E Cg ProjPat(ref,2,7)
T gs Rf
T fresh (Ret)
return(e) : 0
ey : Ey e : kB
E; Cs ProjPat(ref,2,T;) 1=0..n
To Cs ProjPat(lam, 2, 7") Ty Cs ProjPat(lam, 1, A) (App)
(@i Ti)i=1.m 00 Cys) A PP

T, T', A fresh
egler,... en) 1 ref(0,77,1)

Figure 8.2: Constraint generation for Andersen’s analysis

be updated. To avoid separate rules for 1- and r-values the type rules in Figure 8.2 lift all
values to l-values and infer types for l-values only. Where necessary, the types of l-values
are converted explicitly to the types of the corresponding r-values by adding dereference
constraints. The (Var) rule for example gives x the type ref(ly, &, X)) which is the type
of the location of x (and thus the type of the l-value of x).

We now describe the remaining rules in Figure 8.2. Rule (Addr) for typing the
address-of operator (Addr) creates a reference to the type of its operand E by nesting F
inside a ref constructor. Note that an expression &e can never be used as an I-value in
C, but we nevertheless lift its type. Since the resulting value can only appear in a context
requiring an r-value, the type ref(0, E,1) will be explicitly converted back to the type of
the corresponding r-value, namely E. Thus the ref type assigned in (Addr) has no location



141

name and the contravariant argument is 1, since these fields will be ignored by the l-to-r
conversion step. The type rule (Deref) for the dereferencing operator does the opposite,
removing a ref constructor by projecting the covariant points-to set argument of E through
a projection constraint as discussed above. The first constraint in the assignment rule (Asst)
transforms the type Fs of the right-hand l-value e to the type T of its corresponding r-value
as in (Deref). The second constraint Fy Cg ProjPat(ref,3,7T) is the assignment constraint
described above, which makes 7 a subset of the points-to set of Fy and expresses exactly
the intuitive meaning of assignment: the points-to set E; of the left-hand side contains at
least the points-to set Ey of the right-hand side.

C functions are given types formed by the binary mixed constructor lam (for
lambda) with signature

lam:r(s)s —'s

which is analogous to the standard function type constructor - — -. The first argument of
lam is contravariant of sort Set-Row and stands for the domain of a function, in this case
a record of the formal parameters, where the ith argument is labeled by a;. The second
argument of lam is covariant and represents the range or return value of a function. Since
C allows function pointers, we also lift all functions to l-values. Rule (Fun) describes how
a function declaration is typed. The type for the l-value of the function f is a location
ref(l¢, X),,0) labeled by Il with points-to set &j,. The location of £ cannot be updated,
so the third argument is 0. The location of £ only points to the function £ and thus the
points-to set A}, only contains the set lam(A¢, R¢) which is expressed with the constraint
lam(As, R¢) Cs Aj,. lam(Ag, R¢) is the function type of £, A¢ is a Row-variable standing
for the sequence of formal parameters of £ and R¢ is the type of the r-value returned by £.
The Row-constraint As Cy(s) (a; : Xlxi>i:1..n o 1 models the flow of actual argument values
to the formal parameters. The l-types of the formal parameters x; are ref(ly,, Xlxl,,TXi).
Thus any lower bound on the domain A; of £’s function type will end up as a lower bound
on (a; : Xlxi)izl..n o 1 and consequently, each individual argument flows into the points-to
set Ay, of the corresponding formal parameter. The use of a maximal Row(o1) serves the
purpose of ignoring any extraneous arguments that might be passed to £.2 Note that the
types of the formal arguments are updatable locations, since in the body of function £, the
formal parameters are assignable like any other variable. The correspondence between the
function return type R and the body of £ is dealt with in the (Ret) rule for typing return
statements. The rule assumes that the return statement appears in the body of function
f. The type E of the l-value of e is converted to the type of the corresponding r-value 7
using the now familiar projection constraint. The constraint 7 Cg R then constrains the
return set R: to contain 7. Since the rule is applied to all return statements in the body
of £, the return set R¢ contains the union of all possible return values.

Finally, consider the rule for function application. Here eg is the function expres-
sion, i.e., an expression whose L-value is a location pointing to a function.? The l-values of

2We have found numerous C programs containing function applications that pass more arguments than
the function expects.

3C actually contains implicit dereferencing for function pointers appearing in the function position of an
application. Here we take the opposite approach, lifting constant functions to l-values and always performing
the dereference at the application point.



(1) £(r) { return(zr); }
(2) g(p’q’h) { *p = (*h)(q)§ }
(3) a = &b;

(4) a = &c;
(5) gla, &d, &f);

Figure 8.3: More complex C example

\d
/

Figure 8.4: Points-to graph of program in Figure 8.3

the actual arguments e; have types F;. The first set of constraints in the rule converts the
types of the l-values of eg..e, to the types 7T; of the corresponding r-values. The constraint
To Cs ProjPat(lam,2,7") projects the return set of the function type 7y into 7' and the
constraint 7y Cg ProjPat(lam, 1, A) makes the fresh Row-variable A a lower bound on the
domain of the function (recall that lam is contravariant in the first argument). The final
constraint (a; : T;)i=1., 00 Cy(s) A models the flow of the actual arguments 7; to the do-
main of the function (through variable A). We use a minimal Row-expression (c0) to avoid
inconsistent constraints when functions are applied to fewer arguments than expected. The
final type of the function application is 7" lifted to an l-value as in the rule (Addr).

8.1.3 A Complete Points-to Example

To illustrate the type and constraint generation rules, consider Figure 8.3 which contains an
example C program. The function pointers and indirect assignments generate the points-to
graph of Figure 8.4 which contains the points-to graph of the simple example of Figure 8.1
as a sub-graph. Line (1) declares an identity function f. Line (2) declares function g with
three arguments p, q, and h. The body of g applies h (which is thus a function parameter)
to q and assigns the result indirectly through p. Lines (3) and (4) assign the address of
variables b and ¢ to a. Line (5) calls g, passing a as p, the address of variable d as q, and
the identity function f as h.



143

We now give a detailed account of the type judgments and constraints generated
for this example. The type judgments and constraints generated for line (1) in Figure 8.3
are

£ :ref(lg, X),,0) r:ref(ly, X, XL,)
Iam(.Af,Rf) Qs A)f'lf .Af Q,(s) (a1 : Xl;) ol (81)
ref(l;, X, A5,) Cs ProjPat(ref, 2, 77) T Cs Re

The constraints on the second line arise from applying Rule (Fun) and the constraints on
the last line arise from applying Rule (Ret). Note that the second to last constraint implies
A, Cs Th, which together with the last constraint implies

A, Gs Re (8.2)

stating that the return set of f contains whatever r points-to. The type judgments and
constraints for line (2) are as follows. Applying Rule (Fun) to g generates

g : ref(lg, Xlg,O) p : ref(ly, /'\,’lP,X_lP)
q: ref(lqa Afvlqa')(_ltl) h: ref(lha leh’X_lh)
Iam(AgaRg) Cs Xlg Ag Cr(s) (a1 : X, a2 1 X, a3 Ay,) o1 (8.3)

Applying (Deref) and (App) to (*h) (q) generates
ref(In, &), , A, ) Cs ProjPat(ref, 2, 75) To Cs ProjPat(ref, 2, T3) (8.4)
ref(lq, X, X,) Cs ProjPat(ref, 2, Ty)
T3 Cs ProjPat(lam, 1, 4;) (a1 :T1) 00 Cys) Ax
T3 Cs ProjPat(lam, 2, T7) (*h) (q) : ref(0,7{,1)

which imply among other constraints

X Co o (8.7)
Xy Cs Ta
Applying (Deref) to *p and applying (Asst) to the entire assignment we obtain
ref (I, XZP,X_lP) Cs ProjPat(ref, 2, 75) *p: T
ref(0,7{,1) Cs ProjPat(ref,2, T) Ts Cs ProjPat(ref, 3, 7g)
which imply
Ay, Cs ProjPat(ref, 3, 7s) (8.9)
T Cs T (8.10)
The type judgments and constraints for line (3) are
b : ref(l, Xy, ) &b : ref (0, ref (I, Xy, &3, ), 1)
a:ref(ly, X, A,) ref (0, ref (ly, Xy, , X1, ), 1) Cs ProjPat(ref, 2, T7)

ref(la, A, Xi,) Cs ProjPat(ref, 3, 77)



144

which imply that ref(ly, Ay, &) Cs T7 Cs &), by contravariance of the third argument of
ref. The constraints generated for line (4) are similar and we thus have
ref(lba le’X_lb) Cs X,

_ (8.11)
ref(lc, cha ‘X‘lc) gs ‘X‘la

Finally, line (5) generates the following type judgments and constraints.

g : ref(lg, Ay, 0) a:ref(ly, X, A,)
d: ref(lg, Xy, X,) &d : ref (0, ref(lq, Xy, &), 1)
£ : ref(ls, X, 0) &f : ref(0,ref(lg, X),,1),0)

ref(la, X, X,) Cs ProjPat(ref, 2, T3)

ref (0, ref(lq, Ay, &),), 1) Cs ProjPat(ref, 2, T9)

ref (0, ref(ls, Xj,,1),0) Cs ProjPat(ref, 2, T1g)
0 (

ref(lg, &7,,0) Cs ProjPat(ref,2,711) 711 Cs ProjPat(lam, 1, 45)  (8.12)
(a1 : Tgyag : Toyasz : Ti0) 00 Cr(s) A2 (8.13)

These constraints imply

X, Cs Ts (8.14)

ref(la, X1, A1,) Cs To (8.15)
ref(le, i, 0) Cs Tio (8.16)
X, Cs Tia (8.17)

g

By (8.3), (8.12), and (8.17) we obtain lam(Ag, Rg) Cs ProjPat(lam, 1, A3) and thus As Cy()
Ag by contravariance of the first argument of lam. Then by (8.13) and (8.3) we obtain

Ts Cs A, (8.18)
To Cs A, (8.19)
Tio Cs A, (8.20)

connecting up the actual arguments with the formal parameters of g. By (8.16), (8.20) we
obtain

ref(l, X, 0) Co X, (8.21)

stating that h points to function f. Furthermore, by (8.7), and (8.4), we have ref(l¢, X),,0) Cq

ProjPat(ref, 2, 73) and thus &), C 73. By (8.1), (8.5), and (8.6) we obtain lam(As, R¢) Cs

ProjPat(lam, 1, A1) connecting the argument Row, and lam(As, Rs) Cs ProjPat(lam,2,7/)
connecting the result set, which are equivalent to
Ar Cys) At (8.22)
Re Cs Ty (8.23)



145

By (8.22), (8.5), and (8.1) we obtain (aj : T4) 0 0 Cys) (a1 : A},) o 1 and thus Ty Cs A,
which together with (8.8) implies

X, Cs A, (8.24)
stating that r points-to whatever q points to. By (8.2), (8.23), and (8.10) we also have
X, Co T (8.25)

Variable Tg is used in the assignment of *p = (*h) (q); and we now follow argument a in
the call to g. By (8.11), (8.14), and (8.18) we have
ref(lb7 leaX_lb) gs A{lp

, (8.26)
ref(lc, cha Aflc) gs A{lP

Furthermore by (8.9), we obtain ref (I, X}, , X}, ) Cs ProjPat(ref, 3, Tg) and ref(l., &, &),) Cs
ProjPat(ref, 3, Tg) which are equivalent to T Cs Aj, and Tg Cs Aj.. But then by (8.25) we
obtain
X
X

q gS ‘X‘lb
(8.27)
Cs A,

q

which establishes that b and ¢ point-to whatever q points to. It remains to track the actual
argument &d to formal parameter q. By (8.15) and (8.19) we obtain

ref(la, X, X,) Cs X, (8.28)
and thus

ref(ld7 dea X_ld) gs A{lr
ref(la, Xi,, X,) Cs Aoy (8.29)
ref(lda dea X_ld) gs ‘X‘lc

The final points-to graph is directly read off relations (8.11), (8.26), (8.28), (8.29), and (8.21).
Note the edge h — £ in the resulting points-to graph of Figure 8.4 showing that function
parameter h may point to function f. This formulation of points-to analysis thus performs
a control-flow analysis simultaneously with the pointer analysis.

8.2 ML Exception Inference

This section describes an exception inference for ML developed by the author. The standard
ML type system gives no information about the set of exceptions that an expression may
raise. Knowing only the types, a programmer must assume that each expression e has the
worst possible effect: Every imaginable exception may be raised during evaluation of e. The
exception inference described here gives the programmer more precise information about
possible exceptions. We present our analysis for Mini-ML but discuss implementation issues
for full SML.



146

The syntax of Mini-ML is a typed lambda calculus with exceptions, raise and
handle expressions, pairs, and case expressions with pattern matching.

e == xz|cl|d(e)]|(er,e2) | fn z => e e e |
eo handle z => e | raise e|case ¢y of p => e; 0z => ey
let £ =e€1 in ey end

p u= x|cld(p)] (p1,p2)

The language has a standard call-by-value semantics which we outline informally. Excep-
tion values are built from exception constructors, where ¢ stands for a constant exception
and d for a unary exception constructor that can be applied to a value of fixed type (we
use d without an argument to refer to either a constant or a unary exception constructor).
Exception values built from ¢ and d are first class values that can be passed around before
being raised in a raise-expression or pattern matched in a case-expression. Handle expres-
sions evaluate ey while catching any exception. If an exception is caught, it is bound to
identifier z and the handler body e; is evaluated. Raise-expressions evaluate the argument
e (which must be an exception value) and raise it. Case expressions evaluate ey and match
the result against pattern p. If the resulting value matches, expression e; is evaluated,
otherwise, the value is bound to identifier z and the default branch es is evaluated. Finally,
a let-expression binds variable = to the value of e; and evaluates es. We use let-expressions
to illustrate polymorphic analysis. Patterns p consist of variable patterns z (matching any
value and binding it to the identifier ), constant patterns ¢, constructor patterns d(p) with
argument pattern p and pair patterns (p1,p2). We assume that patterns are linear, i.e.,
every identifier occurs at most once in any given pattern.

Our implementation of the exception inference deals with the entire ML language
and our examples in this section do use ML features not present in the above language.
The exception inference is formulated as a non-standard type and effect system [54] which
infers a type expression T" and an effect expression E for each program expression e of the
source program. The effect E of an expression e denotes the set of exceptions that may be
raised during evaluation of e. The following grammar defines type and effect expressions.

T i=exn(E) | (T1,To) | Ty STy | T
E:=E|0|c|d(T) | ENE|EUE|~{d}

where T ranges over type variables and £ ranges over effect variables. The type T} N Ty is
a function type with domain 77, range 715 and effect E, where F represents the effect that
results from applying a function of this type. Effect expressions consist of constant exception
constructors ¢, and unary exception constructors d, one for every exception constructor in
the source program. Because exceptions can carry values, the grammar for type and effect
expressions is mutually recursive, a feature not commonly seen in effect systems.

We map these type and effect expressions onto mixed expressions by choosing
to represent types with FlowTerm-expressions and effects with Set-expressions using the

4For clarity, we made raise expressions explicit even though raise could be treated as a function with
a type binding in the initial environment.



147

following constructors and signatures:

exn :s — ft
pair : ft ft — ft
e ftsft— ft
c:s for all constant exceptions ¢

d: ft — s for all unary exceptions d

Pair types (T1,T5) are represented using a binary constructor pair, but we will write the
more convenient form (77,7T5). The type expressions T' correspond to the standard type
expressions of ML (for our subset of the language) except for the addition of the exception

annotations E in the types exn(E) and T} N T,. If we erase these exception annotations,
we recover the standard ML types. We will also use polymorphic constrained expressions
@ = VV.T\S to analyze let-bound expressions polymorphically. We use the convention that
if V and S are empty, then ) = T.

In the standard ML type system, all exception values have type exn giving no
indication of the constructors used to create the exception. Our exception annotation E
on exn(E) provides information about the exception constructors of a particular exception
value. For example the constant exception Subscript (raised when accessing an array
outside its domain), can be given the type exn(Subscript), where Subscript is the constant
Set-constructor corresponding to the Subscript exception. Similarly, the annotation on
function types provides information about the exceptions that may be raised when applying
a function. If sub is the function that returns an array element at a given index and sub

may raise the Subscript exception, then we assign sub the type (7 array, int) Subscript, T,
where T array is the type of an array containing elements of type 7 and int is the type of
integers. (We discuss later in this section how such types and ML datatypes are added to
our inference system).

