From 2D Images to 2.5D Sprites: A Layered Approach to
Modeling 3D Scenes

Richard Szeliski and P. Anandan

Microsoft Research

Microsoft Corporation
Redmond, WA 98052

Abstract

We propose a framework for modeling the appearance
and geometry of 3D scenes as a collection of approximately
2D layers. Each layer corresponds to a view-based repre-
sentation of a portion of the scene whose disparity across
the given set of views can be approximately modeled using
a planar surface. The representation of each layer consists
of the parameters of the plane, a color image that speci-
fies the appearance of that portion of the scene, a per-pixel
opacity map, and a per-pixel depth offset relative to the
nominal plane. The layers are recovered by analyzing the
pixel disparities across the input images. Depth and color
information can be integrated from multiple images even in
regions that may be partially occluded in some of the views.
New views of the scene can be generated efficintly by ren-
dering each individual layer from that view and combining
the layer images in a back to front order. Layers from differ-
ent scenes can be combined into a new synthetic scene with
realistic appearance and geometric effects for multimedia
authoring applications.

1 Introduction

An easy and flexible way to collect visual information
about a 3D scene is to simply take multiple images of
the scene from different viewpoints. Alternatively a single
video camera can be moved around to collect many views
of a scene. Using such a collection of images to create 3D
models of the scene and to generate new views of the scene
has been an ongoing research topic both in computer vision
and computer graphics.

The classical approach for 3D scene modeling from mul-
tiple images is to break the problem into two sub problems:
creating a 3D geometric model of the scene, and creating
a texture map that captures the visual appearance of the
scene. A more recent emerging paradigm is Image-Based
Modeling and Rendering (IBMR) [1], which seeks to use
the input images themselves (perhaps together with some
explicit 3D information recovered from the images) as the
basis for synthesizing new views. In many multimedia ap-
plications, where visual presentation and authoring are more
important than 3D interaction, IBMR methods have several

0-7695-0253-9/99 $10.00 © 1999 IEEE

44

Simon Baker

Carnegie Mellon Unviersity
Robotics Institute
Pittsburgh, PA 15213

advantages.

In this paper we describe an approach for modeling 3D
scenes from multiple images that fits within the IBMR
paradigm. Based on analyzing the input images, we de-
compose the scene into a set of 2.5D sprites. Each sprite
models aregion of the 3D environment which can be approx-
imately represented as a plane (see below for a more precise
definition). It consists of: (i) the equation that describes the
nominal plane with respect to a reference coordinate system
associated with the sprite, (ii) a color (e.g., RGB) image that
describes the appearance of the sprite from a reference view,
(iii) a per-pixel opacity («) map [12, 6] (the opacity value
is in the range [0, 1] with O indicating that the layer is com-
pletely transparent at that pixel and 1 indicating that it is
completely opaque), and (iv) a per-pixel depth offset rela-
tive to the nominal plane. The reference coordinate system
is chosen arbitrarily but is the same for all the sprites in the
scene.

The collection of sprites constitutes our representation
of a scene. Given the camera position, orientation, and the
imaging parameters of a new view (relative to the reference
coordinate system of the sprites), a new view is synthesized
by projecting each of the sprites to that view, then combining
them from back to front using standard image compositing
operations [6]. :

An illustration of this representation is provided in Fig-
ure 1. This figure shows two images (taken from slightly
different view points) from the flower garden sequence,
which is used for MPEG compression evaluation. Based
on these two, and four other images that were taken from
viewpoints in between these two viewpoints, this scene was
decomposed into six sprites as shown in the same figure.
These sprites correspond to planes at different depths and
orientations in the scene. Note that although the house is
never fully visible in any single image, the different partial
views of the house are integrated into the single image cor-
responding to the house sprite. Later in this paper, we will
describe our methods for recovering the layer sprites from
input images, and also show the rendering of a scene from
novel view points.

