
PUTTING LANGUAGE INTO LANGUAGE MODELINGy

Frederick Jelinek Ciprian Chelba

Center for Language and Speech Processing
The Johns Hopkins University, Baltimore, MD-21218, USA

fjelinek,chelbag@jhu.edu

ABSTRACT

In this paper we describe the statistical Structured Language
Model (SLM) that uses grammatical analysis of the hypothe-
sized sentence segment (prefix) to predict the next word. We first
describe the operation of a basic, completely lexicalized SLM
that builds up partial parses as it proceeds left to right. We then
develop a chart parsing algorithm and with its help a method to
compute the prediction probabilities P (wi+1jWi): We suggest
useful computational shortcuts followed by a method of train-
ing SLM parameters from text data. Finally, we introduce more
detailed parametrization that involves non-terminal labeling and
considerably improves smoothing of SLM statistical parameters.
We conclude by presenting certain recognition and perplexity re-
sults achieved on standard corpora.

1. INTRODUCTION

In the accepted statistical formulation of the speech recognition
problem [1] the recognizer seeks to find the word string

cW :
= argmax

W

P (AjW)P (W)

where A denotes the observable speech signal, P (AjW) is the
probability that when the word string W is spoken, the signal
A results, and P (W) is the a priori probability that the speaker
will utter W.

The language model estimates the values P (W): With
W =w1; w2; : : : ; wn we get by Bayes’ theorem,

P (W) =

nY
i=1

P (wijw1; w2; : : : ; wi�1)

Since the parameter space of P (wijw1; w2; : : : ; wi�1) is too
large1, the language model is forced to put the historyWi�1 =
w1; w2; : : : ; wi�1 into an equivalence class determined by a
function �(h): As a result,

P (W) �=

nY
i=1

P (wij�(Wi�1)) (1)

Research in language modeling consists of finding appro-
priate equivalence classifiers � and methods to estimate
P (wij�(Wi�1)).

The language model of state-of-the-art speech recognizers
uses (N � 1)-gram equivalence classification, that is, defines

�(Wi�1)
:
= wi�N+1; wi�N+2; : : : ; wi�1

Once the form �(Wi�1) is specified, only the problem of esti-
mating P (wij�(Wi�1)) from training data remains.

yTHIS WORK WAS FUNDED BY THE NSF IRI-19618874
GRANT STIMULATE

1The words wj belong to a vocabulary V whose size is in the tenths
of thousands.

In most cases, N = 3 which leads to a trigram language
model. The latter has been shown to be surprisingly powerful
and, essentially, all attempts to improve on it in the last 20 years
have failed. The one interesting enhancement, facilitated by
maximum entropy estimation methodology, has been the use of
triggers[2] or singular value decomposition[3] (either of which
dynamically identify the topic of discourse) in combination with
N�gram models .

2. GRAMMATICAL ANALYSIS OF THE HISTORY

It has always seemed desirable to base the language model on an
equivalence classifier � that would take into account the gram-
matical structureof the history h: Until very recently all at-
tempts to do so have faltered. The causes of failure were prob-
ably (a) the left-to right requirement for a language model, (b)
inadequate parametrization, and (c) sparseness of data.

Fortunately, we have had some initial success with the Struc-
tured Language Model(SLM) [4], [5],[12] that both reduces en-
tropy and the error rate. In this presentation we give a description
of operation of a basic SLM (Section 3), discuss its training, pro-
vide a new parsing algorithm, generalize the basic approach, and
conclude by reviewing the results achieved so far.

It should be stressed that the development of the SLM is in
its infancy, and that with further study we expect considerable
progress, particularly by improved parametrization and shortcuts
in training.

Finally, it is worth mentioning that cursory inspection of the
structural analysis provided by the SLM indicates the possibility
of its use as a general parser. We plan to pursue this avenue of
research in the future.

3. A SIMPLE STRUCTURED LANGUAGE MODEL

In this section we will describe the simplest SLM. It is com-
pletely lexical. That is, phrases are annotated by headwords but
not by non-terminals. The text itself is not tagged. Because of
the necessarily sparse (relative to what is required for the task)
amount of data from which its parameters would be estimated, a
practical SLM would require non-terminal annotation. An SLM
”complete” in this sense is described in [4] and we will discuss
it in Section 9.