Since exception values and functions are first-class values in ML that can be passed
as arguments and stored in data-structures, our type and effect language must be rich
enough to express dependencies between exception values and effects. We illustrate these
aspects with a few more examples. Consider the ML function raise, which is used to
raise an exception. Its ML type is raise : exn — 7. Using our refined type language,

the type becomes raise : exn(&) N T, capturing the fact that applying raise to an
exception of type exn(€) causes the observable effect £. The variables T and £ are implicitly
quantified here, but we omit the quantifier. In general, we can infer constrained polymorphic
expressions as discussed in Section 7.6 for let-bound expressions that observe the so-called
value restriction [90, 62]. We assume that all let-bound expressions in valid Mini-ML
programs are values and that their types can therefore be generalized. Let-expressions that
do not satisfy the value restriction can be eliminated by replacing them with (fn z =>
€2) €.

Consider a function catchSubscript that calls a function argument, and if the
Subscript exception is raised, returns the default value d.

exception Subscript



148

A(z) =VV.IT\S
fresh substitution ¢ on V/ [VAR] Ak c:exn(c)!0, 0 [CONO]
ArFz:0(T)!0, o(S)

A|_€1CT1!E1, Sl

. !
AI—G.T.E,S [CONI] AF@QCTQ!EQ,SQ

Al de): dT)'E, S PAI
(6) exn( ( )) ’ Al— (61,62):<T1,T2>!E1UE2, 51U52 [ R]
A|_€1:T1!E1, 51
Alz—»TlFe:T'E, S [ABS] Al ey : Ty Ey, S
AbF fn z => e:(T£>T)!0,S SSZ{TlgftT2£>T} [APP)
A|—€1621T!E1UE2U5, S1USy U S;
Are:T!'E, S
S ={T Cr exn(&)}
At raisee:T!EUE, SUS' [RAISE]
A"@OZT(]!E(), S(]
A[ﬂ? — exn(Eg)] Fe :Th ! El, Sl
So={ToCx 7,11 Ct T
> =A{To Cse 1 e T} [HANDLE]
AF ey handle 2 => e, : T ! By, SoUS;US,
A"@OZTo!E(], SO
Fpp: (Tp, Ra..Rp, Ap, Sp)
S:{TO gftTp}
A,Apl—elle!El, Sl
A[:ITP—)R,]FEQTZ‘E“ S, 1 =2.n
S'={T; Cee T |i=1..
TiceT|iz1.n} [CASE]
AFcase e of p=>e Dz =>e:T! Uy, Fi SUSUU,_q ., 5i
Al_ellTl!El, 51
Q =VV.T1\S, V local to S;
A Fey:Th! Ey, S
= QlFer: T 2, O2 [LET]

Al let x=e; in e; end: T3 ' By UE,, S;USs

Figure 8.5: Type and exception inference rules for expressions



149

Fpa: (T.{T'},[x — T1,0) [PVAR]
Fp e (exn(E), {exn(E N ={c})}, ], 0) [PCONO]

'_D D: (Ta {Ran}a Aa S;D)
S =8, U{& G Pat[d(T), d(1)]}

F d(p) - (exn (&), {exn(€ N ~{d} Ud(R:) U .. U d(Rm)}, A4, 5) [PCONI]
|—p P11 (Tl,{Rl..Rn},A1,Sl)
Fp pa i (To, {Ry.. R, }, As, S2)
R={(Ty,R}),...,(T1,R.,)), (R1,T3), .., (Rp, T»)} PPATR]

|_p (plap2) : (<T17T2>a RvAl ¥ A21 Sl U 52)
Figure 8.6: Type and exception inference rules for patterns

let catchSubscript = fn £ => fn d =>
f () handle Subscript => d
in ... end

Note our use of the abbreviation e handle p => ¢’ for the expression e handle
x => case x of p => e’ [l y => raise y. The value () is a dummy value of type unit
and is used as an argument (result) of functions that have no non-trivial argument (result).
We can assign the type

EN—{Subscript}
_—

catchSubscript : (unit N T) N T T

to catchSubscript. The type illustrates the dependencies between the exceptions car-
ried by the function argument £ and the exceptions of catchSubscript. Given a function

£ unit 5 T which may raise an exception from the set £, we know that the expression £ ()
has type T and effect £. The handle expression prevents the Subscript exception from es-
caping the body of catchSubscript. As a result, we know that evaluating catchSubscript
can result in any exceptions raised by the argument function, except Subscript which is
expressed with the Set-expression £ N —{Subscript}. Set expressions make it convenient to
describe such types concisely.

8.2.1 Type and Constraint Generation

Figure 8.5 shows the type inference rules for expressions. The rules assign types, effects,
and a system of constraints to each expression in the source program. Judgments have the
form A e: T ! E, S, meaning that under the type assumptions A (mapping identifiers
to type expressions), expression e has type T' and may raise the exceptions denoted by FE.



150

Both T and E are constrained by the constraint system S. All type and effect variables
appearing in the rules are assumed to be fresh.

Figure 8.6 contains type rules for patterns. Judgments for patterns have the form
Fp p: (T, {R1..Ry}, A, S) meaning that pattern p has type T, values not matched by the
pattern have any one of the remainder types R;..Rj, and any variable z occurring in the
pattern has type A(z) as given by the bindings A. Again, types T, R;y..R,, and the range
of A are constrained by the constraints in S.

We now discuss the type rules. Except for the handle expression, exceptions
propagate from sub-expressions to enclosing expressions. The effect of an expression is
thus the union of the effect of its sub-expressions. Identifiers are typed using Rule [VAR] by
looking up the type assumption for z in the type environment A. The possibly polymorphic
type YV.T\S is instantiated through a substitution o mapping all variables V to fresh
variables. The result type is o(T") with associated constraints o(.S). No exceptions are raised
by referring to an identifier, thus the effect is 0. If V' and S are empty, the substitution is
the identity and the result type is 7. Rule [CONO] types constant exceptions ¢ by assigning
the type exn(c). There are no associated constraints and the effect is 0, since no exceptions
are raised. Unary exception constructors d(e) are typed using Rule [CON1]. If the inferred
type and effect of the argument expression e is T' and FE constrained by S, then the type
of the constructor application is exn(d(T")) with effect E and constraints S. Type inference
for a pair expression (e1, e2) proceeds by typing e; and es, yielding T;, E;, and S; (1 = 1,2).
The result type is (T1,T5) and the effect is the union E; U Es, since the exceptions raised
by the pair expression are either the exceptions raised by e; or by es. The type and effect
are constrained by S7 U Ss. Rule [ABS] infers the type for a lambda abstraction fn = => e
by typing the body e where the type assumptions A are extended with a binding for x to a
fresh variable 7. If under this assumption the type and effect of the body is T' and E, then

the lambda abstraction has function type 7 5. Evaluating a lambda expression does not
raise any exceptions, since the effects of the body are delayed and are only observable when
the function is applied. Function application e; e is typed by Rule [APP] by inferring types

and effects for e; and ey and constraining the type T of e; to be a sub-type of 7T £> T,
where £ and T are fresh variables. The constraint makes £ an upper bound on the effects
of function T3 and T an upper bound on the result type of T7. Since function types are
contravariant in the domain, the constraint makes the argument type 75 a lower bound on
the domain of T7. The effect of the application is the union of the effect E; of e;, E9 of
s, and the effect £ produced by applying the function (and thus evaluating its body). The
above constraint is standard for type systems with sub-typing. The sub-typing present in
our system is the subtyping of mixed FlowTerm and Set-constraints.

Rule [RAISE] infers type T and effect E for the argument e. The constraint
T Cq exn(€) makes the effect variable £ an upper bound on the set of exceptions carried
by the argument e. The type of the raise expression is a fresh type variable 7 which is
akin to saying that the raise expression has any type (we could have used 0 instead). The
effect of the expression is the effect E of evaluating e unioned with the set of exceptions £
extracted from the exception type T. Rule [HANDLE] for handle expressions works in the
opposite way. If the type and effect of expression eg is Ty and FEy, then the handler body is
typed under assumptions A extended with a binding for x to exn(Fy). The set of exceptions



151

Ey that may be raised by e is effectively converted to the exception type exn(Ep). The
effect of the handle expression is simply the effect £, of the handler-body, since the effects
of eg are caught.

Before we describe the rule for case expressions, we discuss the pattern rules in
Figure 8.6. Recall that pattern judgments have the form F;, p: (T, {R:..R,}, A, S) assigning
pattern p a type T, remainder types R;..R,,, a variable environment A, and constraints S.
The type T of the pattern is intended as an upper bound on the type of the value against
which the pattern is matched. The remainder types R;..R, are possible types for the values
not matched by this pattern. We use a set instead of a single remainder type, since not
all remainder types can be expressed using a single type expression. We will discuss this
issue in the context of the pair pattern. Assumptions A bind pattern variables to types and
constraints S constrain the pattern type 7', Ry..R,, and the types in A. Pattern variables
are assigned a fresh type variable 7 by Rule [PVAR]. The remainder type, i.e., the type of
values not matched by this pattern is 7'—a fresh unconstrained variable—since a variable
pattern matches everything (we could have used 0 instead). The assumptions returned by
[PVAR] binds z to 7. Rule [PCONO] assigns type exn(€) to constant exception patterns c.
The remainder type is exn(EN—{c}) expressing that if we match ¢ against some value of type
T Cgq exn(E), then the type of the values not matched by c is exn(€ N —{c}), i.e., exceptions
of T, except the ¢ exception. Rule [PCONI1] types patterns d(p) by inferring a type T and
remainder types Ry..R, for p. The type of d(p) is then exn(€), where £ is constrained by
& Cs Pat[d(T),d(1)]. The constraint makes d(7') an upper bound on the exceptions £ of
the value to be matched. It also constrains the matched type against the pattern argument
type T', thus indirectly constraining the remainder types R;..R,. The remainder type is
exn(EN—{d}Ud(R;)U..Ud(R,)), expressing that any exceptions £ N—{d} are not matched
by the pattern, as well as any exceptions d(R;), where the argument pattern p does not
match. Pair patterns (p;,ps9) are typed with the pair type (T3,7T5) where T} and Ty are
inferred for p; and ps. Since our patterns are linear, the variable bindings A; and As have
disjoint domains and can be composed into A; & As.

The remainder types of pair patterns are tricky. Suppose p; had a single remainder
type Ry and py a single remainder type Ro. The remainder type of the pair pattern (p1,p2)
is not (R1, R2). The remainder (R, Ry) expresses the types that match neither p; nor ps.
However, the pair pattern only matches if both p; and po match. Thus the remainder types
must be either (Ry,T) (if p; doesn’t match), or (11, Ry) (if po doesn’t match). These two
types cannot be expressed as a single type without losing precision. The only single safe
remainder type is (T, T5) which is the same type as the type for the pair pattern. Using a
single remainder type thus results in no filtering when pair patterns are used.

We now return to the type rule for case expressions. Rule [CASE] infers type Tg
and effect E for expression ey which is to be matched against p. If the type for the pattern
is T}, with remainder types Rs..R,, and variable bindings A4,, then we constrain the type of
the expression to be matched with the pattern type Ty Cg T}, and infer type T and effect
FE4 for the branch expression e; under the assumptions A extended with the bindings for
the pattern variables A,. The default branch is typed once per remainder type Rs..R,,, by
binding z to R;. The type of the entire case expression is the fresh type variable T which
is an upper bound of T3..7T;,. Similarly, the effects of the case expression are the effects



152

exception Subscript
exception Fail of exn
let substFail = fn f => fn d =>
(f d) handle x =>
case x of
Fail(y) => raise y

| z => raise z
in
end

Figure 8.7: Example Mini-ML program

of eg, €1, and ey (under all remainder types). Using this type rule becomes impractical if
the number of remainder types is large. Furthermore, precision is only recovered by using
multiple remainder types, if pair and exception constructors are treated as strict, a feature
not currently supported by BANE for FlowTerm-constructors. Thus our implementation
uses a single remainder type by approximating the remainder of pair patterns as described
above.

The final Rule [LET] concerns let expressions. If we infer type T, effect F;
under constraints S for the let-bound expression e;, then we can form the polymorphic
constrained type VV.T7\S; representing all possible typings of e;. V is the set of local
variables of S (in this case local variables are all variables generated during the type and
constraint generation of e1). The let-body es is then typed using assumptions A extended
with a binding for =z to VV.T7\S;. The type of the let expression is the type of the
let-body T and the effect is the union of effects Fy and FEs5. If we compare this rule to
standard inference rules of let-polymorphic type systems, we notice the absence of any
reference to the assumptions A in choosing the type variables V' to be quantified over. In
the standard inference rules of Hindley-Milner type inference expressed using Robinson’s
unification algorithm to solve equality constraints and explicit substitutions, the type T} can
only be generalized over type variables not appearing in the assumptions A. This restriction
is necessary because the equality constraints arising in Hindley-Milner type inference are
eliminated before the quantification. If we constrained a fresh variable X' to be equal to a
variable ) appearing in the assumptions, and X appears in type 17, then the unification of X
and ) either substitutes X into A, or ) into T5. In either case, the variable appearing in 75
is not quantified and with reason, since the environment can further constrain it. However,
if we left the equality constraint X = ) unsolved and formed the constrained quantified
type VA TL\{X = Y} instead, the reference to the assumptions A is not necessary, since
no variable in A can be local to S. Furthermore, the constraint X = ) appearing in the
polymorphic type guarantees that any further constraints on ) will be reflected on X in
all instantiations of the polymorphic type. In our inference we use inclusion constraints
instead of equality, but the argument is the same.



153

8.2.2 An Example Inference

This subsection uses the example program in Figure 8.7 to illustrate the type and constraint
generation rules. The example program assumes that Subscript is a constant exception
and Fail is an exception constructor with an exception argument. The function substFail
expects a function argument £ and an argument d and proceeds by applying £ to d. Any
exceptions raised by the application and matching the Fail(y) pattern cause the exception
argument y to be raised. Other exceptions are re-raised. We derive the polymorphic
constrained type

substFail V71, Ta, &1, &.(Ta 5 ;) & 75 SenartFail,

&1 Cs Pat[Fail(exn(&5)), Fail(1)]

Ti\

for this function. The type expresses that if the argument f has type 7T &, T1, the
argument d type T3, then the result of substFail is 77. So far this corresponds to the
type (o« — B) — a — [ that the standard ML type system would derive. The exception
annotations however tell us that if applying f raises exceptions &1, then the exceptions raised
by substFail are the exceptions &, except for the Fail exceptions, plus any exceptions
carried by a Fail exception of &;.

We break up the body of substFail into expressions

€substFail — fn £ => fn d => epangie
€handle = Capp handle x => €case
€app = d

€case = case x of Fail(y) => raise y | z => raise z

Let A = [f — T¢,d — T4 be the assumptions resulting from applying Rule [ABS] twice to
esubstFail. Rule [HANDLE] first derives the judgment for expression e,pp under A

AF£:T:10, 0
AFd:T3!0, 0
AF £ d: 71! &1, Sapp

where Sapp = {T¢ Cie Ta 2N 71} and the premisses are obtained by applying Rule [VAR] to
f and d. From this judgment, Rule [HANDLE] constructs assumptions A" = A[x — exn(&1)]
to be used for the inference of ecase. Applying Rule [CASE] to ecase proceeds by deriving
A"k x:exn(&1) !0, 0 using Rule [VAR], and the pattern judgment

Fp Fail(y) : (exn(&2), {exn(& N ={Fail} U Fai|(7;,'))}, Ay, Spat)
where A, = [y — Ty] and Spay = {&2 Cs Pat[Fail(7y), Fail(1)]}. This judgment in turn is
derived from the pattern judgment Fp y : (7y,7;, Ap, @) of y. Rule [CASE] proceeds by

typing the branch expression raise y under assumption A’, A, using [RAISE] resulting in

A" A, b raise y: T3! &3, Sraiset



154

where Sraiser = {7y Cq exn(£3)}. Then the default branch is typed under assumptions
A" = A'lz + exn(& N ~{Fail} UFail(7;))] where z is bound to the remainder type obtained
from the pattern judgment of Fail(y). Applying Rule [Raise] again results in

A" Fraise z: Ty ' Es, Sraise2

where Sraisea = {exn(& N —{Fail} U Fai|(7;,')) Cq exn(&4)} which is equivalent to {2 N
—{Fail} U Fail(7}) Cs £4}. Rule [CASE] now concludes with the judgment

A’ F €case - 73 ! 53 U 545 Scase

where Scase = Spat U Sraisel U Sraise2 U {exn (gl) s exn(SQ)a 7-3 s 7-55 7:1 Che 73} The last
two constraints simply make the result type 75 of ecase an upper bound on the result types
T3 and T; of the branches. Constraint exn(€1) Cg exn(&y) results from relating the type of
x to be matched with the type of the pattern. This constraint is equivalent to & Cg &s.
The [HANDLE] Rule now concludes with

Al eapp : Ti ! €1, Sapp
A+ €case - 73 ! 53 U 545 Scase
A& enandgte : T2 ! E3 U 547 Shandle

where Shangie = Sapp U Scase U {T1 Cge T2, Ts T T2} and the last two constraints make the
result type 72 of eénanare an upper bound of the type 7; of espp and 75 of ecase. The final
judgment for egypstrai1 is obtained by concluding the initial [ABS] Rules and results in

E3UEy

H F €substFail - 7; i} 7:1 ,Tl ! 0 Shandle

The final inductive constraints Spangie are summarized by
T3 S Ts Ti S Ts Ts Cee T2
T Cie T2 &1 Cs & &> Cs Pat[Fail(7y), Fail(1)]
&, N ={Fail} U Fail(T}) Cs & Ty Crexn(€s) Tz Ca Ta - T

Using the constraint on 7; we can introduce the fresh variable & and set 7, = exn(&s)
with the constraint & Cg £3. Applying minimization and maximization simplification
(Section 7.6.3) to these constraints we obtain

1

el
5

1

7 0 7,0 7: ™m0
7 T, 2o & e
£, £ N —Fail & £ TP o N o

resulting in the final polymorphic constrained type

substFail V71, Ta, &1, &.(Ta 5 ;) & 7 SoarotFall,

&1 Cs Pat[Fail(exn(&5)), Fail(1)]

Ti\



155

To conclude our example, assume we apply substFail to arguments

f:exn(&) Lo int
d : exn(Fail(Subscript))

Applying Rule [APP] twice results in the constraints

exn (&) 5 int Ce Ta N Ti
exn(Fail(Subscript)) Cg Ta
&1 Cs Pat[Fail(exn(&5)), Fail(1)]

which in inductive form are

Ta Cr exn (&g int Cge 71 &6 Cs &1
exn(Fail(Subscript)) Cg Tq &1 Cs Pat]Fail(exn(&s)), Fail(1)]

Applying transitivity results in the constraints

exn(Fail(Subscript)) Cg exn(Es)
Fail(Subscript) Cg &
Fail(Subscript) Cs Pat[Fail(exn(&)), Fail(1)]
Subscript Cg &5

The result type of the application is 7; which can be minimized to int. Similarly, the overall
effect is & U & N —{Fail}, which can be minimized to Subscript. The example shows that
the type of substFail contains enough information to relate the type of the argument d
with the exceptions raised by f and resulting in the filtering of Fail and extraction of the
argument exception Subscript carried by Fail.