The sprites are roughly akin to decomposing the 3D scene

(a)

Figure 1: Results on the flower garden sequence: (a) first and (b) last input images; (c) the six layer sprites

()

into a set of layers that are positioned at different depths
and orientations. In fact, if the per-pixel depth offset is ig-
nored, these sprites are similar to “cardboard cutouts” each
of which has a portion of the scene painted on it. These
cutouts are “layered” in 3D space, hence the name layered
representation. Note that, the term sprite has traditionally
been used to describe a 2D color image with an opacity
map [12, 6], in particular the 3D positioning of the scene
elements captured in the sprite are not represented. In con-
trast, our layer sprites also correspond to a plane of arbitrary
orientation in 3D space together with the a per-pixel depth
offset. Thus, each of our sprites is similar to a bas-relief.
Hence we call them 2.5D sprites.

The layered representation proposed here is suitable for
operations that require reasoning about the 3D scene geom-
etry such as synthesizing a new view of the scene. It also
integrates the visual appearance and the local scene geome-
try into a single combined representation. As will be noted
later, this has advantages both during the modeling and the
rendering processes. Also, the sprites integrate partial and
discontinuous views of neighboring portions of the scene
into a single spatial coherent whole. This makes it easy to
manipulate and render coherent scene elements together.

The sprite-based decomposition of a 3D scene is progres-
sive in modeling the complexity of the scene geometry. For
instance an approximate but reasonable looking rendering
of the scene can be achieved by ignoring the per-pixel depth
offsets. Such a “cut-out only” representation can be main-
tained, transmitted, and rendered with greater efficiently
than a full 3D scene.

In the remainder of this paper, we provide a more precise
definition of the sprite-based representation and describe our
current methods for recovering them from images. Render-
ing using layer sprites is discussed in [14]. We will also
show illustrative examples, and discuss limits of the power
of this representation and our plans for future work.

2 The Layer Sprite Representation

The basic concepts of our framework are illustrated in
Figure 2. The input consists of K images I, I, ..., I
captured by K cameras with known projection matrices

45

©)

y Layer sprite L,
4 Planen/x=0
Layer sprite L, Residual depth Z,
Planen/x=0
Residual depth Z,

Camera Matrix P,

~a

. 19

u u
Visibility V;, Visibility V,, e+ *

Tt

u u
Masked Image M,, Masked Image M,, =*°**

Figure 2: Suppose K images I are captured by K cameras Py.
We assume that the scene can be represented by L sprite images
L, on planes n] x = 0 with depth offsets Z;. The boolean masks
By; denote the pixels in image I from layer L; and the masked
images are given by My, = By - I. sprites

P.,P,,...,Pgk. Following standard conventions in com-
puter graphics and vision, we use homogeneous coordinates
for both 3D world coordinates x = (x,y, z,1)T and for 2D
image coordinates u = (u, v, 1)7. Thus the projection ma-
trices Py are 3 x 4 matrices that map the world points to
image points under perspective projection; these matrices
specify the location, orientation, and the internal parame-
ters of the imaging cameras.

The 3D scene is described by a collection of L approxi-
mately planar layers. Each layer sprite consists of:

1. a layer sprite image — following [6], this consists of
pre-multiplied image, i.e.,

)

Li(w) = (u-m, - g1, oq - by, o)

where r; = 7(u;) is the red band, g; = g;(w;) is the
green band, b; = b;(u;) is the blue band, and oy =
oy (uy) is the opacity. and v, are the coordinates of the
layer sprite.

. a homogeneous vector n; (which defines the plane
equation of the layer via n} x = 0) and

3. aper-pixel residual depth offset Z;(u;).