In the following description we act as if the words wi of a
sentence are fed in sequence to the SLM which makes definite
probability-based decisions concerning its actions. But a lan-
guage model needs to operate as in (1). We will therefore even-
tually need to give an algorithm computing

P (wij�(Wi�1)) =
X
Ti

P (wi;Ti�1jWi�1) (2)

where the sum is over all the possible structures Ti�1 assigned
by the SLM to the history Wi�1: Such an algorithm is given in
Section 6 and its more practical version in Section 7.

As the operation of the SLM proceeds a sentence and its parse
are generated. The parse consists of a binary tree whose nodes
are marked by headwordsof phrases spanned by the subtree

stemming from the node. The headword at the apex of the fi-
nal tree is < s >. The operation of the basic SLM is based
on constructormoves and predictor moves. The headword of a
phrase can be any word belonging to the span of the phrase.

1. Constructor moves:

The constructor looks at the pair of right-most exposed
headwords2 , h�2; h�1 and takes an actiona with probabil-
ity Q(aj h�2; h�1) where a 2 fadjoin right, adjoin left,
nullg: The definitions of the three possible actions are:

� adjoin right: Create an apex marked by the iden-
tity of h�1 and connect it by a leftward branch
to the (formerly) exposed headword h�2 and by
a rightward branch to the exposed headword h�1
(i.e., the headword h�1 is percolated up by one tree
level). Increase the indices of the current exposed
headwords h�3; h�4; : : : by 1: These headwords to-
gether with h�1 become the new exposed headwords
h
0

�1; h
0

�2; h
0

�3; : : : . I.e., h
0

�1 = h�1, and
h
0

�i = h�i�1 for i = 2; 3; : : : .

� adjoin left: Create an apex marked by the identity
of h�2 and connect it by a leftward branch to the
(formerly) exposed headword h�2 and by a rightward
branch to the exposed headword h�1 (i.e., the head-
word h�2 is percolated one tree level up). Increase
the indices of the new apex, as well as those of the
current exposed headwords h�3; h�4; : : : by 1: These
headwords thus become the new exposed headwords
h
0

�1; h
0

�2; h
0

�3; : : : . I.e., h
0

�i = h�i�1 for
i = 1; 2; 3; : : : .

� null: Leave headword indexing and current parse
structure as they are and pass control to the predictor.

If a 2 fadjoin right, adjoin leftg the constructor stays
in control and chooses the next action with probability
Q(ajh�2; h�1) where the latest (possibly newly created)
headword indexation is always used. If a = null, the con-
structor suspends operation and the control is passed to the
predictor.

Note that a null move means that in the eventual parse the
presently right-most exposed headword will be connected
to the right. The adjoin moves connect the right-most ex-
posed headword to the left.

2. Predictor moves:

The predictor generates the next word wj with probability
P (wj = vjh�2; h�1); v 2 V [< js >. The indexing
of the current headwords h�1; h�2; h�3; : : : is decreased
by 1 and the newly generated word becomes the right-most
exposed headword. Thus h

0

�1 = wj ; h
0

�i = h�i+1 for
i = 2; 3; : : : . Control is then passed to the constructor.

The operation ends when the SLM completes the tree by
marking its apex by the headword < s >.

To complete the description of the operation of the SLM, we
have to take care of initial conditions:

Start of operation: The predictor generates the first word w1
with probability

P1(w1 = v) = P (w1 = vj < s >); v 2 V

The initial headwords (both exposed) become
h�2 =< s >, h�1 = w1: Control is passed to the con-
structor.

2A headword is exposed if, at the time in question, it is not the
progeny of another headword, i.e., if it is not (yet) part of a phrase with
a head of its own.

Special constructor probabilities:

Q(ajh�2 =< s >; h�1 6=< js >) =
n

1; a = null
0; otherwise

(3)

Q(ajh�2 6=< s >; h�1 =< js >) =
n

1; a = right
0; otherwise

(4)

Q(ajh�2 =< s >; h�1 =< js >) =
n

1; a = left
0; otherwise

(5)

Special predictor probabilities:

P (< js > jh�2 6=< s >; h�1) = 0 (6)

It should be noted that requirement (6) allows the end of sen-
tence marker < js > to be generated only if the parse is ready
for completion when there are only two exposed headwords, the
first of which is the beginning of sentence marker < s > and
the second is an “ordinary” lexical headword h�1. Once < js >
is generated, rules (4) and (5) are applied in succession thereby
completing the parse. Note that rule (3) allows the generation of
w�2 while preventing the joining of w0 and w1 into a phrase.