8.2.3 Exception Inference for Full SML

Some remarks about extending the described exception inference to full SML are in order.

e Standard ML has parameterized modules called functors. Our exception inference
cannot directly analyze functors due to unresolved exception aliasing. We use a tool
to expand all functor applications prior to performing the analysis.

e Exception declarations in SML are generative, meaning that a declaration produces
a fresh exception constructor (distinct from all other constructors) at every evalu-
ation. Exception declarations within let expressions can therefore give rise to an
unbounded number of distinct exceptions, all sharing the same name. Since our ex-
ception inference matches exceptions by constructor name, the filtering of exceptions
is only sound if a particular exception name refers to a unique exception constructor.
Consequently, only exceptions declared at top-level can safely be filtered by name,
since such exception declarations give rise to exactly one exception constructor. Our



156

analysis implementation classifies exceptions as either top-level, in which case the ex-
ception can be filtered, or as generative, in which case the exception is never filtered.
A special case in the pattern rules generates remainder types for generative exception
patterns that do not filter the exception. In practice, we find that practically all ex-
ception declarations appear at top-level or can safely be moved to top-level without
changing the semantics of the program. It is worth noting that this problem does
not arise in the CAML dialect of ML, since CAML disallows exception declarations
within let expressions [89].

ML record types are modeled using closed Row-expressions.

In practice it is necessary to know where an exception is raised in a program. Effects
are thus modeled as a set of pairs E@p, where E is a Set-expression describing a set
of exceptions, and P is a Set-expression describing a set of program source positions.
In terms of the implementation, this amounts to adding a binary Set-constructor
@ : s s — s and adjusting Rule [Raise] where source positions are introduced, and
Rule [Handle], where source positions are removed.

Datatypes hide the internal structure of values. We must ensure that exceptions do not
“disappear” into datatypes. To this end, we extend datatypes containing exception
values (directly or through functions) with a single extra type parameter to capture
these exceptions. To illustrate this technique, consider the following excerpt from a
hash-table implementation of the SML/NJ library.

datatype ’a hash_table =
HT of {not_found : exn,
table H
n_items R

fun mkTable (sizeHint,notFound) =
(HT {not_found = notFound,
table = ...,
n_items = ...})

The function mkTable is used to create an empty hash-table. It takes an exception
argument notFound, which is stored as part of the hash-table data structure. This
exception value is raised during lookup and remove operations on keys that are not
part of the table. In order to correctly report the exception raised by lookup or
remove, we need to attach the exception used when creating the hash-table to the
type of the hash-table. In general, we augment types with exception information
by parameterizing types with an extra exception argument. In the example, the
hash table type constructor takes a second argument denoting the set of exceptions
potentially stored in the hash-table data-structure. Thus, the type of mkTable is

(int,exn(&)) RN (T,€) hash_table



157

which states that mkTable can be applied to a pair consisting of an integer and an
exception (whose exception names are bound to &), and it returns a hash-table data-
structure containing elements of type 7 and exceptions £. The dependency between
the hash table type and the exceptions raised by the lookup function appears clearly
in the type of lookup:

(T,€) hash table — key LN

Any exceptions carried by the hash-table may be raised when calling lookup (where
P is the position of the raise expression within lookup).

In general, we infer for each datatype whether or not it carries any exception names
and effects, and whether these effects appear covariantly, contravariantly, or non-
variantly in the datatype. Our inference conflates all covariant (contravariant) excep-
tions carried by a datatype.

e Mutable references in ML are treated using the same trick applied in the Points-to
analysis of Section 8.1. A reference is treated as an object with a get-method of type
unit — X and a set-method of type X — unit, where X represents the contents of the
reference cell. Such a cell is represented using a constructor with signature

ref : ft ft — ft

where the first FlowTerm-argument refers to the range of the get-method, and the
second FlowTerm-argument refers to the domain of the set-method (and is thus con-
travariant). The types assigned by our system to ML operations on references are

ref : T — ref(T,7T)
ref(T7,0) = T
: (ref(1,7), T) — unit

The first function ref creates a fresh reference with contents 7. The dereference
operator ! expects a ref type, but extracts only the covariant argument, corresponding
to a call to the get-method. Dually, the assignment function := expects a ref type and
an argument of type 7 and updates the cell by accessing the contravariant argument
of ref, corresponding to a call to the set-method.

We have successfully applied an implementation of our exception inference com-
bined with a visualization tool to detect two previously unknown bugs caused by uncaught
exceptions in the tools ML-Lex and ML-Burg distributed with the SML/NJ compiler [27].

8.2.4 Precision-Efficiency Variations

We briefly discuss two variations of our analysis, showing how the mixed constraint for-
malism of BANE helps evaluate precision-efficiency tradeoffs. We refer to the system we
have presented so far as the FlowTerm-Set exception inference system, since it is based on
FlowTerm and Set expressions.



158

A coarsening of the analysis can be obtained by replacing the use of the FlowTerm-
sort for the type structure of our inference with the Term-sort, and strengthening the
FlowTerm-inclusion constraints Cg to equality constraints between Term-expressions =;.
This coarsening results in less precise exception information due to the back-flow of excep-
tion information resulting from the use of equality constraints. We refer to this system as
the Term-Set system.

Going in the direction of more expressive, but also more expensive sorts, we can
replace the FlowTerm-sort with the Set-sort, thus using Set-expressions for both the type
and the effect structure. We call this system Set-Set system. Note that there is no gain
in precision by going to this variation unless we refine the types further to take advantage
of the Set-structure. A possible refinement would be to model constructors of a datatype
separately.

Chapter 9 characterizes the precision-efficiency tradeoffs of the three variations of
exception inference by running experiments on all systems and characterizing the number
of exceptions found and the overall performance of the analysis.

8.2.5 Related Exception Work

We are aware of two earlier approaches to uncaught exception detection for ML. Guzman
and Sudrez [37] describe an extended type system for ML similar to, but less powerful
than the one presented here. They do not treat exceptions as first class values, and they
ignore value-carrying exceptions. Yi [91] describes a collecting interpretation for estimating
uncaught exceptions in ML. His analysis is presented as an abstract interpretation [17] and
is much finer grained than Guzmén and Sudrez’ approach [37] or the system described here,
but is also slow in practice.

Independently, Yi [93] developed an approach to exception inference of ML based
on a control-flow analysis, followed by an exception analysis based on set constraints. Since
control-flow depends on exception information, this approach conservatively approximates
exception information during the control-flow analysis. This step is justified since exceptions
rarely carry function arguments. The resulting analysis is comparable in precision and
performance to the one presented here.

More recently, Pessaux and Leroy [70] have proposed an exception inference for
CAML based on types and Row-expressions. Their work can be viewed as yet another
refinement expressible in BANE, where exception sets are represented by labels present in
Row-expressions instead of Set-expressions.



159

Chapter 9

Experiments

In this chapter we evaluate the implementation strategies employed in BANE and
the benefits provided by a reusable mixed constraint framework. We show the impact of
BANE’s implementation strategies by running a number of experiments exercising each im-
plementation feature in isolation. The experiments show that BANE enables the resolution
of constraint problems that are orders of magnitude larger than previously reported results,
and that precision-efficiency variations can be studied through appropriate sort selections.

Furthermore we experimentally contrast BANE’s inductive transitive closure (for
computing the consistency of constraint graphs) with the standard transitive closure algo-
rithm.

The chapter is organized as follows. Section 9.1 discusses general aspects con-
cerning the measurement methodology. Section 9.2 shows that for our experiments, Set-
constraint graphs contain large strongly connected components (SCC) and that these com-
ponents are a major cost during resolution. The section then shows the effectiveness of
BANE’s novel partial online cycle elimination strategy. Section 9.3 evaluates the effect of
projection merging on constraint resolution. We show that projection merging speeds up
the analysis of the largest programs by an order of magnitude, but has little effect on small
programs. Section 9.4 studies how the use of inductive form (IF) compares to the standard
form (SF) used traditionally for solving inclusion constraints. We show that SF is superior
to IF only in the presence of cycles. When cycles are eliminated using our online strat-
egy, then IF performs much better than SF without cycle elimination. We also show that
BANE’s strategy for cycle detection can be applied to SF resulting in similar speedups as
for IF. Section 9.4 concludes with a discussion of a clear advantage of IF over SF, namely
the ability to compute the transitive lower-bound on demand.

9.1 Measurement Methodology

All experiments were performed using a single processor on a SPARC Enterprise-5000 with
2GB of memory. Reported execution times are best out of three runs on a lightly loaded
machine.

The absolute execution times include the execution of a fair amount of instru-
mentation code present in BANE. Removal of that code may yield better absolute times.



160

Strongly Connected Components (SCC)
AST Total Initial Initial graph Final graph
Benchmark Nodes LOC #Vars Nodes Edges #Vars #SCC #Max #Vars #SCC #Max
allroots 700 426 126 74 110 5 2 3 20 5 11
diff.diffh 935 293 186 133 184 6 3 2 13 6 3
anagram 1078 344 209 127 191 10 5 2 24 9 5
genetic 1412 323 226 137 196 4 2 2 14 5 4
ks 2284 574 326 225 329 6 3 2 39 3 34
ul 2395 441 196 146 192 4 2 2 6 3 2
ft 3027 1180 393 278 392 0 0 — 68 5 55
compress 3333 651 251 189 293 17 7 4 26 9 6
ratfor 5269 1532 605 565 747 20 7 6 89 8 65
compiler 5326 1888 442 597 725 12 6 2 35 8 20
assembler 6516 2980 971 849 942 9 4 3 88 10 27
ML-typecheck 6752 2410 794 722 976 29 9 9 248 15 144
eqntott 8117 2266 978 699 1066 50 15 12 177 22 55
simulator 10946 4216 1433 1261 1350 6 3 2 237 5 213
less-177 15179 11988 1848 1751 2195 30 12 4 273 18 202
li 16828 5761 3223 2653 3384 24 10 4 1267 6 1255
flex-2.4.7 29960 9345 3749 3363 4377 57 19 11 325 19 248
pmake 31148 18138 3312 3189 3938 63 24 8 669 21 592
make-3.72.1 36892 15213 4737 3781 5150 156 63 7 869 64 665
inform-5.5 38874 12957 4402 4535 5338 34 15 6 505 22 407
tar-1.11.2 41035 18293 4158 2957 5073 347 89 29 848 82 527
sgmls-1.1 44533 30941 4253 3953 5268 91 37 9 910 43 767
screen-3.5.2 49292 23919 6516 4849 6050 108 46 6 914 39 824
cvs-1.3 51223 31130 6971 5358 6936 340 87 31 743 95 379
espresso 56938 21537 6327 4855 7839 333 149 10 1396 171 976
gawk-3.0.3 71140 28326 6237 4653 7134 400 58 86 1343 45 1087
povray-2.2 87391 59689 7712 5863 8391 198 87 9 1509 75 1245

Table 9.1: Benchmark data common to all experiments

However, all experiments were run with all instrumentation code in place.

For the Points-to experiments, library functions were assumed to have no effect on
the pointer graph, a naive assumption. For the exception inference experiment, conservative
signatures of all library functions were provided.

9.2 Online Cycle Elimination

In this section we show that cycle elimination in the constraint graph is a crucial step to
making inclusion constraint analyses scale to large problems with good performance. Cyclic
constraints have the form X} C Xy C X3 C ... C A, C X} where the X; are variables. All
variables on such a cycle are equal in all solutions of the constraints, and thus the cycle can
be collapsed to a single variable. Cycles arise and can be eliminated in the constraints of
all sorts in BANE. The experiments here focus on Set-constraints.

We show that the partial online cycle detection employed in BANE is both efficient
in practice with a small constant time overhead on every edge addition, and still able to
find and eliminates on average 90% of all variables involved in cycles. For our benchmarks,
this approach radically improves the scaling behavior, making points-to analysis of large
programs practical. For example, online cycle elimination provides speedups of points-to
analysis of large programs (more than 10000 lines) of up to a factor of 50.

The reason why cycle elimination produces such large speedups is that cycles may
induce a non-linear amount of work that can be avoided when the cycle is collapsed. To see
this suppose that V is a strongly connected component of size n and there are edges from a
set of sources Ej..Ey, to some variables in V. In the worst case, closing the constraint graph
will add edges from each source F; to each variable in V', i.e., mn edges. Furthermore,



161

Experiment | Description

IF-Plain Inductive form, no cycle elimination

IF-Oracle Inductive form, with full (oracle) cycle elimination
IF-Online Inductive form, with online cycle elimination

Table 9.2: Experiments

if there are redundant paths within V', then the closure may try to add the same edge
redundantly up to n times. If on the other hand the component V is collapsed to a single
variable before adding edges E;..E,, incident on V, then the work to add them is reduced
to m steps.

9.2.1 Measurements

The measurements in this section use our Set-constraint formulation of Andersen’s Points-
to analysis, run on the C benchmark programs shown in Table 9.1. For each benchmark,
the table lists the number of abstract syntax tree (AST) nodes, the number of lines in the
preprocessed source, the number of set variables, the total number of distinct nodes in the
graph (sources, variables, and sinks), and the number of edges in the initial constraints
(before closing the graph). Furthermore, the table contains the combined size of all non-
trivial strongly connected components (# Vars), the number of components (#SCC), and
the size of the largest component (#Max), both for the initial graph (before closure) and for
the final graph (in any experiment). The difference in the combined size of SCCs between the
initial and the final graph shows the need for online cycle elimination. Cycles are formed
dynamically through new edges added by the structural closure rules. If all cycles were
present in the initial graph, online cycle elimination would be unnecessary. For example,
for the benchmark povray, only 13% of all variables involved in cycles are apparent in the
initial constraint graph.

We performed the three experiments shown in Table 9.2. The first experiment,
IF-Plain, runs the points-to analysis without performing cycle elimination. Experiment IF-
Oracle precomputes the strongly connected components of the final graph and uses that
information as an oracle during the analysis. Whenever a fresh Set-variable is created, the
oracle predicts to which strongly connected component the variable will eventually belong
in the final graph. We designate a unique witness variable of that component and add an
alias edge from the fresh variable to the witness. As a result, the oracle experiment uses only
a single variable (witness) for each strongly connected component, and thus the constraint
graphs are acyclic at all times. Since the oracle experiment avoids all unnecessary work
related to cycles in the constraint graph (perfect cycle elimination), it provides a lower
bound! for the last experiment—IF-Online—which uses BANE’s online cycle detection and
elimination algorithm. (The prefix IF- of these experiments refers to the use of the inductive
closure for the constraint graph. In Section 9.4 will we examine similar experiments using
the standard transitive closure SF.)

n fact, the oracle as implemented has true future knowledge, since it combines variables even before
the cycle the variables belong to is present in the graph.