The recovery of the sprites from input images is discussed
in Section 3 below. But first, we describe how these layer
sprites are used to synthesize images.
2.1 Image Synthesis From Sprites

We formulate the generative (forward) model of the im-
age formation process using image compositing operations
[6], i.e. by painting the sprites one over another in a back-
to-front order. The basic operator used to overlay the sprites
is the over operator:

FeoB = F+(1-ar)B,)

where F and B are the foreground and background sprites,

and ap is the opacity of the foreground [12, 6]. This defini-

tion of the over operator assumes pre-multiplied opacities,

as in Equation (1). The generative model consists of the

following two steps:
1. Using the camera matrices, plane equations, and resid-
ual depths, warp each layer onto the coordinate frame
of image I;,. We denote the warped sprite ! to image k
by Uy:. Note that the opacities should be warped along
with the color values [6].

. Composite the warped sprites in back-to-front order
(which can be computed from the plane equations):

L

Sk = (DUu = U ©-+- 0 Un
=1

3

to obtain the synthesized image Sj.. If we have solved
the stereo reconstruction problem, and neglecting re-
sampling issues, Si should match the input I,
This last step can be re-written as three simpler steps:
2a. Compute the visibility of each warped sprite [16]:

-1

Vit = Viaoy M —ongoyy) = [[(1-ewr) @
=1

where ay; is the alpha channel of Uy, and Vi = 1.
2b. Compute the masked images, My; = ViU,
2c. Sum up the masked images, S = Zlel M.

In these last three substeps, the visibility map makes the
contribution of each sprite pixel to the image Sy, explicit.

46

2.2 Discussion

The definition of the 2.5D sprites is sufficient for repre-
senting any 3D Lambertian scene. The current definitions,
however, do not capture specular effects. (For the present
we will focus only on Lambertian scenes.) Likewise, the
generative process described above can be used to synthe-
size any image of a given scene.

A given 3D scene can be decomposed into sprites in many
ways in a manner consistent with our definitions. Although
we present a particular approach for sprite decomposition in
this paper, the representational framework is neutral on this
issue. In practice, we would expect the number of sprites to
be small both in order to keep the representation compact
and to facilitate ease of manipulation. In other words, the de-
composition of a scene into sprites should be parsimonious.
Likewise, the decomposition should be “meaningful” to a
human user, i.e., each layer sprite should correspond to a
physically coherent portion of the scene, such as a surface
or an object.

Note that the sprite representation described here is ul-
timately based on an analysis of image disparities over the
collection of input images. However, disparities are in-
versely proportional to depth, namely the distance of the
scene elements from the cameras. Itis likely in practice that
an algorithm will group scene elements into sprites based
on their disparities (as opposed to depths), since the image
re-synthesis error will be directly proportional to disparity
error. This has the practical impact that the sprites asso-
ciated with regions of the scene far from the cameras will
cover larger 3D segments than sprites associated with nearer
portions of the scene.

3 Layer Sprite Extraction From Images

In this section, we briefly describe our approach for re-
covering layer sprites from a set of input images. A more
detailed description can be found in [2]. For the purposes of
this paper, we assume that the camera projection matrices
P} are known or previously estimated using known meth-
ods (e.g., see [8, 18]). Our goal is to estimate the layer
sprites L;, the plane vectors n;, and the residual depths Z;.

To compute these quantities, we initially assume that the
opacities are boolean, but later refine the sprites allowing
real-valued opacities. We introduce auxiliary boolean mask
images By, that denote the pixels in image I which are
images of points in layer L;. Thus, By; = 1 if and only if
L, is the front-most layer which is opaque at that pixel in
image I).. Hence, in addition to L;, ny, and Z;, we also need
to estimate the boolean masks By;. Once we have estimated
these masks, we can compute masked input images My, =
By, - I (see Figure 2).

Given any three of L;, n;, Z;, and By, there are tech-
niques for estimating the remaining one. Our algorithm
therefore consists of first initializing these quantities. Then,

we iteratively estimate each of theses quantities in turn fix-
ing the other three.

A number of automatic techniques have been developed
to initialize the layers, e.g, merging [19, 13, 5], splitting
(9, 13], color segmentation [3] and plane fitting to a recov-
ered depth map. For the present, we interactively initialize
the layers — an automatic method for layer initialization is
currently a topic of research. However, in many applica-
tions, such as model acquisition [7] and video parsing [131],
using a semi-automatic algorithm and requiring limited user
input is acceptable.