An example of a final parse of the sentence “THE LANGUAGE
MODEL ESTIMATES THE VALUES P (W)” is shown in Figure 1,
and Figure 2 shows its development (a sub–parse) just before the
second THE is generated (note in particular the exposed heads
h�1 = ESTIMATES, h�2 = MODEL, h�3 = < s >).

<s> The language model estimates the value P(w) <|s>

<|s>
estimates

value

model

estimates

value
model

<s>

Figure 1. Complete Parse

model
model

<s> The language model estimates

Figure 2. Partial Parse

Let ai;1; ai;2; : : : ; ai;ki be the actions taken by the constructor
when it is presented with the history Wi: Necessarily, ai;ki =
null and ai;j 2 fleft; rightg for 1 � j < ki. Then

P (T;W) =

n+1Y
i=1

P (wijh(Ti�1))

kiY
j=1

Q(ai;jjh(Ti)) (7)

whereTi denotes the partial parse constructed onWi, including
its headwords, and h(Ti) denotes the two most recent exposed
headwords h�1 and h�2 of the partial parse Ti: Of course,
Tn+1 = T.

4. THE LANGUAGE MODEL

As pointed out in Section 3, we must now show how the SLM
can be used to compute the language model probabilities (2)

P (wij�(Wi�1)) =
X
Ti

P (wi;Ti�1jWi�1)

To do so, we will first develop a chart parsing algorithm
[6],[7],[8]. In a previous paper [4] we have shown how to ap-
proximate the summation in (2) with the help of stacks that hold
as entries the dominant terms P (wi;Ti�1jWi�1) of that sum.
The chart parsing algorithm is, of course, of interest in its own
right since the SLM may be used simply as a parser. The algo-
rithm will also lead to a Viterbi-like determination of the most
probable parse (see Section 8)

bT = argmax
T

P (T;W) (8)

5. A CHART PARSING ALGORITHM

We now proceed under our simplified assumption that the SLM
operates on words only and does not use either tags or non-
terminals. We will derive a recursion (see (10)) that can be used
to calculate P (W):

As before, W denotes a string of words w0; : : : ; wn+1 that
form the complete sentence, where wi; i = 1; : : : ; n are ele-
ments of a vocabulary V , w0 =< s > (the beginning of sen-
tence marker, generated with probability 1) and wn+1 =< js >
(the end of sentence marker). The first word, w1 is generated
with probability P1(w1) = P (w1j < s >); the rest with prob-
ability P (wijh�2; h�1) where h�2; h�1 are the most recent
exposed headwords valid at the time of generation of wi: The
algorithm we will develop will be computationally quite com-
plex because the exposed headword pairs h(Ti) determine the
parser’s moves, and as Ti varies, h(Ti) can be any word pairs
wj ; wl; 0 � j < l � i belonging to the prefix Wi.

Let

xy[i; j]
:
= P (wj

i+1; h(w
j
i) = yjh�1(w

i�1
0) = x;wi);

1 � i < j < n+1; denote the probability that, given that x is the
last exposed headword preceding time i and thatwi is generated,
the following words wj

i+1 = wi+1 : : : ; wj are generated, wj
i =

wi; wi+1 : : : ; wj becomes a phrase and y is its headword.
Define further the boundary conditions

xy[i; j]
:
= 0; if x =2 fw0; : : : ; wi�1g or y =2 fwi; : : : ; wjgor i > j

and, for j = 1; 2; : : : ; n,

xy[j; j]
:
=
n

1 for x 2 fw0; : : : ; wj�1g; y = wj

0 otherwise (9)

Then,3 for 1 � i < j < n+ 1 ,

xy[i; j] = (10)
j�1X
l=i

X
z

xy[i; l] P �(wl+1jx; y) yz[l+ 1; j] Q(leftjy; z)

+

j�1X
l=i

X
v

xv[i; l] P �(wl+1jx; v) vy[l+ 1; j] Q(rightjv; y)

where

P �(wjh�2; h�1) = P (wjh�2; h�1) Q(nulljh�2; h�1)

The probability we are interested in is then given by

P (W) = w0wn+1[1; n+ 1] (11)

3For justification see the two paragraphs following (11).