162

IF-Plain IF-Oracle
Benchmark Edges ‘Work Time(s) Edges ‘Work Time(s)
allroots 291 34 0.13 522 35 0.14
diff.diffh 404 46 0.18 723 44 0.20
anagram 444 45 0.19 702 11 0.21
genetic 438 25 0.21 895 23 0.22
ks 2649 6134 0.50 1519 305 0.44
ul 306 51 0.31 1220 51 0.36
ft 3480 10496 0.71 1798 117 0.54
compress 463 67 0.35 1658 57 0.44
ratfor 4986 10558 1.20 4257 265 1.34
compiler 1268 265 0.72 3323 82 1.07
assembler 3173 2514 1.30 5479 444 1.92
ML-typecheck 18284 219631 7.07 6528 931 1.84
eqntott 5614 6908 1.41 5858 369 1.59
simulator 15061 292900 7.14 7179 1128 2.25
less-177 32237 455486 12.97 11894 2456 3.74
1i 1146729 156695062 3577.03 15883 46302 9.63
flex-2.4.7 76662 1625239 37.32 29205 1160 13.49
pmake 390037 30756702 649.46 20622 25735 7.44
make-3.72.1 800101 104545496 2370.49 26811 91328 12.71
inform-5.5 196431 13856788 269.09 26491 20474 10.68
tar-1.11.2 248733 16414402 316.73 26133 15207 9.20
sgmls-1.1 998305 178723881 3690.27 45302 92659 21.22
screen-3.5.2 894383 96327887 1995.84 33965 64764 14.79
cvs-1.3 171643 5258119 123.59 35821 14243 12.46
espresso 916001 81191353 1671.40 39131 80024 17.25
gawk-3.0.3 1041525 106585396 2314.35 43717 57869 18.65
povray-2.2 2171746 343496620 8058.49 66258 150098 29.55

Table 9.3: Benchmark data for IF-Plain and IF-Oracle
100 ¢ IF-Online  « k|
10000 | 1 IF-Oracle + o
1000 | o . O
10} Co L
@ 100} R B> :
5] [} .
E E
= . = .
10 ¢ ° ° q S N
1t P i
1t . 20t q 5 :Z
o1t ° 1 o1f ¢ 1
1000 10000 100000 1000 10000 100000
AST nodes AST nodes
Figure 9.1: IF without cycle elimination Figure 9.2: Analysis times with cycle detec-

tion and oracle

Table 9.3 shows the results for the first two experiments. For each benchmark
and experiment, we report the number of edges in the final graph, the total number of
edge additions (Work) including redundant ones, and the execution time in seconds. The
reported CPU times are best out of three runs. The reported times include the time to
compute the transitive lower bounds of all points-to variables to compute the points-to
sets. Note the large number of redundant edge additions for IF-Plain. The low numbers
for the oracle runs IF-Oracle in Table 9.3 show that the bulk of work and execution time
is attributable to strongly connected components in the constraint graph. Without cycles,
the points-to analysis scales very well. For example, the analysis time for povray-2.2 with
IF-Oracle is over 250 times faster than with IF-Plain.



163

SCC IF-Online
Benchmark AST Elim. Edges ‘Work Time(s) %CD
allroots 700 15 265 311 0.11 18.18%
diff.diffh 935 13 369 423 0.14 0.00%
anagram 1078 23 372 415 0.14 0.00%
genetic 1412 11 424 451 0.18 5.56%
ks 2284 33 1027 1909 0.34 11.76%
ul 2395 6 286 337 0.23 8.70%
ft 3027 54 897 1370 0.40 7.50%
compress 3333 24 397 487 0.32 0.00%
ratfor 5269 64 1758 2515 0.85 5.88%
compiler 5326 22 1047 1240 0.62 1.61%
assembler 6516 69 2174 2897 1.19 3.36%
ML-typecheck 6752 227 2858 7924 1.85 12.97%
eqntott 8117 150 2496 3805 1.10 7.27%
simulator 10946 177 3652 8243 2.14 14.49%
less-177 15179 235 7040 15377 3.72 19.62%
1i 16828 1013 10100 100410 15.80 27.34%
flex-2.4.7 29960 281 7531 10052 6.14 2.93%
pmake 31148 582 10629 53327 9.97 20.26%
make-3.72.1 36892 798 18123 238148 30.66 36.24%
inform-5.5 38874 422 14139 51621 10.47 17.10%
tar-1.11.2 41035 745 15366 48610 10.79 19.46%
sgmls-1.1 44533 815 17358 208348 35.03 29.35%
screen-3.5.2 49292 823 19707 159340 26.42 25.47%
cvs-1.3 51223 652 20289 49522 11.82 14.47%
espresso 56938 1208 21671 141052 27.19 24.20%
gawk-3.0.3 71140 1122 18613 111359 21.93 20.79%
povray-2.2 87391 1355 51216 286044 50.76 28.09%
Table 9.4: Benchmark data for IF-Online
100 T T T
IF-Online/IF-Plain < N
°
000
>
°
10 + ° e, 4
2
3 o
o]
a 3
o
1r o E
°
°
°
°
0.1 -2 - -
0.1 1 10 100 1000 10000

Absolute time(s) IF-Plain

Figure 9.3: Speedups through online cycle
detection

Figure 9.1 plots the analysis time for IF-Plain without cycle elimination against
the number of AST nodes of the parsed program. As the size exceeds 15000 AST nodes
there are many benchmarks where the analysis becomes impractical.

Table 9.4 reports the measurement results for the online cycle elimination experi-
ment |[F-Online. In addition to the information shown for the plain and oracle experiments,
the table contains the number of variables that were eliminated through cycle detection and
the fraction of analysis time spent in cycle detection (%CD). As the execution times and
work counts show, online cycle elimination is very effective for medium and large programs.
Figure 9.2 plots the analysis times for online cycle elimination and the oracle experiment



164

Detection Coverage
Benchmark Vst Hit% Len Total% Avg% Max%
allroots 2.03 9.84% 2.00 75.00% 87.27% 36.36%
diff.diffh 1.53 7.30% 2.00 100.00% 100.00% 100.00%
anagram 1.66 26.16% 2.12 100.00% 100.00% 100.00%
genetic 1.59 5.37% 2.50 78.57% 85.00% 75.00%
ks 1.88 7.50% 2.53 86.84% 95.10% 85.29%
ul 1.24 16.66% 1.00 100.00% 100.00% 100.00%
ft 2.24 8.13% 2.60 79.41% 70.06% 83.64%
compress 1.68 17.95% 2.21 92.31% 96.30% 66.67%
ratfor 2.19 5.94% 2.82 77.11% 88.89% 69.49%
compiler 1.46 5.13% 2.36 62.86% 88.33% 40.00%
assembler 1.67 7.50% 2.35 78.41% 83.75% 70.37%
ML-typecheck 2.15 4.67% 3.23 93.42% 93.10% 95.80%
eqntott 2.32 | 10.52% | 2.73 87.21% 91.09% 94.23%
simulator 2.29 3.71% 2.39 76.96% 94.27% 71.36%
less-177 2.38 2.28% 2.63 86.08% 95.11% 83.66%
1i 1.91 2.04% 2.84 80.72% 96.73% 80.37%
flex-2.4.7 1.85 9.57% 2.74 88.92% 94.74% 88.48%
pmake 1.70 1.31% 2.65 88.18% 88.39% 88.68%
make-3.72.1 1.90 0.49% 3.13 93.22% 94.17% 93.61%
inform-5.5 1.60 1.51% 2.62 90.17% 94.34% 90.86%
tar-1.11.2 1.98 1.83% 3.31 90.63% 95.72% 89.55%
sgmls-1.1 1.65 0.47% 2.67 94.44% 94.40% 94.89%
screen-3.5.2 1.45 0.84% 2.86 95.37% 96.78% 94.44%
cvs-1.3 1.90 2.17% 2.52 90.06% 97.31% 85.83%
espresso 1.84 2.71% 2.68 87.92% 99.49% 83.28%
gawk-3.0.3 1.65 1.41% 2.73 87.04% 91.52% 86.45%
povray-2.2 2.25 0.60% 2.61 93.26% 95.89% 92.77%

Table 9.5: Cycle detection statistics

(note the scale change w.r.t. Figure 9.1). IF-Online stays relatively close to the oracle times
indicating that while our cycle detection algorithm is not perfect, there is not much room
for improvement.

Figure 9.3 shows the total speedup of IF-Online over IF-Plain. To show that our
technique helps scaling, we plot the speedups vs. the absolute execution time of IF-Plain.
As we go to larger problems that take longer to run without cycle elimination, the speedups
also grow. Cycle elimination thus helps scaling and does not simply improve the execution
time by a constant factor. For very small programs, the cost of cycle elimination outweighs
the benefits, but the absolute extra cost is small (< 1 second). For medium and large
programs, online cycle elimination improves analysis times substantially, for large programs
by more than an order of magnitude.

The absolute speedups of IF-Online over IF-Plain should be taken with a grain
of salt. The inductive transitive closure actually performs very badly in the presence of
cycles, due to the fact that it adds transitive edges between variables as well as transitive
edges between sources and sinks. Constraint graph closure based on the standard transitive
closure rule performs a little better in the presence of large strongly connected components
than IF, but the scaling behavior is essentially the same. We will study the relationship
between inductive form IF and standard form SF in more detail in Section 9.4.

Table 9.5 shows statistics on the cycle detection performed during the points-to
analyses. For each benchmark, the table reports the average number of variables visited
during a cycle detection (Vst), the hit rate of finding an actual cycle (Hit%), and the average
cycle length (Len). Furthermore, we give three measures for the quality of the detection.
The overall detection fraction (Total%) is the ratio between the number of variables in the
final graph that we found to be on a cycle, over the total number of variables in non-trivial
strongly connected components in the final graph. The second measure (Avg%) gives the



165

B, Eq

Figure 9.4: Graph Schema

C(Xl) C_I(Zl)

() 1 (Z)

Figure 9.5: Paths from sources to Y to sinks

average detection fraction per strongly connected component, i.e., for each SCC V in the
final graph, the fraction |V'|/|V], where V' is the largest single component we detected
within V. Finally, the third measure (Max%) gives the detection fraction for the largest
component in the final graph, i.e., if V is the largest component, the fraction |V'|/|V],
where V' is the largest single component within V' that we detected. The numbers clearly
show that even though the average cycle length detected is small, detected cycles combine
into larger detected components so that the overall coverage is high. Recall from Table 9.1
that the largest strongly connected component in the final graph is substantial for each
benchmark. For example, the largest SCC in the final graph of povray-2.2 contains 1299
variables. The 92.77% detection of the maximal component for povray-2.2 in Table 9.5
states that we detected a single component consisting of 1205 variables within this largest
component.

9.3 Projection Merging

This section takes a close look at the impact of the projection merging technique of BANE
(Section 7.2.2) on constraint graph size and analysis execution times. We explain how
projection merging can in the best case prevent the addition of a quadratic number of
edges to a graph and show through measurements of the points-to analysis that for large
constraint problems, projection merging results in speedups of another order of magnitude
over cycle elimination alone.

To gain insight into how projection merging changes the structure of a constraint
graph during closure, consider the schematic constraint graph in Figure 9.4. Expressions
E,..E, are sources and Ej..E!, are sinks and we assume that the graph has size O(n + m)
and that there exist paths in the graph connecting each source E; with each sink E;
Furthermore, assume that each source E; has the form ¢(X;) for some fixed unary constructor



166

“(2)
c(Xr) \ /Hj
y4> Cil(y')
(Xo)
C_l(Zm’)

Figure 9.6: Paths added through projection merging

¢, and that each sink E; has the form ProjPat(c, 1, Z;). Closing this graph under any of the
transitive closure rules and structural closure rules we have presented results in the addition
of the nm edges X; — Z;, for i = 1..n, j = 1..m. The closure of a graph of size O(n 4 m)
may thus produces a graph of size O(nm). Now observe that if the original graph has size
O(n + m), and there exists paths from each source E; to each sink E;, then these paths
must share some variable nodes ). In fact there must exist variable nodes ), such that
there are paths from a fraction O(n) of the sources E; to Y and paths from ) to a fraction
O(m) of the sinks E; This situation is depicted in Figure 9.5, where we assume that n' of
the sources E; have paths to ) and there are paths from ) to m’ of the sinks E; (we use
straight edges to denote graph edges and wavy lines to denote paths. We also abbreviate
ProjPat(c, i, Z;) in the graph by ¢~!(Z;)). If our graph is being closed under the inductive
transitive closure rule and only O(n + m) transitive edges between variables are added?,
we can furthermore assume without loss of generality that variable ) is the variable with
minimum index on all paths E; —>*E; Without projection merging, the inductive transitive
closure rule eventually adds direct edges E; — )Y and Y — E; for all paths F;—*) and
Y—*Z;. The resulting transitive constraints E; Cs E; on ) then generate the n'm’ edges
Xi — Zj.

Now consider the impact of projection merging in the situation of Figure 9.5.
Projection merging will create a new sink ProjPat(c, 7, )’) with an edge ) — ProjPat(c,,)"),
and paths )'—*Z; for the m’ sinks ProjPat(c,, Z;) reachable from ). We still end up
with edges E; — Y added by the inductive transitive closure, but now we only add the
n' transitive constraints E; Cg ProjPat(c,7,)’), which results in the n’ edges X; — ).
As a result, we have created paths X;—*Z; for the n' sources ¢(&;) and the m’' sinks
ProjPat(c, %, Z;) connected through ) (depicted in Figure 9.6). The sharing in these new
paths mirrors the sharing present in the paths E;—*E;, since all the new paths X;—* Z; pass
through the fresh variable ). As a result, we can expect the graph closed using projection
merging to still have O(n + m) edges, assuming again that the inductive transitive closure
rule only adds a linear number of edges directly between variables.

*We describe a theoretical model for estimating the cost of closing constraint graphs under the inductive
transitive closure rule in a separate publication [28]. For random graphs and any ordering o of the variables,
the expected number of transitive edges added between variables is linear.



167

IF-PM Addtl Reduction w.r.t. [F-Online
Benchmark AST #Vars Edges ‘Work Time(s) #Vars Edges Work Time
allroots 700 212 365 59 0.16 86 0.73 0.58 0.69
diff.diffh 935 277 514 46 0.17 100 0.72 1.00 0.82
anagram 1078 316 502 18 0.20 108 0.74 1.39 0.70
genetic 1412 438 707 23 0.25 212 0.60 1.04 0.72
ks 2284 582 1288 321 0.52 266 0.80 2.13 0.65
ul 2395 258 326 83 0.28 67 0.88 0.61 0.82
ft 3027 598 1084 190 0.53 209 0.83 1.45 0.75
compress 3333 393 582 149 0.40 152 0.68 0.43 0.80
ratfor 5269 845 2158 356 1.01 292 0.81 1.51 0.84
compiler 5326 667 1276 199 0.91 258 0.82 0.83 0.68
assembler 6516 1494 3227 869 1.74 528 0.67 0.63 0.68
ML-typecheck 6752 1252 3184 1405 2.06 473 0.90 2.39 0.90
eqntott 8117 1608 3260 657 1.57 688 0.77 1.44 0.70
simulator 10946 2106 4452 666 2.08 703 0.82 6.15 1.03
less-177 15179 2441 6921 1812 3.22 607 1.02 4.11 1.16
1i 16828 4061 11567 4475 6.54 872 0.87 19.21 2.42
flex-2.4.7 29960 5318 9811 1751 7.43 1664 0.77 1.01 0.83
pmake 31148 5304 12182 3997 6.86 2032 0.87 10.11 1.45
make-3.72.1 36892 7164 33820 150028 43.89 2558 0.54 1.38 0.70
inform-5.5 38874 8197 18920 3966 9.66 4161 0.75 8.85 1.08
tar-1.11.2 41035 5576 17282 3607 7.69 1562 0.89 8.57 1.40
sgmls-1.1 44533 6085 24181 13465 13.92 2245 0.72 13.69 2.52
screen-3.5.2 49292 8032 17309 5236 10.79 1760 1.14 25.39 2.45
cvs-1.3 51223 10618 23478 6223 12.20 3729 0.86 4.39 0.97
espresso 56938 10377 23186 6460 12.69 4247 0.93 17.65 2.14
gawk-3.0.3 71140 8563 20007 6296 14.54 2558 0.93 13.94 1.51
povray-2.2 87391 11812 38242 22654 23.91 4329 1.34 9.80 2.12
mume 312458 68233 218772 102215 170.24 16720 2.47 123.16 10.94
gs 504724 115976 245064 75254 272.73 19353 177.85 46.19 192.90
gcce 1168907 199424 707881 854424 808.27 63748 0.93 94.03 14.55

Table 9.6: Benchmark data for IF-PM

Table 9.6 contains the results of experiment IF-PM which consists of running the
Points-to analysis of Section 8.1 on all the C benchmarks we used in the previous section
and two additional large benchmarks, ghostscript (gs), and the GNU C-compiler (gcc).
Each run used cycle elimination and projection merging. Projection merging without cycle
elimination does not perform well at all, which is not surprising. As we have outlined above,
projection merging creates paths between variables appearing in sources and variables ap-
pearing in sinks and these paths mirror the structure of the paths connecting the source
and the sink. If the original paths contain cycles, projection merging results in similar
additional cycles and we have already established in the previous section that cycles slow
constraint resolution significantly.