3.1 Estimation of Layer Sprites

In order to compute the plane equation vector n;, we
need to be able to map points in masked image My, onto
the plane n] x = 0. If x is a 3D world coordinate of a point
and uy, is the image of x in camera Py, we have:

U = ka

where equality is in the 2D projective space P2.

It can be shown see ([2]) that we can map this point onto
its image in another camera P as follows:

up = Py ((n,Tpk)I - pkn,T) Piu, = Hue (5)
where HY,, is a homography (collineation of P?). P} =
PT (PP})~ 'isthe pseudoinverse of P, and py is a vector
in the null space of Py, i.e. Prprx = 0. If x lies on the
plane nj x = 0 Equation (5) describes the image coordinate
warp between the two images My, and My, which would
hold if all the masked image pixels were images of world
points on the plane n7 x = 0. Using this relation, we can
warp all of the masked images onto the coordinate frame of
one distinguished image w.l.o.g. image Mj,, as follows:

(Hi 0 M) (w1) = My (Hiuy).

Here, HY;, o My, is the masked image Mj; warped into the
coordinate frame of My;.

We can therefore solve for n; by finding the value for
which the homographies H!, defined in Equation (5) best
register the images onto each other. Typically, this value
is found using some form of gradient decent, such as the
Gauss-Newton method, and the optimization is performed
in a hierarchical (i.e. pyramid based) fashion to avoid local
extrema [4].

In order to create the layer sprite images, we need to
choose 2D coordinate systems for the planes. Such coor-
dinate systems can be specified by a collection of arbitrary
(rank 3) camera matrices Q;.! The image coordinates uy,
of the point in image M}, which is projected onto the point
Fx = 0is given by:

w; on the plane n;
u = Py ((nf q)I - qn]) Qjw = Hiu,

(6)

'One possible choice for Q; would be one of the camera matrices Py.

47

where Q is the pseudo-inverse of Q; and q; is a vector in the
null space of Q;. The homography HY, warps the coordinate
frame of the plane backward onto that of image My,;. The
homography can be used to warp the image Mjy,; forward
onto the plane, the result of which is denoted ch o My,.
After we have warped the masked image onto the plane,
we can estimate the layer sprite (with boolean opacities) by
“blending” the warped images:

)

where @D is a blending operator.

There are a number of ways the blending could be per-
formed. One simple method would be to take the mean of
the color or intensity values. A refinement would be touse a
“feathering” algorithm, where the averaging is weighted by
the distance of each pixel from the nearest invisible pixel in
My, [15]. Alternatively, robust techniques could be used to
estimate L; from the warped images. The simplest example
of such a technique is the median, but many others exist.
Finally, it is also possible to model effects such as the bias
and gain of the cameras during the estimation of L;. If such
effects have not already been normalized, their magnitudes
can be estimated and corrected for.

3.2 Estimation of Residual Depth

In general, the scene will not be exactly piecewise planar.
To model any non-planarity, we assume that the point u; on
the plane n,Tx = 0 is displaced slightly. We assume it is
displaced in the direction of the ray through u; defined by
the camera matrix Q;, and that the distance it is displaced is
Z;(uy), measured in the direction normal to the plane. In this
case, the homographic warps used in the previous section
are not applicable. However, using a similar argument to
that in Sections 3.1 and 3.1, it is easy to show (see also
[10, 71) that:

u = HLU[+ Zy(0y)tyy (8)
where H, = Py ((nf q;)I — qin]) Q; is the planar ho-
mography of Section 3.1, ty; Prq; is the epipole,
and it is assumed that the plane equation vector
(nz,ny,nz,mq)" has been normalized so that n2 + n2 +
n? = 1. Equation (8) can be used to map plane coordinates
u; backwards to image coordinates uy, or to map the image
My, forwards onto the plane. We denote the result of this
warp by (H, tki, Z;) o My, or W o My, for more concise
notation.