Table 9.6 gives the total number of edges, total redundant work, and the total
execution time in seconds for all benchmarks. Furthermore, we show reduction factors
of these quantities with respect to the equivalent experiment without projection merging,
and the number of additional variables generated by projection merging. The number of
additional variables generated by projection merging varies, but is generally between 25-
30%. This relatively large increase of variables explains that except for two benchmarks,
projection merging results in a slight increase of the final graph size. The redundant work
however is reduced between 1 and 100 fold for all but the small benchmarks which translates
into substantial speedups in execution times. The speedups are thus primarily due to the
reduced redundant work and not to reduction in the overall graph size. Redundant work
results from redundant paths in the constraint graph. Benchmark gs seems to be a special
case. Projection merging reduces the graph size of gs substantially more than for the other
benchmarks. We currently have no explanation for this effect.



168

10000 T T
IF-PM/IF-Plain  ©
IF-PM/IF-Online  +
1000 1
<
o
4
8 '
2 100} o 1
[ o
8 <
(,) <
N
10 | o + i
<o o © °
+ R
o, + N *
ligs s I
1000 10000 100000 1e+06

AST size

Figure 9.7: Speedups through projection merging

To see how projection merging helps reduce redundant work, consider again the
schematic graph in Figure 9.4 and suppose that there are k£ variables );..); for which the
situation depicted in Figure 9.5 holds. In other words, there are k£ distinct paths between
each source F; and sink E; Without projection merging, edge X; — Z; is added through
each Yy, for i = 1.n' and j = 1..m/, resulting in (k — 1)n’m’ redundant work or O(knm).
Contrast this with the graph produced using projection merging. The structure of the
paths created between &; and Z; mirror the paths between E; and E;-, and thus we create
redundant paths through the fresh variables };..);. But the number of edges added is
roughly kn' 4+ km' or O(kn + km) without redundant work. The savings in redundant work
can thus dwarf the savings in graph edges by a factor k. Our understanding of the exact
effect of projection merging on the savings in redundant work is incomplete. We believe that
there are positive interactions between projection merging and cycle elimination. Studying
these effects however is tricky and time consuming, since the effects only show up on large
constraint problems and cannot easily be reproduced in micro-benchmarks.

Figure 9.7 plots the speedup obtained through projection merging over cycle elimi-
nation alone, and the total speedup of projection merging and cycle elimination over IF-Plain.
As is the case for cycle elimination, the speedups grow as we solve larger constraint prob-
lems, showing that projection merging substantially helps scaling. Since the largest three
programs ran out of space for the IF-Plain experiment, projection merging and cycle elim-
ination not only result in substantial speedups, but enable the analysis of large programs
that cannot otherwise be analyzed.

9.4 Standard Form v.s. Inductive Form
In this section we compare the commonly used implementation strategy of set-based analy-

sis [38], which represents constraint graphs in standard form (SF), with the inductive form
(IF) used by BANE. Using our formulation of Andersen’s points-to analysis as the example,



169

we show the following four points.

1. Without cycle elimination, standard form performs better on the set of benchmarks
than inductive form.

2. Inductive form with cycle elimination performs substantially better than standard
form without cycle elimination.

3. Cycle detection and elimination for standard form is also effective. With cycle elimi-
nation, standard form performs somewhat worse than inductive form with cycle elim-
ination.

4. Standard form computes the transitive lower bound (TLB) of all Set-variables explic-
itly. Often, the transitive lower bound of only a fraction of all variables needs to be
inspected to extract useful information from an analysis. Inductive form enables the
computation of TLB on demand which yields substantial overall speedup due to the
fact that the total size of the TLB tends to grow quadratically with the size of the
constraint problem.

The next subsections briefly recall from Section 6.2 the properties of the associ-
ated constraint graphs for the two representations under study SF and IF. Both forms use
adjacency lists to represent edges. Every edge (X,)) in a graph is represented exclusively
either as a predecessor edge (X € pred())) or as a successor edge (Y € succ(X)).

9.4.1 Standard Form

Standard form (SF) represents edges in constraint graphs as follows:

XCY X——)Y successor edge
ECX FE--+X predecessor edge (E is a source)
X CE X——F successor edge (F is a sink)

We draw predecessor edges in graphs using dotted arrows and successor edges
using plain arrows. New edges are added by the standard transitive closure rule (STCR).
STCR can be expressed in terms of predecessor and successor edges:

L»rX—R & LC,R

Given a predecessor edge L -----~X and a successor edge at X —R, a new constraint L C R
is generated. We generate a constraint instead of an edge because only atomic constraints
(constraints on variables) are represented in the graph. The constraint is thus first trans-
formed into a set of atomic constraints using the structural resolution rules given in earlier
chapters. Note that L is always a source in all transitive constraints L. Cg R generated for
SF. This follows from the fact that the only predecessor edges in the constraint graph are
rooted at sources.

SF makes the transitive lower bound of all variables explicit by propagating sources
forward to all reachable variables via the closure rule. The particular choice of successor



170

Lk Rm Lk

L1 R1 L1 .

Ly, Rm Ly

Figure 9.8: Example constraints in SF and IF

and predecessor representation is motivated by the need to implement the transitive closure
rule locally. Given a variable X, the closure rule must be applied exactly to all combinations
of predecessor and the successor edges of X.

Figure 9.8 shows an example system of constraints, the initial SF graph, and the
resulting closed SF graph (left). The example assumes that set expressions Li ... Ly are
sources and R; ... R,, are sinks. The closure of the standard form adds transitive edges
from each source L; to all variables reachable from X i.e., Y1 ...);, Z. Note that the edges
from L;...L; to Z are added [ times each, namely along all [ edges JV;——Z. The total
work of closing the graph is 2kl edge additions, of which k(I — 1) additions are redundant,
plus the work resulting from the km constraints L; C R; (not shown).

To see why cycle elimination can asymptotically reduce the amount of work to
close a graph, suppose there is an extra edge Z——X in Figure 9.8, forming a strongly
connected component X, Vi,...,V;, Z. If we collapse this component before adding the
transitive edges L;-----»);, none of the 2kl transitive edge additions L; -----»); are performed
(the km constraints L; C R; are still produced of course).

9.4.2 Inductive Form

Inductive form (IF) exploits the fact that a variable-variable constraint X C )Y can be
represented either as a successor edge (Y € succ(X)) or as a predecessor edge (X € pred())).
The representation for a particular edge is chosen as a function of a fixed total order



171

o: V — N on the variables. Edges in the constraint graph are represented as follows:
X CY X——)Y asuccessor edge if o(X) > o(Y)
XCY XY a predecessor edge if o(X) < o(Y)
ECX E--+X predecessor edge (E is a source)
X CE X——F successor edge (F is a sink)

The choice of the order o(-) can have substantial impact on the size of the closed constraint
graph and the amount of work required for the closure. Choosing a good order is hard, and
we have found that the gen order employed by BANE performs as well or better than other
orders we have tried. For example, picking a random order performs about as well as the
gen order, but the gen order is of course easier to generate.

The inductive transitive closure rule (ITCR), expressed in terms of predecessor
and successor edges, is surprisingly the same as STCR. Transitive constraints are generated
between L and R through X, if there is a predecessor edge L-----»X and a successor edge
X——R.

L.w»X—R & LCR

Notice that here L may be a source or a variable—unlike SF, where L is always a source. In
IF the closure rule can therefore directly produce transitive edges between variables. (This
is not to say that the closure of SF does not produce new edges between variables, but for
SF such edges always involve the the application of a structural closure rule.)

Unlike SF, the transitive lower bounds of all variables are not explicit in IF. As
was shown in Section 6.2.1, the transitive lower bounds can be computed efficiently for IF.
Unless otherwise stated, all execution times reported in the rest of this section include the
time to compute the transitive lower bounds of all variables.

The right side of Figure 9.8 shows the initial and final graph for the example
constraints using |IF. Note that some variable-variable edges in IF are predecessor edges
(dotted), whereas all variable-variable edges in SF are successor edges (solid). The ordering
on the variables assumed in the example is o(X) < 0o(Z) < 0();). Note the extra variable-
variable edge X -----=Z added by the closure rule for IF. As a result of this edge, the closure of
IF adds edges from X to all R;. Each of the variables Vi, ... ,));, Z has a single predecessor
edge to X, and thus their transitive lower bound is equal to TLB(X) = {Ly,... ,Lx}. The
total work of closing the graph is [+m edge additions, of which [—1 additions are redundant,
namely the addition of edge X -----»Z through all };, plus the work for the km transitive
constraints L; C R; (not shown). The work to compute the TLB is proportional to .

9.4.3 Measurements

Our measurements use the same C benchmark programs shown in Table 9.1. We performed
the three experiments shown in Table 9.7 which are analogous to the ones performed for
inductive form in Section 9.2. SF-Plain corresponds to classic implementations of set-based
analyses and does not perform any cycle elimination. The SF-Oracle experiment is similar
to IF-Oracle in that it avoids all unnecessary work induced by cycles in the constraint



172

Experiment | Description

SF-Plain Standard form, no cycle elimination

SF-Oracle Standard form, with full (oracle) cycle elimination
SF-Online Standard from, using IF online cycle elimination

Table 9.7: Points-to Experiments

SF-Plain SF-Oracle
Benchmark Edges Work Time(s) Edges Work Time(s)
allroots 222 20 0.10 480 20 0.10
diff.diffh 335 41 0.13 690 45 0.17
anagram 365 24 0.15 672 11 0.18
genetic 366 29 0.15 864 26 0.20
ks 1271 1059 0.30 1698 506 0.31
ul 278 54 0.20 1209 53 0.30
ft 1051 496 0.34 1826 153 0.41
compress 387 47 0.28 1627 48 0.45
ratfor 2308 1112 0.69 4561 403 1.16
compiler 1849 293 0.62 3827 131 0.90
assembler 2465 569 1.08 5739 564 1.53
ML-typecheck 16803 129255 2.93 9234 2478 1.77
eqntott 2707 1052 0.96 5668 436 1.45
simulator 30011 266797 5.14 16610 4232 2.49
less-177 40610 279440 6.22 27004 9809 3.65
1i 1356287 95149841 1199.05 389792 339648 21.06
flex-2.4.7 12659 5266 5.85 32711 1933 9.67
pmake 276802 9151132 117.40 122188 107489 11.96
make-3.72.1 697032 50125520 606.20 313423 353384 22.08
inform-5.5 260795 8831354 111.25 152261 81206 13.72
tar-1.11.2 270995 6215213 82.10 139649 65246 11.57
sgmls-1.1 1084322 113925061 1346.18 499575 601541 37.67
screen-3.5.2 664085 37987203 461.43 306694 257300 24.55
cvs-1.3 119323 925859 23.21 92380 57411 13.69
espresso 712612 25996610 360.47 387566 331837 29.07
gawk-3.0.3 754367 32595925 439.16 344836 215576 28.20
povray-2.2 2057472 162483247 2148.99 1108347 767024 69.55

Table 9.8: Benchmark data for SF-Plain and SF-Oracle

graph by eliminating cycles before they arise, using the precomputed strongly connected
components of the final graph. Finally, SF-Online uses BANE’s strategy for cycle detection
and elimination applied to constraints in standard form.

Table 9.8 shows the results for the first two experiments. Figure 9.9 plots the
analysis time for SF-Plain without cycle elimination against the number of AST nodes of
the parsed program. For comparison, the graph also includes the numbers for IF-Plain, i.e.,
the corresponding experiment for inductive form. Without cycle elimination, SF generally
outperforms IF because cycles add many redundant variable-variable edges in IF that lead
to redundant work. However, the scaling trend is roughly the same, showing that SF also
does not scale well. As is the case for IF, strongly connected components in the constraint
graph are a scaling inhibitor for SF as shown by the low numbers for SF-Oracle in Table 9.8.

To validate that our results are not a product of our particular implementation of
SF, we compare our measurements against the times of an independent implementation of
the same points-to analysis written in C by Shapiro and Horwitz [76]. Their implementa-
tion (SH) corresponds to SF without cycle elimination, and we empirically verify that our
implementation of SF produces the same trend on our benchmark suite. The scatter plot
in Figure 9.10 shows that our implementation of SF without cycle elimination is usually
between 2 times faster and 2 times slower than SH (horizontal lines) on a subset of the



173

10000 | IF-Plain o 10l °
SF-Plain  + R N
1000 - £
oy .t o @
& % o
% 100 e £ 2 X s
£ o n ° o o .
[ . 2 1t ¢
10 | ° [ o o o o
° [ 4 © 0
. E 0.5 22 e
[
L o3¢
1 R o
v *?
o1}f ¢ 77
‘ ‘ 01 ‘ ‘
1000 10000 100000 100 1000 10000 100000
AST nodes AST nodes

Figure 9.9: SF and IF without cycle Figure 9.10: Relative execution times of
elimination Shapiro and Horwitz’s SF implementation
of C points-to analysis (SH) over SF-Plain

benchmarks? with a few exceptions where our implementation is significantly faster (flex,
1i, cvs, inform), and one program where our implementation is substantially slower (tar).

Table 9.9 reports the measurement results for SF-Online. In addition to the in-
formation shown for the plain and oracle experiments, the table contains the number of
variables that were eliminated through cycle detection and fraction of analysis time spent
in cycle detection (%CD).

Figure 9.11 plots the execution time of SF-Online against the number of AST
nodes. For comparison, the graph also plots SF-Oracle, IF-Online, and IF-Oracle. The
fastest analysis times are achieved by IF-Oracle, followed by SF-Oracle, IF-Online, and SF-
Online. We can use the oracle experiments SF-Oracle and IF-Oracle to directly compare the
graph representations of IF and SF, independently of cycle elimination. Figure 9.11 shows
that IF-Oracle does better than SF-Oracle overall, and thus closing acyclic graphs using the
inductive transitive closure rule is more efficient than using the standard transitive closure
rule. This observation not only applies to the particular experiment described here. We
showed elsewhere [28] that this result can be derived analytically by studying the average
case behavior of STCR and ITCR on random acyclic graphs.

Figure 9.12 shows the speedup obtained through online cycle elimination applied
to standard form (SF-Online over SF-Plain). For comparison, the graph also contains the
speedup of IF-Online over SF-Plain, showing that with cycle elimination, inductive form
does better, as predicted by comparing SF-Oracle and IF-Oracle.

The performance benefit of inductive over standard form is illustrated more clearly
in Figure 9.13. In this plot, we can see that IF-Online is consistently faster than SF-Online
for medium and large-sized programs (at least 10,000 AST nodes).* For large programs the
difference is significant, with IF-Online outperforming SF-Online by over a factor of 2.5 for
the largest program. For very small programs, IF is at most 50% slower than SF, which in

3Not all benchmarks ran through SH.
4The outlier is the program flex; although flex is a large program, it contains large initialized arrays.
Thus as far as points-to analysis is concerned, it actually behaves like a small program.



174

100 T
100 t  SF-Online E IF-Online/SF-Plain
SF-Oracle - . o : 50 I SF-Online/SF-Plain  + oo
-Online = ° o
IF-Oracle x . o i;m £ X
10 ¢ x o E| @ R
@ é S 10 ¢ ¢ 1
T ° S °
® (7]
x B X
1t ; 8 o | )
T 2t . |
@é ma & +
N R ST 1
01 8 i
. . 05 . . . . .
1000 10000 100000 0.01 0.1 1 10 100 1000 10000
AST nodes Absolute time(s) SF-Plain

Figure 9.11: Analysis times with cycle de- Figure 9.12: Speedups through online cycle

tection and oracle detection
SCC SF-Online
Benchmark AST #Vars Elim. Edges Work Time(s) %CD
allroots 700 20 11 214 316 0.09 | 11.11%
diff.diffh 935 13 13 319 455 0.13 7.69%
anagram 1078 23 23 333 438 0.14 0.00%
genetic 1412 14 6 366 490 0.16 6.25%
ks 2284 38 24 957 2511 0.30 6.67%
ul 2395 6 6 268 360 0.20 0.00%
ft 3027 67 27 865 1420 0.40 | 12.50%
compress 3333 26 21 366 474 0.31 0.00%
ratfor 5269 83 35 1913 3521 0.72 5.56%
compiler 5326 35 12 1560 1983 0.61 0.00%
assembler 6516 88 46 2385 3380 1.08 2.78%
ML-typecheck 6752 243 162 8333 26557 1.79 | 12.29%
eqntott 8117 173 93 2175 4215 1.11 5.41%
simulator 10946 230 108 19142 112887 4.61 | 22.13%
less-177 15179 274 150 27998 69334 3.99 | 10.03%
li 16828 1256 872 635866 | 2348798 60.85 9.22%
flex-2.4.7 29960 315 177 10859 15621 6.68 7.19%
pmake 31148 661 446 144126 443113 19.16 | 15.08%
make-3.72.1 36892 858 642 320665 | 1357871 46.67 | 19.78%
inform-5.5 38874 468 343 99451 306814 15.74 | 19.70%
tar-1.11.2 41035 822 666 126487 348520 15.88 | 11.90%
sgmls-1.1 44533 863 744 368084 | 2198616 62.53 | 15.70%
screen-3.5.2 49292 864 737 282551 864976 39.07 | 17.12%
cvs-1.3 51223 724 554 78151 190880 14.59 | 11.45%
espresso 56938 1374 834 428677 | 1066940 48.22 | 20.01%
gawk-3.0.3 71140 1290 910 365473 | 1072313 44.81 | 15.09%
povray-2.2 87391 1456 1024 | 1182741 | 4557948 138.39 | 16.16%

Table 9.9: Benchmark data for SF-Online

absolute times means only fractions of seconds.

We can explain the performance difference of IF and SF by comparing the fraction
of variables on cycles found by IF-Online and SF-Online (Figure 9.14). Throughout, SF
finds only about half as many variables on cycles as IF, and the remaining cycles slow down
SF. One reason for this difference is that for SF, the cycle detection only searches successor
chains. The analog to predecessor chains in SF are increasing chains. Searching increasing
chains in SF results in a higher detection rate (57%), but the much higher cost outweighs
any benefits.

Projection merging hurts standard form, since every extra variable will induce
extra source edges and extra redundant work. Furthermore, since sinks are not propagated



175

5 1.2 T T
[} .
£ IF-Online  ©
45 ¢ S SF-Online  +
E e .
35+ 8 08:, -
Q . + +
w o S 0.6 |, +
g 25 | g o ++ + +
[ = L
° ]
2t 5 04 7
° >
15t 005 o S
o 5 0.2
1 e 3
066 L L L L w O L L L L
0 20000 40000 60000 80000 0 20000 40000 60000 80000
AST nodes AST nodes

Figure 9.13: Speedups through inductive Figure 9.14: Fraction of variables on cycles

form found online
1e+08 . ‘ ‘
SF-Online - °
IF-Online  +
1e+07
» 1e+06 R °
Q o +
> 60 %0
ke, o
w o
< 100000 F ¢,
Q +
s o
[0) ° et
F 10000 | o =
gﬁ
1000 | so ot
5 b0 s,
100 ‘ ‘ ‘ ‘
1000 10000 100000 1e+06
AST nodes

Figure 9.15: Final graph sizes of SF and IF

backwards, projection merging isn’t needed.

9.4.4 TLB on demand

One clear advantage of inductive form over standard form is space usage during the res-
olution. At each step in the resolution process, the constraint graph for standard form
contains the transitive lower bounds of each variable explicitly. Since the total size of the
TLBs becomes fairly large for large constraint problems, the space usage during resolution
under SF is a scaling inhibitor. Figure 9.15 plots the final graph size of IF and SF vs. the
benchmark size. The diagonal line plots y = z, showing that for IF, the final graph size is
smaller than the number of AST nodes, with the exception of mume where the graph size is
about a third larger. The graph sizes under standard form however exceed the number of
AST nodes by orders of magnitude for medium to large programs. In fact, the largest two
benchmarks (gs and gcc) did not run to completion with 2GB of main memory under SF.

The transitive lower bound (TLB) under IF is computed using Algorithm 6.7 which



176

IF-Online
Benchmark AST Edges QTLBsize FTLBsize BTime(s) QTime(s) FTime(s) Speedup
allroots 700 265 16 34 0.10 0.01 0.00 0.91
diff.diffh 935 369 60 7 0.13 0.01 0.01 1.00
anagram 1078 372 48 89 0.14 0.00 0.01 1.07
genetic 1412 424 52 95 0.18 0.00 0.01 1.06
ks 2284 1027 171 448 0.33 0.01 0.02 1.03
ul 2395 286 24 28 0.23 0.00 0.00 1.00
ft 3027 897 158 215 0.40 0.00 0.01 1.02
compress 3333 397 33 44 0.31 0.01 0.01 1.00
ratfor 5269 1758 610 829 0.84 0.01 0.03 1.02
compiler 5326 1047 398 679 0.61 0.01 0.02 1.02
assembler 6516 2174 681 972 1.16 0.03 0.04 1.01
ML-typecheck 6752 2858 3092 3833 1.73 0.12 0.10 0.99
eqntott 8117 2496 316 605 1.08 0.02 0.05 1.03
simulator 10946 3652 8600 12448 2.03 0.11 0.20 1.04
less-177 15179 7040 16278 19933 3.62 0.10 0.30 1.05
1i 16828 10100 453422 538661 15.18 0.62 5.01 1.28
flex-2.4.7 29960 7531 3858 6545 6.03 0.11 0.32 1.03
pmake 31148 10629 90576 118190 9.68 0.29 1.00 1.07
make-3.72.1 36892 18123 159226 273020 30.07 0.59 4.12 1.12
inform-5.5 38874 14139 31044 85711 10.08 0.39 0.78 1.04
tar-1.11.2 41035 15366 64543 108111 10.29 0.50 0.85 1.03
sgmls-1.1 44533 17358 219934 329640 34.28 0.75 4.69 1.11
screen-3.5.2 49292 19707 150763 248691 25.84 0.58 4.69 1.16
cvs-1.3 51223 20289 40274 62274 11.61 0.21 0.90 1.06
espresso 56938 21671 197535 351298 25.19 2.00 3.47 1.05
gawk-3.0.3 71140 18613 152493 306369 21.36 0.57 3.42 1.13
povray-2.2 87391 51216 624500 986988 48.14 2.62 13.07 1.21
mume 312458 539536 17897718 31474473 (113.16) 1800.66 (56.91) 61.89 938.07 (6.08) 1.47
gs 504724 43583903 52728554 - 51360.90 1014.02 oo oo
gee 1168907 659584 87997663 — 11485.26 272.06 o o

Table 9.10: Benchmark data for on demand TLB

reduces to computing the transitive closure on an acyclic graph. Redundant work due to
transitive edges can be avoided during this computation, whereas during closure under
SF, the same redundant work cannot be avoided. Algorithm 6.7 can also be used for on-
demand computation of the TLB by computing only the TLBs of variables reachable from the
variables of interest. As a result, the full TLBs of the entire graph need never be explicitly
represented in memory for IF and as little of the TLB can be computed as necessary. This
last point is of interest in that for most analyses, the TLB is needed for only a fraction of all
variables present in the constraints. In Points-to analysis for example, the points-to relation
is mainly of interest at dereference expressions in the program. Our experiments actually
compute the TLB for every program variable. To quantify the benefits of computing the
TLB on demand under IF we also computed the full TLB explicitly in memory for each
benchmark under the IF-Online experiment, i.e., using cycle elimination, but not projection
merging. Table 9.10 contains for each benchmark the size of the constraint graph under IF,
the size of the TLB computed on demand (QTLBsize), the size of the full TLB (FTLBsize),
the time to compute the closed graph before computing any TLBs (BTime), the time to
compute the query-based TLB (QTime), and the time to compute the full TLB (FTime).
The last column shows the speedup obtained by using the query-based TLB. The full TLB
is roughly twice the size of query-based TLB for many benchmarks under this experiment.
Computing the query-based TLB however is often substantially cheaper, indicating that
the total size may not be a good indicator for performance. Computing the TLB involves
merging sets and eliminating duplicates, which induces costs not apparent in the final TLB
size. Even though computing the query-based TLB is roughly five times cheaper for most
benchmarks, the overall speedups obtained through the query-based TLB for IF-Online are




177

Implementation | Description

Term-Set Exception inference using Term-expressions for the type
structure and Set-expressions for exception annotations.
Based on equality constraints between Term-expressions.
FlowTerm-Set Exception inference using FlowTerm-expressions for the
type structure and Set-expressions for exception annota-
tions. Based on inclusion constraints.

Set-Set Exception inference using Set-expressions for both the type
structure and the exception annotations. Based on inclu-
sion constraints.

Table 9.11: Precision-efficiency variations for exception analysis

moderate, ranging from 1 to 1.5. The time to close the graph dominates the time to compute
the TLBs.

The situation changes when we look at the execution times for closing the graph
using projection merging. Projection merging reduces the time to compute the closed
graph substantially, but has no direct influence on the time to compute the TLB. Thus, the
speedup obtained with the query-based TLB computation is more important when using
projection merging. The numbers in parentheses for the mume benchmark show the times
and speedup obtained w.r.t. IF-PM. Note that with projection merging, the time to close
the graph and compute the query-based TLB for mume is less than % that of computing the
full TLB alone on the final graph. Since standard form computes the full TLB in all cases,
it can not compete with inductive form and query-based TLB on large constraint problems.

9.5 Precision-Efficiency Tradeoffs

This section evaluates BANE with respect to the precision-efficiency tradeoffs provided
through mixed constraints. We implemented three versions of the exception inference sys-
tem described in Section 8.2 using different sorts for the inference of the type structure.
Table 9.11 describes the three variations. In theory, the precision increases from the Term-
Set to the FlowTerm-Set systems. The precision difference between these systems stems
from the use of equality constraints vs. the use of inclusion constraints between type ex-
pressions. Inclusion constraints model the direction of the flow of values through a program,
whereas equalities model the flow of values undirectionally. As a result, the use of equality
constraints may lead to back-flow of information. As an example of an expression where
the two systems differ, consider the following program fragment:

let g =fnx => fny =>fn f => (case ... of .. => f x| .. => f y, x)
in

Here g is a function of three curried arguments x, y, and £. The result of applying
g is a pair (v1,v2), where vy is the result of applying £ to either x or y, and vy is identical
to argument x. An analysis based on equality constraints (Term-Set) equates the types of



178

arguments x and y with the domain of function argument f. As a result, the type of the
second component of the return value (vq) is equal to the type of both x and y, and it
appears as if the second argument y could be returned by g. Thus the type of g obtained
by Term-Set is

g Ti=Ti— (TS T) 5 (T

On the other hand, consider the type of g inferred by the FlowTerm-Set system.

T T (GST) S TIN5 A TaCh T

Here the types of arguments x and y are not equated. The fact that £ is potentially applied
to x and y is reflected in the constraints 77 Cg T3 and Ty Cq T3 expressing that either
argument flows into the domain of function f. The result type of g states precisely that the
second component is of type 71, the type of x.

The effect of the different types for g is best observed by considering applying g
to u, v, and w with the following types:

u: exn(&)\Subscript Cg &1
v : exn(&2)\Fail Cg &

W:7'£>7-

In words, u is an exception value carrying at least exception Subscript, v is an exception
value carrying at least exception Fail, and w is function, returning a value of the same type
as its argument. Under Term-Set, the result type of the application is (7,7 ) with the
constraints

T =exn(E) A Subscript Cs €& A Fail G €

If we extract the exception in the second position of the result and raise it we obtain the
potential exception Fail, even though the application could never result in the Fail exception.

Under FlowTerm-Set, the result type of the above application still correctly models
the possible value flows in the program. We obtain the pair type (74, 71) with the constraints

Ty = exn(&3) Subscript Cs &3 Fail G &3
T1 = exn(&y) Subscript Cs &4

As the example suggests, these differences only show up in higher order programs.

Even though in theory there is a precision difference between the FlowTerm-Set
and the Set-Set systems, our formulation of exception inference for ML does not expose it.
The Set-Set system can in principle deal with types of the form bool U int, ¢.e., a union of
an integer and a boolean, whereas the FlowTerm-Set system would have to express this type
as T. No valid ML programs contain such types however, and thus the difference does not
show up. Every ML type is formed by applying a single head constructor, and the FlowTerm
sort can express such types accurately. It should be noted here that the use of a sort like
FlowTerm or Term requires the analysis to be as polymorphic as the ML type system, for



179

Benchmark | Lines ML | Description

kb 630 | An implementation of the Knuth-Bendix completion algorithm.

lex 1320 | The Standard ML/NJ lexer generator.

yacc 2978 | The Standard ML/NJ parser generator.

burg 8320 | The Standard ML/NJ tree match generator.

pta 30226 | The complete Points-to implementation including the BANE
library.

Table 9.12: ML Benchmarks for exception analysis

Experiment | Description

Base Exception inference using cycle elimination, projection
merging, and min-max simplification of polymorphic con-
strained expressions.

NoCycle Same as Base, but no cycle elimination or projection merg-
ing.
NoSimp Same as Base, but no min-max simplification.

Table 9.13: Experiments for exception analysis

otherwise, the single head constructor assumption no longer holds. The Set-Set system on
the other hand can analyze ML programs using less polymorphic types than are needed to
infer the ML types. We have not explored this aspect further.

On the efficiency side, constraint resolution for the Term-Set system should be
cheaper than for the FlowTerm-Set system through the use of equality constraints and the
more compact representation that use enables. Similarly, resolution of constraints in the
FlowTerm-Set system should be cheaper than for the Set-Set system, since relations between
types containing no exception annotations can be represented by equalities in the FlowTerm
system. For example, suppose we have the constraints

Ti Cee T2 T2 Cee T3 T2 Cee Ta

and we add the constraint bool Cg 77. This constraint forces 77..7; to be equal to bool
in our implementation, which can be compactly represented. On the other hand, the same
constraints under the Set sort cannot be simplified.

We measured the actual precision and efficiency of the three exception systems on
the five benchmarks shown in Table 9.12. The benchmarks span two orders of magnitude
in terms of size, ranging from 600 lines to 30000 lines. The number of lines is the number
of non-blank, non-comment lines after functor applications have been expanded. For each
system and each benchmark, we performed the experiments shown in Table 9.13. The
Base experiment uses all optimizations present in BANE. The NoCycle experiment evaluates
the efficiency difference of the three systems when no cycle elimination is performed, and
the last experiment—NoSimp—evaluates the efficiency difference of the three systems when
polymorphic constrained expressions are not simplified using the min-max approach of
Section 7.6.3.



180

Exception Counts

Analysis Time (s) Avg. # quantified vars
Name

LTP | LTE | LTL | MFP | MFE | MFL Base | NoCycle | NoSimp Base | NoCycle | NoSimp
Term-Set
kb 0 0 0 1 1 1 2.04 1.93 2.91 2.36 2.73 9.33
lex 0 0 0 16 7 10 9.12 9.03 18.02 21.05 21.49 52.71
burg 5 4 5 48 17 32 11.15 13.44 11.40 6.02 6.17 8.25
yacc 6 4 6 36 21 36 16.21 15.76 16.53 2.16 2.36 3.16
pta 22 11 22 261 41 180 7894.47 o o 23.58 — —
FlowTerm-Set
kb 0 0 0 1 1 1 2.10 2.01 5.60 1.27 1.26 20.35
lex 0 0 0 16 7 10 3.05 2.91 10.43 0.35 0.35 28.88
burg 5 4 5 48 17 32 12.39 12.52 25.61 2.72 2.94 26.09
yacc 6 4 6 36 21 36 24.36 23.90 41.26 1.55 1.63 15.11
pta 22 11 22 261 41 180 198.30 [e'e] e3¢} 2.10 - -
Set-Set
kb 0 0 0 1 1 1 2.15 2.42 5.14 1.29 1.37 14.96
lex 0 0 0 16 7 10 2.89 4.22 8.77 0.55 0.71 13.51
burg 5 4 5 48 17 32 9.44 11.64 20.36 1.83 2.21 12.05
yacc 6 4 6 36 21 36 27.12 39.56 49.00 1.56 2.04 11.59
pta 22 11 22 261 41 180 319.37 o o 2.75 — —

Table 9.14: Benchmark data of all implementations and experiments

Table 9.14 contains the results of our experiments. We measured the relative
precision of the exception inference systems in terms of the number of reported uncaught
exception-location pairs for the main function of each program (MFP). Recall from Sec-
tion 8.2 that we infer sets of uncaught exception-location pairs e@l, where e is an exception,
and [ a program point. The pair expresses that the uncaught exception e may originate
from location [. Tt is thus possible to infer two pairs e@/;, and e@ly involving the same
exception e, but two different locations /; and lo. To clarify the differences in the precision
of just the set of exceptions e and locations [, we also give the number of distinct exceptions
(MFE) and locations (MFL) appearing in all exception-location pairs.

We also report the number of uncaught load-time exceptions, i.e., exceptions that
are potentially raised when loading and evaluating initialization code, but before calling the
main function of the program (LTP, LTE, and LTL). The execution times reported are in
seconds and are best out of three runs, using one processor of a lightly loaded 8 processor
Enterprise-5000 machine with 2GB of main memory. Entries marked with oo ran out of
space or did not run to completion within 24 hours.