To compute the residual depth map Z;, we could op-
timize the same (or a similar) consistency metric as that
used in Section 2.2 to estimate the plane equation. Doing
so is essentially solving a simpler (or what [7] would call
“model-based”) stereo problem. In fact, almost any stereo

algorithm could be used to compute Z;. The one property
the algorithm should have is that it favors small disparities.
3.3 Pixel Assignment to Layers

In the previous three sections, we have assumed a known
assignment of pixels to layer, i.e., known boolean masks By;
which allow us to compute the masked image Mj,; using
My = By - I,. We now describe how to estimate the pixel
assignments from n;, L;, and Z;.

We could try to update the pixel assignments by compar-
ing the warped images WY o My, to the layer sprite images
L;. However, if we compared these images, we would not be
able to deduce anything about the pixel assignments outside
of the current estimates of the masked regions. To allow the
boolean mask By to “grow”, we therefore compare WL ol}
with: K

L = PWioMu,
k=1
where Mkl = Bkz - I, and Bkl is a dilated version of By,
(if necessary, Z; is also enlarged so that it declines to zero
outside the masked region).

Given the enlarged layer sprites L;, our approach to
pixel assignment is as follows. We first compute a mea-
sure Py;(u;) of the likelihood that the pixel W o Ii.(u;) is
the warped image of the pixel u; in the enlarged layer sprite
L. Next, Py, is warped back into the coordinate system of
the input image I, to yield :

ﬁkl = (Wi)_loPkl.

This warping tends to blur Py, but this is acceptable since
we will want to smooth the pixel assignment anyway. The
pixel assignment can then be computed by choosing the best
possible layer for each pixel:

1 if Py(ug)
0 otherwise

miny Py (uy))

B (ux) = {

There are a number of possible ways of defining Py;. The
simplest is the residual intensity difference [13]. Another
possibility is the residual normal flow magnitude:

_ Wi ol - Lij
|V Ly||

A third possibility would be to compute the optical flow
between sz o It and L; and then use the magnitude of the
flow for Py;.
3.4 Real-valued Opacities

The layered stereo algorithm described above is limited
to recovering binary masks By, for the assignment of input
pixels to layers. While this may be true for a large class
of scenes and images, there are two cases where this is not
adequate. First is when the scene contains partially trans-
parent surfaces and/or inter surface reflections. The second

Py

48

occurs in most images at the boundary between layers. At
these boundaries, the color values in an input image will be a
combination of the color of the layers on either side of that
boundary due to the finite resolution of the image pixels.
Such “mixed” pixels can be modeled as having real-valued
opacities.

Our current algorithms are restricted to boolean-valued
opacities. Our proposed approach for recovering real-
valued opacities is to refine the layer estimates by mini-
mizing the prediction error:

C= zz Sk () — I (ug)|f?
k uy

using a gradient descent algorithm. (In order to further con-
strain the space of possible solutions, we can add smooth-
ness constraints on the colors and opacities [16].) Rather
than trying to optimize over all of the parameters (L;, ny,
and Z;) simultaneously, we only adjust the sprite colors and
opacities in L;, and then re-run the previous motion estima-
tion steps to adjust n; and Z;.
This approach is currently under development.

©

4 Examples

Weillustrate the layer sprite representation via two exam-
ples. The first one was briefly described in Section 1. The
second consists of 40 images taken simultaneously. The
camera geometry is not given for either sequence, so we
used point tracking and a standard structure from motion
algorithm to estimate the camera matrices. To initialize our
algorithm, we first decided how many layers were required,
and then performed a rough assignment of pixels to lay-
ers by hand. Next, the automatic hierarchical parametric
motion estimation algorithm described in [17] was used to
find the 8-parameter homographies between the layers and
estimate the layer sprites. (For the experiments presented
in this paper, we set Q; = Py, i.e. we reconstructed the
sprites in the coordinate system of the first camera.) Using
the computed homographies, we found the best plane esti-
mate for each layer using a Euclidean structure from motion
algorithm.

The results of applying these steps to the MPEG flower
garden sequence are shown in Figure 1. Figures 1(a) and
(b) show the first and last image in the subsequence we used
(the first nine even images). Figures 1(c) shows the sprite
images corresponding to each of the six layers, re-arranged
for more compact display. (These sprites are actually the
ones computed after residual depth estimation.) Note that
because of the blending that takes place during sprite con-
struction, each sprite is larger than its footprint in any one
of the input images. (e.g., the background house sprite is
complete, even though it is always seen in two pieces in
each image). This sprite representation makes it very easy
to re-synthesize novel images without leaving gaps in the

(@

(e)

®

Figure 3: Results on the symposium sequence: (a) third of five images; (b) fifth of five images; (c) recovered depth map
(darker denotes closer); (d) and (e) the five layer sprites; (f) residual depth image for fifth layer.

new image, unlike approaches based on a single painted
depth map [11]. Also notice how the depth discontinuities
are much crisper and cleaner than those available with tra-
ditional stereo correspondence algorithms.

Our second set of experiments uses five images of a 40-
image stereo data set taken at a graphics symposium. Fig-
ure 3(a) shows the middle input image, Figure 3(b) shows
one of the other images, Figure 3(c) shows the recovered
planar depth map, and Figure 3(f) shows the residual depth
map for one of the layers. Figures 3(d) and (e) show the
recovered sprites. Figure 4(a) shows the middle image re-
synthesized from these sprites.

Figure 4(b) shows the same sprite collection seen from
a novel viewpoint (well outside the range of the original
views). The gaps in this figure correspond to parts of the
scene which where not visible in any of the five inputimages.
Figure 4(c) shows a synthesized scene in which we merged
layer sprites selected from each of our two examples into a
single scene.

5 Discussion

In this section, we briefly discuss the domain of appli-
cability and usefulness of the proposed representation. The
layer sprite representation is suitable for a class of image
based modeling problems, namely that of modeling a static
3D environment. In this class of problems, especially for
outdoor scenes or other large scale environments, typically

49

the range of camera positions is small compared to the over-
all extent of the environment. In this case, the observed
disparities of local portions of the scene (e.g., the ground
surface, a wall, group of trees, etc.) may be approximated
by a planar homography. The residual disparities will be
small, and their effects during reprojection to new views
will be correspondingly small.

The generative process and the resulting reprojection
technique associated with the layer sprite representation has
the following property. Rendering the scene simply with
the sprite images and the associated plane equations, but
ignoring the residual depths will result in an image that is
not exact, but still a good approximation to the actual im-
age. Moreover, the large scale occlusion effects are easily
and naturally handled. This is akin to treating the scene
as a collection of “cardboard cutouts” at different orienta-
tions. This representation is highly compact, since the data
acquired from a collection of several images is condensed
into a few sprites, whose total data volume is slightly more
than that of a single image. The cost of encoding the plane
parameters is negligible. The residual depth nearly doubles
the data volume. This representation also lends itself easily
to progressive transmission and rendering.

However, for other types of modeling problems such as
compact 3D object modeling, it is not clear that this rep-
resentation is particularly suitable. In these problems, the
object is typically viewed from a variety of directions (per-

(b

Figure 4: 3D views of the reconstructed symposium scene: (a) re-synthesized third image (note extended field of view). (b)
novel view without residual depth; (c) a synthesized scene containing elements from both our examples.

haps from all around the object), and there is a considerable
change in what is seen across these views. The viewpoints
are likely to be close to the object, and the parallax effects
between different portions of the object are likely to be sig-
nificant. Also, a single object is usually modeled and a de-
tailed representation of its shape is critical for good visual
presentation. Insuch cases, the planar layer + residual depth
representation is not likely to be compact. Moreover, ma-
nipulations are likely to involve object deformations (e.g.,
morphing), articulation of parts, etc. These are not well
supported by the proposed layer sprite representations.