The last three columns report the average number of quantified variables per poly-
morphic constrained expression inferred for each experiment. As we will see, the size of the
quantified types has a strong influence on execution time.

As is apparent from the exception counts, the precision loss of the Term-Set imple-
mentation does not manifest itself. All implementations report exactly the same uncaught
exceptions for the main function and the load-time exceptions. A likely explanation for this
fact is that the absence of subtyping in Term-Set is counteracted by let-polymorphism. On
the efficiency side there are even more surprises. The expected efficiency grade from Term-
Set to FlowTerm-Set only shows up for the three benchmarks kb, burg, and yacc, although
the running times for kb are essentially the same. The most surprising result is that for
the largest benchmark, pta, the Term-Set system performs extremely poorly. We will study
the reason for this anomaly below. The efficiency grade between FlowTerm-Set and Set-Set
shows up only for the two largest benchmarks. For smaller benchmarks, the overhead intro-
duced by fresh variables arising during the resolution of FlowTerm constraints may annul
any advantages of the potential savings provided by the more compact representation of



181

FlowTerm constraints.

If we look at the average number of quantified variables for the Base experiments,
we notice that the averages for the Term-Set system are up to ten times larger than for
the other two systems, indicating that the efficiency advantage of the Term-Set system did
not show up due to large polymorphic constrained expressions. This fact is supported
by the NoSimp experiment where the expected efficiency grade is more apparent. The
purpose of the min-max simplification is to reduce the size of polymorphic constrained
expressions so as to avoid overhead when the expression is instantiated multiple times.
Except for 1ex and pta, the execution times for the Term-Set system without simplification
are barely different from the Base experiment, whereas for the other systems, execution
times double without simplification. These facts suggest that min-max simplification in
the Term-Set systems does not work well. Clearly, type expressions of sort Term cannot be
minimized or maximized, since we assert equality constraints between type expressions in
the Term-Set system. However, the bounds on Set-variables appearing in the constraints
can be minimized or maximized, except for variables appearing inside Term-constructors
(Section 7.6.3). Examining the types and constraints arising during the inference of pta
with the Term-Set system, we notice that many constrained types contain a large number
of constraints of the form:

IO(exn(Sl))Qll gs &
IO(exn(Sg))ng gs E
|O(exn(53))©lg gs &

where the 10 exception constructor is used by the input-output subsystem of SML and
signals that an exception was caught during an input-output operation. The exception
that was caught is provided to any handler as an argument carried by the [O-constructor.
The distinct Set-variables &1,&9,&5,... all have similar if not the same bounds, and the
locations [y,ls,... are also mostly the same. These constraints on £ cannot be minimized
by the min-max simplification, since the variables £1,&9,E&3,... appear inside the Term-
constructor exn and future constraints can result in equality constraints on these variables.
Note that the FlowTerm-Set and Set-Set systems can in this same situation minimize the
variables &1, &, ... which results in many equivalent lower-bounds on £ (since the variable
&; have similar lower bounds). As a result, large numbers of such bounds do not appear in
these systems.

The NoCycle experiments show that cycle elimination introduces some overhead
for the smaller benchmarks, but is absolutely necessary for the largest benchmark pta. This
largest benchmark exercises the higher order nature and the imperative features of ML more
fully than the other benchmarks and presents a realistic real world analysis problem. The
scaling behavior of the three systems should thus be judged mainly by this benchmark.

A first conclusion from the above experiments is that the expected precision-
efficiency tradeoffs do not necessarily arise in practice. Unexpected interactions (in this
case between Term constructors, and simplification) may annul the efficiency advantage of
certain sorts. On the other hand, the precision of a cheaper system need not be worse in



182

Exception Counts Base Experiment

Name LTP LTE LTL MFP MFE MFL Time(s) avg.QV
kb 0 0 0 1 1 1 1.41 2.36
lex 0 0 0 59 7 12 3.93 3.85
burg 5 4 6 415 17 34 7.94 2.89
yacc 6 4 6 493 21 36 15.65 1.91
pta 54 11 22 3541 41 198 127.09 2.50

Table 9.15: Benchmark data for Term-Set Base experiment with Cartesian-closed
constructors.

practice. Being able to express these different systems in a common framework as pro-
vided by BANE allowed us to identify why one system performs better than another. As
a result, we added another precision dial to BANE to deal with the performance problem
of the Term-Set system described above. The precision dial allows Set-constructors to be
marked as Cartesian-closed. This option tells BANE that if ¢ : s t — s is a Cartesian-closed
constructor, then the union of two constructor expressions ¢(E;, Ea) U ¢(Es, Ey4) is to be
treated as equivalent to ¢(77,72) along with the constraints

E,CsTh E,Cs Th EsCi Th Ey, G T

where 77 is a fresh temporary variable of sort s, 75 is a fresh temporary variable of sort
t. In other words, the union of two constructor expressions with the same cartesian-closed
constructor is transformed into a single constructor expression where the arguments are
unioned (the example assumes that both arguments to ¢ are covariant). Applying this option
to the constructor @ combining exception names and locations allows us to simplify the large
numbers of constraints arising in the Term-Set system. In the case of the IO constructor
bounds shown above, the simplification results in equality constraints between &1, 5,3, ...
and we end up with a single lower bound 10(exn(&1))@Q7; Cs £. The optimization however
may result in a severe loss of precision since the association between an exception name and
the location where it was raised is essentially lost.

Table 9.15 shows the results of the Base experiment for the Term-Set system when
Cartesian-closed constructors are used. The last column shows that the number of quantified
variables per polymorphic constrained expression inferred has been reduced ten-fold w.r.t.
to the earlier Base experiment on Term-Set. The numbers are now of the same order as
for the FlowTerm-Set and Set-Set systems. As a result, the execution times have been
reduced, in particular for pta. The expected efficiency and scaling advantage of the Term-
Set system finally shows. However, we have traded the efficiency gain for a loss in precision.
The number of exception-location pairs inferred for pta jumped from 261 to 3541. Similar
experiments for the FlowTerm-Set and Set-Set systems produced execution times that did
not differ much from the times reported in Table 9.14 for the Base experiments. This fact
is not surprising, since simplification for these systems already produced small polymorphic
constrained expressions. Figure 9.16 summarizes the results. It shows the Base analysis
times for all systems and benchmarks. The Term-Set-CC system refers to the Term-Set
system with Cartesian-closed constructors. No system stands out with a clear performance
advantage over the other. The maximum difference is a factor of 2 between Term-Set-CC and
Set-Set on the pta benchmark. We expect that for even larger benchmarks, the efficiency
relations seen on pta will prevail.



183

10000 T -
Set-Set —+—
FlowTerm-Set --+--- ‘
Term-Set -5
Term-Set-CC -
1000 ¢ ; E
0)
[} L 4
g 100
£
10 ¢ E
l X L L
100 1000 10000 100000

Lines ML

Figure 9.16: Comparison of the Base experiments

The sequence of experiments described in this section have shown that experimen-
tation is crucial to figuring out practical precision-efficiency tradeoffs of program analyses.
The expected tradeoffs have not shown-up initially but have uncovered a scaling inhibitor
for the Term-Set system.



184

Chapter 10

Related Work

This chapter discusses related work not covered in Section 4.6 or Section 6.4. The
related work is divided into three sections. The first section covers work on practical aspects
of constraint resolution implementations of cubic or worse complexity. The second section
covers sub-cubic time analyses and resolution techniques. Finally, the third section covers
other approaches to program analysis tools and frameworks.

10.1 The Cubic-Time Bottleneck

Most work on program analysis focuses on the soundness and theoretical complexity of the
algorithms. Algorithms based on inequalities (in particular inclusion constraints) generally
require a form of dynamic transitive closure, causing such algorithms to have at least cubic
worst-case time-complexity. Heintze and McAllester [43] show that the problem of deter-
mining membership for languages defined by 2-way nondeterministic pushdown automata
(2NPDA) is linear time reducible to a standard flow analysis [67]. The best known algo-
rithm for 2NPDA has cubic worst-case time complexity, showing that it is unlikely that
sub-cubic time algorithms for standard flow analysis exist.

This so-called cubic-time bottleneck has led many researchers away from algo-
rithms based on dynamic transitive closure and towards cheaper, but potentially less precise
techniques. Relatively little work has focused on practical implementation aspects of cubic
or worse constraint resolution algorithms, probably because straight-forward implementa-
tions do indeed attain the worst-case complexity even for relatively small programs.

The work described in this dissertation shows that through clever representation
and constraint graph simplification, the cubic worst case complexity need not be attained
in practice. Furthermore, the mixed constraint formalism provides an escape mechanism
to use cheaper constraints, such as equality between Term expressions in cases where the
practical complexity is indeed high.

Work on set-based analysis [38, 30, 29] and inclusion constraint-based type in-
ference [71, 24, 83, 58, 72] has mostly focused on techniques to simplify constraints to
achieve scalability. One exception is Heintze, who describes in his dissertation that hash-
consing constructed expressions is important to efficiently test set-memberships, and that
sets should be represented as hash tables. Flanagan and Felleisen prove that their partic-



185

ular form of set-constraints have minimal normal forms, but that computing the normal
form is PSPACE-complete. They then develop a number of algorithms based on grammar
simplifications that achieve good reductions in constraint size without computing the min-
imal form. They apply their techniques in MrSpidey [31], a static debugger for Scheme
using set-based analysis. Their results focus mainly on the reduction of constraint system
sizes, showing that the simplifications enable the analysis of medium sized programs (17000
lines of Scheme), whose analysis otherwise exhausts heap space. It would be interesting to
combine inductive form and online cycle elimination with some of the more sophisticated
algorithms they developed.

Pottier develops heuristics for simplifying and thus reducing the size of constraint
systems. Pottier does not report measurements showing the benefit of his approach [72].
We examined similar techniques for simplifying constraint graphs at regular intervals [24];
we showed that the cost-benefit tradeoff of simplifications poses a problem in that frequent
simplification is too expensive for some benchmarks, but necessary for others to achieve
scalability.

Trifonov and Smith investigate the decidability of entailment for a class of set
constraints slightly distinct from those of Flanagan and Felleisen. They only derive an
approximation of entailment that could be used to simplify constraint systems, but do
not investigate practical aspects. Marlow and Wadler developed a soft-typing system for
Erlang [58] based on the set-expressions and set-constraints of Aiken and Wimmers [3].
They also report scaling problems and suggest several ways to simplify constraints that
help scaling. The reported analysis times of their system are still rather slow.

Except for our own system, all of the above systems are based on a standard form
representation of the constraints and standard transitive closure (so far as we know). As
we have shown in Section 9.4, standard form has serious limitations for scaling to large
problems, due to the explicit computation of the transitive lower bounds. Simplification
techniques may help reduce the size of the transitive lower bound, but cannot in general
compute a sparser closure than inductive form.

10.2 Sub-Cubic Time Formalisms

The lack of progress in achieving scalable implementations of algorithms based on dynamic
transitive closure has encouraged interest in asymptotically faster algorithms that are either
less precise or designed for special cases. An example of the former is Steensgaard’s for-
mulation of points-to analysis based on conditional unification [79]. Instead of a points-to
set for each program point, his analysis infers points-to equivalence classes. If a pointer is
found to point to two distinct classes, the classes are merged. This approach loses precision
but results in a nearly linear time algorithm.

Shapiro and Horwitz [76] study points-to analysis w.r.t. the precision—efficiency
tradeoff. They contrast an algorithm based on inclusion constraints [8] with the equal-
ity based algorithm of Steensgaard [79], and then describe a spectrum of algorithms with
sub-cubic time complexity in between. They conclude that while Andersen’s analysis is
substantially more precise than Steensgaard’s, its running time is impractical. However,
our implementation of Andersen’s points-to analysis is generally competitive with their im-



186

plementation of Steensgaard’s algorithm, suggesting that the precision-efficiency tradeoff
needs to be reexamined.

In Section 6.4 we already discussed the the pseudo-linear time flow analysis of
Mossin and the similar pseudo-linear time closure-analysis algorithm for functional programs
of Heintze and McAllester [64, 42]. These analyses are examples of the second class of
analyses, where particular properties of the program under analysis are exploited. In this
case the exploited property is the bounded type size.

Defouw, Grove, and Chambers study precision-efficiency tradeoffs in receiver-class
analysis of Cecil and Java programs [21]. They show that the receiver class analysis of
Palsberg and Schwartzbach (a cubic time algorithm) does not scale well and propose less
precise but sub-cubic time algorithms based on unification.

10.3 Program Analysis Frameworks

The desire to reuse substantial programming efforts in program analysis is not new. Frame-
works for classic dataflow analysis (DFA) are numerous. These frameworks are specialized
for producing dataflow analyses in the context of an optimizing compiler.

Kildall [50] characterizes a broad class of “global” (single procedure) dataflow
analyses (DFA) as iterative fix-points in meet semi-lattices. Based on this formulation, he
built a tool to automatically generate DFA-algorithms from specifications. According to
Aho et al. [1] tools for automatically generated DFA-algorithms have not caught on because
the amount of development time saved was not significant.

Venkatesh [85] and Yi et. al. [92] describe generic frameworks based on abstract
interpretation [17]. Both frameworks allow semantic program analyses to be described in a
high level language, which is then translated into an implementation language and linked
with support libraries. Venkatesh gives no performance numbers, while Yi et. al. report
numbers for inter-procedural alias analysis and constant propagation of 4-100 minutes for
programs in the range of several thousand lines of C. An interesting aspect of the framework
described by Yi et. al. is the idea of a projection, which can be used to coarsen abstract
domains and thus trade precision for efficiency.

Dawson et al. [20] show the practicality of describing and implementing program
analyses as logic programs. An analysis is defined by a translation from the source language
to a Prolog program, where the evaluation of the Prolog program yields the analysis result.
They illustrate their approach with a groundness analysis for logic programs and a strictness
analysis for lazy functional programs. They claim their approach is also practical for classic
DFA of imperative programs. Unfortunately, the order of horn clauses in the generated
program has a direct influence on the efficiency of the analysis. They report reasonable
strictness analysis times of 3 seconds for a 595 line functional program. However, they do
not describe the scaling behavior. This approach corresponds essentially to solving equations
between terms, and can be used e.g. for Hindley-Milner type inference. The authors refer
to constraint logic programming (CLP) as an avenue to generalize the approach.

Attribute grammar frameworks provide a clean formalism to express semantic anal-
yses of programs. A variety of approaches have been explored to overcome the circularity
restriction (Paakki gives a comprehensive survey [66]). For example, logic attributes can be



187

used to express Hindley-Milner type inference. Another approach is to compute iterative
fix-points akin to abstract interpretation.



188

Chapter 11

Conclusions

Expressing a program analysis as a constraint problem provides a clean sepa-
ration between the analysis specification (constraint generation) and its implementation
(constraint resolution).

The first part of this dissertation developed the formalism of mixed constraints.
Mixed constraints combine different kinds of constraint formalisms into a coherent new
formalism. Mixed constraints give the program analysis designer more control over the
precision-efficiency tradeoffs of an analysis. The second part of the dissertation presents and
empirically evaluates an implementation of the mixed constraint formalism called BANE.

The clean separation of program analysis specification and implementation allows
tuning the constraint representation and resolution and enables powerful optimizations
that can be implemented completely independently from any particular program analyses.
Furthermore, these optimizations and representation choices benefit any future analyses
written using the same library.

We have demonstrated, for the first time, that program analyses based on set
constraints are very practical, even for large programs. As our benchmark, we used a
Points-to analysis for the C programming language, which computes an approximation of
the memory graph and the global control-flow of a program. Keeping the constraint-graph
size under control is crucial. The improved scaling results from a combination of three novel
techniques:

e A non-standard constraint-graph representation based on inductive constraints,
e Online detection and elimination of cyclic constraints, and
e Merging of projection constraints.

All three techniques help reduce the number of edges, even at the cost of introducing new
nodes (in the case of projection merging).

Some scaling obstacles appear only with very large constraint problems. Cyclic
constraints are a problem already on medium sized graphs, whereas our inductive graph
representation becomes important at much larger scales. Projection merging also is not
essential up to very large constraint problems. Our measurements show that inferring



189

the scaling behavior of an analysis implementation from a few small benchmarks is very
misleading. Unfortunately, such inferences are still very common in the literature.

We compared our constraint graph representation to the standard graph represen-
tation commonly used in implementations of Set-Based Analysis (SBA). We showed that
SBA implementations also benefit from cycle elimination, but that for very large constraint
problems the standard graph representation requires orders of magnitude more space in
practice than inductive constraint graphs for the same problem.

To evaluate the precision-efficiency choices provided by mixed constraints, we im-
plemented and compared three versions of an exception inference system for Standard ML.
We demonstrated the importance of empirical experimentation in determining the practi-
cality of an analysis, by showing that expected efficiency advantages of less precise, but
faster constraint formalisms may not manifest in a naive implementation.



190

Bibliography

[1]

2]

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques, and Tools.
Addison Wesley, 1988.

A. Aiken and E. Wimmers. Solving systems of set constraints. In Proceedings of the
7th Annual IEEE Symposium on Logic in Computer Science (LICS’92), pages 329-340.
IEEE Computer Society Press, June 1992.

A. Aiken and E. Wimmers. Type inclusion constraints and type inference. In Pro-
ceedings of the 1993 Conference on Functional Programming Languages and Computer
Architecture, pages 31-41, Copenhagen, Denmark, June 1993.

A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types. In
Conference Record of the 21st Annual ACM SSymposium on Principles of Programming
Languages, pages 163-173, January 1994.

Alexander Aiken, Dexter Kozen, Moshe Vardi, and Ed Wimmers. The complexity of set
constraints. In Computer Science Logic ’93, volume 832 of Lecture Notes in Computer
Science, pages 1-17. Springer Verlag, September 1993.

Alexander Aiken, Dexter Kozen, and Ed Wimmers. Decidability of systems of set
constraints with negative constraints. Information and Computation, 122(1):30-44,
1995.

Alexander Aiken, Ed Wimmers, and Jens Palsberg. Optimal representations of poly-
morphic types with subtyping. In Proceedings of the International Symposium on
Theoretical Aspects of Computer Science, pages 47-76. Springer Verlag, September
1997.

Lars Ole Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, May 1994. DIKU report 94/19.

Andrew Appel. Compiling with Continuations. Cambridge University Press, 1992.

Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Set constraints are the monadic
class. In Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science
(LICS’93), pages 75-83. IEEE Computer Society Press, June 1993.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

191

Kim B. Bruce and Giuseppe Longo. A modest model of records. In C. A. Gunter and
J. C. Mitchell, editors, Thoretical Aspects of Object-Oriented Programming, Foundation
of Computing, chapter 6. MIT Press, 2nd edition, 1994.

Luca Cardelli. A semantics of multiple inheritance. Information and Computation,
76:138-174, 1988.

Witold Charatonik and Leszek Pacholski. Negative set constraints with equality.
In Proceedings of the 9th Annual IEEE Symposium on Logic in Computer Science
(LICS’94), pages 128-136. IEEE Computer Society Press, July 1994.

Witold Charatonik and Leszek Pacholski. Set constraints with projections are in NEX-
PTIME. In Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, pages 642—655, Los Alamitos, CA, USA, November 1994. IEEE Computer
Society Press.

David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and
structures. In Proceedings of the 1990 ACM SIGPLAN Conference on Programming
Language Design and Implementation, number 25:6 in SIGPLAN notices, pages 296—
310, June 1990.

Patrick Cousot. Types as abstract interpretations. In Conference Record of the 2/th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 316-331, January 1997.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by contruction or approximation of fixed points. In Con-
ference Record of the jth ACM Symposium on Principles of Programming Languages,
pages 238-252, January 1977.

Patrick Cousot and Radhia Cousot. Formal language, grammar and set-constraint-
based program analysis by abstract interpretation. In Proceedings of the 1995 Confer-
ence on Functional Programming Languages and Computer Architecture, pages 170-
181, June 1995.

Flemming M. Damm. Subtyping with union types, intersection types and recursive
types. In Proceedings of the International Symposium on Theoretical Aspects of Com-
puter Science, pages 687-706. Springer Verlag, April 1994.

Steven Dawson, C. R. Ramakrishnan, and David S. Warren. Practical program anal-
ysis using general purpose logic programming systems—A case study. In Proceedings
of the 1996 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, number 31:5 in SIGPLAN notices, pages 117-126, May 1996.

Greg DeFouw, David Grove, and Craig Chambers. Fast interprocedural class analysis.
In Conference Record of the 25th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 222-236, January 1998.



192

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Alain Deutsch. On the complexity of escape analysis. In Conference Record of the
24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 358-371, January 1997.

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interproce-
dural points-to analysis in the presence of function pointers. In Proceedings of the 1994
ACM SIGPLAN Conference on Programming Language Design and Implementation,
number 29:6 in SIGPLAN notices, pages 242-256, June 1994.

Manuel Fahndrich and Alex Aiken. Making set-constraint based program analyses
scale. In First Workshop on Set Constraints at CP’96, Cambridge, MA, August 1996.
Available as Technical Report CSD-TR-96-917, University of California at Berkeley.

Manuel Fahndrich and Alexander Aiken. Program analysis using mixed term and set
constraints. In Proceedings of the 4th International Static Analysis Symposium, volume
1302 of Lecture Notes in Computer Science, pages 114-126. Springer Verlag, September
1997.

Manuel Fahndrich and Alexander Aiken. Refined type inference for ML. In Proceedings
of the 1st Workshop on Types in Compilation, 1997.

Manuel Fahndrich, Jeffrey S. Foster, Alexander Aiken, and Jason Cu. Tracking down
exceptions in Standard ML programs. Technical Report UCB//CSD-96-996, University
of California, Berkeley, 1998.

Manuel Fahndrich, Jeffrey S. Foster, Zhendong Su, and Alexander Aiken. Partial
online cycle elimination in inclusion constraint graphs. In Proceedings of the 1998
ACM SIGPLAN Conference on Programming Language Design and Implementation,
number 33:5 in SIGPLAN notices, pages 85-96, June 1998.

Cormac Flanagan. Componential Set-Based Analysis. PhD thesis, Rice University,
1997.

Cormac Flanagan and Matthias Felleisen. Componential set-based analysis. In Pro-
ceedings of the 1997 ACM SIGPLAN Conference on Programming Language Design
and Implementation, number 32:6 in SIGPLAN notices, pages 235-248, June 1997.

Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie Weirich, and
Matthias Felleisen. Catching bugs in the web of program invariants. In Proceedings of
the 1996 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, number 31:5 in SIGPLAN notices, pages 23-32, May 1996.

You-Chin Fuh and Prateek Mishra. Type inference with subtypes. In Proceedings of
the 1988 European Symposium on Programming, pages 94-114, 1988.

Rémi Gilleron, Sophie Tison, and Marc Tommasi. Solving systems of set constraints
using tree automata. In Proceedings of the 10th Annual Symposium on Theoretical
Aspects of Computer Science, pages 505-514, 1992.



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

193

Rémi Gilleron, Sophie Tison, and Marc Tommasi. Solving systems of set constraints
with negated subset relationships. In Foundations of Computer Science, pages 372-380,
November 1993.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification, chapter 10,
pages 199-200. Addison Wesley, 1996.

Carl A. Gunter and Dana S. Scott. Semantic Domains, chapter 12, pages 633—674.
Elsevier & MIT Press, 1992. In J. van Leeuwen, editor, Handbook of Theoretical Com-
puter Science, Volume B, Formal Models and Semantics.

Juan Carlos Guzmén and Ascidnder Sudrez. An extended type system for exceptions.
In Proceedings of the ACM SIGPLAN Workshop on ML and its Applications, pages
127-135, June 1994.

Nevin Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon University,
1992.

Nevin Heintze. Set based analysis of ML programs. In Proceedings of the 1994 ACM
Conference on Lisp and Functional Programming, pages 306-17, June 1994.

Nevin Heintze and Joxan Jaffar. A decision procedure for a class of Herbrand set
constraints. In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer
Science (LICS’90), pages 42-51. IEEE Computer Society Press, June 1990.

Nevin Heintze and Joxan Jaffar. A decision procedure for a class of set constraints
(extended abstract). In Proceedings of the 5th Annual IEEE Symposium on Logic in
Computer Science (LICS’90), pages 42-51. IEEE Computer Society Press, June 1990.

Nevin Heintze and David McAllester. Linear-time subtransitive control flow analysis.
In Proceedings of the 1997 ACM SIGPLAN Conference on Programming Language
Design and Implementation, number 32:6 in SIGPLAN notices, pages 261-272, June
1997.

Nevin Heintze and David McAllester. On the cubic bottleneck in subtyping and flow
analysis. In Proceedings of the 12th Annual IEEE Symposium on Logic in Computer
Science (LICS’97), pages 342-351. IEEE Computer Society Press, June 1997.

Laurie J. Hendren, Joseph Hummel, and Alexandru Nicolau. Abstractions for recursive
pointer data structures: Improving the analysis of imperative programs. In Proceed-
ings of the 1992 ACM SIGPLAN Conference on Programming Language Design and
Implementation, number 27:7 in SIGPLAN notices, pages 249-260, June 1992.

Fritz Henglein. Efficient type inference for higher-order binding-time analysis. In 5th
ACM Conference Proceedings on Functional Programming Languages and Computer
Architecture, pages 448-72, 1991.

Fritz Henglein. Global tagging optimization by type inference. In Proceedings of the
1992 ACM Conference on Lisp and Functional Programming, pages 205-215, June
1992.



194

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Lalita Jategaonkar and John Mitchell. ML with extended pattern matching and sub-
types. In Proceedings of the 1988 ACM Conference on Lisp and Functional Program-
ming, pages 198-211, July 1988.

Neil D. Jones and Steven S. Muchnick. Flow analysis and optimization of LISP-like
structures. In Conference Record of the 6th Annual ACM Symposium on Principles of
Programming Languages, pages 244-256, January 1979.

Pierre Jouvelot and David K. Gifford. Algebraic reconstruction of types and effects. In
Conference Record of the 18th Annual ACM Symposium on Principles of Programming
Languages, pages 303-310, January 1991.

Gary Kildall. A unified approach to global program optimization. In Conference
Record of the ACM Symposium on Principles of Programming Languages, pages 194—
206, October 1973.

Dexter Kozen. Logical aspects of set constraints. In CSL: 7th Workshop on Computer
Science Logic, pages 175—-188. Springer Verlag, 1993.

Dexter Kozen. Set constraints and logic programming. Information and Computation,
142(1), 1998.

William Landi and Barbara G. Ryder. Safe approximate algorithm for interprocedural
pointer aliasing. In Proceedings of the 1992 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, number 27:7 in SIGPLAN notices, pages
235-248, June 1992.

John M. Lucassen. Types and Effects—Towards the Integration of Functional and
Imperative Programming. Ph.D. thesis, MIT Laboratory for Computer Science, August
1987.

John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Conference
Record of the 15th Annual ACM Symposium on Principles of Programming Languages,
pages 47-57, January 1988.

David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive poly-
mophic types. In Conference Record of the 11th Annual ACM Symposium on Principles
of Programming Languages, pages 165-174, January 1984.

David B. MacQueen, Gordon D. Plotkin, and Ravi Sethi. An ideal model for recur-
sive polymorphic types. Information and Control, 71(1-2):95-130, October—November
1986.

Simon Marlow and Philip Wadler. A practical subtyping system for Erlang. In Proceed-
ings of the International Conference on Functional Programming (ICFP ’97), number
32:8 in SIGPLAN notices, pages 136-149, June 1997.

David McAllester and Nevin Heintze. On the complexity of set-based analysis. In
Proceedings of the International Conference on Functional Programming (ICFP ’97),
number 32:8 in SIGPLAN notices, pages 150-63, June 1997.



[60]

[61]

[62]

[63]

[71]

[72]

73]

[74]

195

Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348-375, 1978.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, 1990.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). The MIT Press, 1997.

John Mitchell. Coercion and type inference (summary). In Conference Record of the
11th Annual ACM Symposium on Principles of Programming Languages, pages 175—
185, January 1984.

Christian Mossin. Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU,
Department of Computer Science, University of Copenhagen, 1996.

Atsushi Ohori. A polymorphic record calculus and its compilation. Transactions on
Programming Languages and Systems, 17(6):844-895, November 1995.

Jukka Paakki. Attribute grammar paradigms—a high-level methodology in language
implementation. ACM Computing Surveys, 27(2):196-256, June 1995.

Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow analysis. Trans-
actions on Programming Languages and Systems, 17(4):576-599, July 1995.

Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. In Proceed-
ings of the ACM Conference on Object-Oriented programming: Systems, Languages,
and Applications, pages 146—61, October 1991.

Jens Palsberg, Mitchell Wand, and Patrick O’Keefe. Type inference with non-structural
subtyping. Formal Aspects of Computing, 9(1):49-67, 1997.

Frangois Pessaux and Xavier Leroy. Type-based analysis of uncaught exceptions. In
Conference Record of the 26th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 276-290, January 1999.

Francgois Pottier. Simplifying subtyping constraints. In Proceedings of the SIGPLAN
96 International Conference on Functional Programming (ICFP ’96), number 31:6 in
SIGPLAN notices, pages 122-133, May 1996.

Francois Pottier. Type Inference in the Presence of Subtyping: From Theory to Practice.
PhD thesis, Université Paris VII, July 1998.

Didier Rémy. Typechecking records and variants in a natural extension of ML. In Con-
ference Record of the Sizteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Tezas, pages 60-76, January 1989.

John C. Reynolds. Automatic Computation of Data Set Definitions, pages 456—461.
Information Processing 68. North-Holland, 1969.



196

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

John A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23-41, 1965.

Marc Shapiro and Susan Horwitz. Fast and accurate flow-insensitive points-to analysis.
In Conference Record of the 24th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 1-14, January 1997.

Oded Shmueli. Dynamic cycle detection. Information Processing Letters, 17(4):185—
188, 8 November 1983.

Ryan Stansifer. Type inference with subtypes. In Conference Record of the 15th Annual
ACM Symposium on Principles of Programming Languages, pages 88-97, January 1988.

Bjarne Steensgaard. Points-to analysis in almost linear time. In Conference Record of
the 23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 32-41, January 1996.

Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect inference.
Journal of Functional Programming, 2(3):245-271, July 1992.

Satish Thatte. Type inference with partial types. In Automata, Languages and Pro-
gramming: 15th International Colloguium, pages 615-629. Springer-Verlag Lecture
Notes in Computer Science, vol. 317, July 1988.

Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value A-
calculus using a stack of regions. In Conference Record of the 21st Annual ACM
SSymposium on Principles of Programming Languages, pages 188-201, January 1994.

Valery Trifonov and Scott Smith. Subtyping constrained types. In Proceedings of
the 8rd International Static Analysis Symposium, volume 1145 of Lecture Notes in
Computer Science, pages 349-365. Springer Verlag, September 1996.

Jan van Leeuwen. Graph Algorithms, chapter 10, page 542. Elsevier & MIT Press,
1992. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume
A, Algorithms and Complezity.

G. A. Venkatesh. A framework for construction and evaluation of high-level specifi-
cations for program analysis techniques. In Proceedings of the 1989 ACM SIGPLAN
Conference on Programming Language Design and Implementation, number 24:7 in
SIGPLAN notices, pages 1-12, 1989.

Mitchell Wand. Complete type inference for simple objects. In Proceedings of the 2nd
Annual IEEE Symposium on Logic in Computer Science (LICS’87), pages 37-44. IEEE
Computer Society Press, June 1987. Corrigendum, LICS’88, page 132.

Mitchell Wand. Corrigendum: Complete type inference for simple objects. In Proceed-
ings of the 3rd Annual IEEE Symposium on Logic in Computer Science (LICS’88),
page 132. IEEE Computer Society Press, July 1988.



[88]

[89]

[90]

[91]

[92]

[93]

197

William E. Weihl. Interprocedural data flow analysis in the presence of pointers. In
Conference Record of the 7th Annual ACM Symposium on Principles of Programming
Languages, pages 83-94, January 1980.

Pierre Weis, Maria-Virginia Aponte, Alain Laville, Michel Mauny, and Ascander
Sudrez. The CAML reference manual, Version 2.6. Technical report, Projet Formel,
INRTA-ENS, 1989.

Andrew K. Wright. Polymorphism for imperative languages without imperative types.
Technical Report 93-200, Rice University, February 1993.

Kwangkeun Yi. Compile-time detection of uncaught exceptions for Standard ML pro-
grams. In Proceedings of the 1st International Static Analysis Symposium, volume
864 of Lecture Notes in Computer Science, pages 238-254. Springer Verlag, September
1994.

Kwangkeun Yi and Williams Ludwell Harrison, IT1I. Automatic generation and man-
agement of interprocedural program analyses. In Conference Record of the 20th Annual
ACM-SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
246-259, January 1993.

Kwangkeun Yi and Sukyoung Ryu. Towards a cost-effective estimation of uncaught
exceptions in SML programs. In Proceedings of the 4th International Static Analysis
Symposium, volume 1302 of Lecture Notes in Computer Science, pages 98-113. Springer
Verlag, September 1997.



198

Table of Notations

Notation

Explanation

S

s,t
cd
XV, Z

the set of sorts

a sort

a syntactic constructor

a variable of any sort

a mixed expression or set-expression
a semantic domain

an element of a semantic domain

a function value of a semantic domain
an ideal

the collection of ideals of D

the universal set of labels

a finite set of labels

a finite or cofinite set of labels

a constraint set

a collection of constraint sets

a domain-complement expression

a domain-complement variable

the domain-complement of Row-expression F