6 Conclusion

We have described an image based approach for model-
ing 3D scenes based on multiple 2D images of the scene.
We have proposed a representational framework that de-
composes the scene into a collection of 2.5D layer sprites
that encode portions of the scene. We have described the
basic algorithmic steps involved in the creation of this repre-
sentation from a given set of images and a method for repro-
Jjecting the representation into new views of the scene. The
proposed representation is naturally suitable for modeling
3D environments and meets many of the requirements for
multimedia authoring and presentation applications. Our
work in this area continues, with particular focus on the
automatic segmentation of the scene into sprites.

References
(11 Workshop onimage-based modeling and rendering. //graph-
ics.stanford.edu/im98/, March 1998.

[2] S.Baker, R. Szeliski, and P. Anandan. A Layered Approach
to Stereo Reconstruction. In CVPR 98, pages 434-441, June
1998.

S. Ayer, P. Schroeter, and J. Bigun. Segmentation of moving
objects by robust parameter estimation over multiple frames.
In 3rd ECCV, pages 316-327, 1994,

J.R. Bergen, P. Anandan, K.J. Hanna, and R. Hingorani.
Hierarchical model-based motion estimation. In 2nd ECCV,
pages 237-252, 1992.

M.J. Black and A.D. Jepson. Estimating optical flow in
segmented images using variable-order parametric models
with local deformations. PAMI, 18(10):972-986, 1996.

{31

4

(51

50

[6] J.E. Blinn. Jim Blinn’s corner: Compositing, part 1: Theory.
IEEE Computer Graphics and Applications, 14(5):83-87,
September 1994.

P.E. Debevec, C.J. Taylor, and J. Malik. Modeling and ren-
dering architecture from photographs: A hybrid geometry-
and image-based approach. In SIGGRAPH 96, pages 11—
20, 1996.

O.D. Faugeras. Three-Dimensional Computer Vision: A
Geometric Viewpoint. MIT Press, 1993,

M. Irani, P. Anandan, and S. Hsu. Mosiac based representa-
tions of video sequences and their applications. In 5th ICCV,
pages 605-611, 1995.

R. Kumar, P. Anandan, and K. Hanna. Direct recovery of
shape from multiple views: A parallax based approach. In
12th ICPR, pages 685-688, 1994,

L. McMillan and G. Bishop. Plenoptic modeling: Animage-
based rendering system. In SIGGRAPH '95, pages 39-46,
1995.

T. Porter and T. Duff. Compositing digital images. SIG-
GRAPH ’84, pages 253-259, 1984.

H.S. Sawhney and S. Ayer. Compact representations of
videos through dominant and multiple motion estimation.
PAMI, 18(8):814-830, 1996.

J. Shade, S. Gortler, L.-W. He, and R. Szeliski. Layered
depth images. In Computer Graphics (SIGGRAPH'98) Pro-
ceedings, pages 231-242, Orlando, July 1998. ACM SIG-
GRAPH.

H.-Y. Shum and R. Szeliski. Panoramic image mosaic-
ing. Technical Report MSR-TR-97-23, Microsoft Research,
September 1997.

R. Szeliski and P. Golland. Stereo matching with trans-
parency and matting. In 6th ICCV, 1998.

R. Szeliski and H.-Y. Shum. Creating full view panoramic
image mosaics and texture-mapped models. In SIG-
GRAPH °97, pages 251-258, 1997.

R. Szeliski and P. Torr. Geometrically constrained structure
from motion: Points on planes. In European Workshop on
3D Structure from Multiple Images of Large-scale Environ-
ments (SMILE), (Submitted) 1998.

J.Y.A. Wang and E.H. Adelson. Layered representation for
motion analysis. In CVPR *93, pages 361-366, 1993.

71

(8]

91

[10]

(1

(12]

[13]

(14]

[15]

[16]

171

[18]

(19]