To justify formula (10), observe the following: one of the
ways to generate wi+1; : : : ; wj and create a phrase spanning
[i; j] whose headword is y; given that the headword of the pre-
ceding phrase is x and the word wi was generated, is that there
is a string wi+1; : : : ; wl generated, that a phrase spanning [i; l]
is formed whose headword is y (and preceding that phrase is
another one whose headword is x); that the word wl+1 is gener-
ated from its two preceding headwords (i.e., x; y), that the string
wl+2; : : : ; wj is generated and the span [l+1; j] forms a follow-
ing phrase whose headword is, say, z (and the headword of its
preceding phrase must be y!) and that the two phrases are joined
as one whose headword is y:

Another way to create a phrase whose headword is y and to
generate wi+1; : : : ; wj ; given that the headword of the preced-
ing phrase is x and the word wi was generated, is almost iden-
tical, except that the first of the two phrases is headed by some
headword v and the second by headword y; and when these two
phrases are joined it is the second headword, y, which is perco-
lated upward to head the overall phrase. Of course, in this case
wl+1 is generated from its preceding two headwords, x and v:

Our chart algorithm will proceed left-to-right,4 starting with
w0w1[1; 1] = 1: The probabilities of phrases covering word
position spans [i; j]; i < j will be calculated from (10) after
the corresponding information concerning spans [k; j � 1]; k =
1; : : : ; j�2 and [l; j]; l = i+1; : : : ; j�1 had been determined.5

6. COMPUTING P (WI+1jWI)

We can now use the concepts and notation developed in the
preceding section to compute left-to-right probabilities of word
generation by the SLM. Let x[i] denote the probability that
the sequence w0; w1; w2; : : : ; wi; wi+1 is generated and the
partial parse of Wi is any subtree Ti whose last exposed
headword is x:6 Further, define the set of words Wi =
fw0; w1; w2; : : : ; wig. Then we have for l = 1; 2; : : : ; n the
following recursion:

x[l] =

l�1X
i=0

X
y2Wi

y[i] yx[i+ 1; l] P �(wl+1jy; x) (12)

for x 2 fw1; : : : ; wlg, with the initial condition

x[0] =
n

P1(w1) x = w0

0 x 6= w0

It follows directly from (12) that for i = 1; 2; : : : ; n

P (w0; w1; w2; : : : ; wi; wi+1) =
X
x2Wi

x[i]

and therefore

P (wi+1jw0; w1; w2; : : : ; wi) =

P
x2Wi x[i]P

y2Wi�1 y[i� 1]
(13)

It follows that to calculate P (wijw0; w1; w2; : : : ; wi�1) we
must have had in our possession the values x[j]; j =

4So can the famous CYK algorithm [6],[7],[8] that is similar to but
simpler than ours. As a matter of fact, it is obvious from formula (10)
that the presented algorithm can also be run from bottom up, but such
a direction would be computationally wasteful as indicated in Section 7
that discusses computational shortcuts.

5Note from (9) that the values xy[j; j] are known.
6That is, Ti is a subtree ”covering” the prefix Wi =

w0; w1; w2; : : : ; wi, the constructor passes control to the predictor
which then generates the next word wi+1: Thus

x[i] =
X
Ti

P (Wi; h�1(Ti) = x;wi+1)

0; 1; : : : ; i� 1; and the values xy[l; j] for 1 � l < j � i� 1 for
the appropriate combinations of x; y 2 Wi�1: To then calculate
P (wi+1jw0; w1; w2; : : : ; wi) we must first calculate the values
xy[l; i] for 1 � l < i and with their help x[i] for x; y 2 Wi:

7. LIMITING THE EFFORT IN CALCULATING
P (WI+1jWI)

It is the nature of the SLM that, with positive probability, a
phrase spanning [i; j] can have as its headword any of the words
fwi; : : : ; wjg. As a result, the computational complexity of the
algorithms of the preceding two sections is proportional to n6:
This makes these algorithms impractical, unless a scheme can be
devised that would purge from the chart a substantial fraction of
its entries.

Observe first that the number of constructor moves creat-
ing any particular binary tree spanning [i; j] is constant,7 and
that the number of different binary trees that can span [i; j] is
also constant. Therefore, the values of the probabilities xy[i; j]
are comparable to each other regardless of the identity of x 2
fw0; w1; : : : ; wi�1g and y 2 fwi; : : : ; wjg. They can thus be
thresholded with respect to maxx;y xy[i; j].

It must, of course, be kept in mind that thresholding is only an
opportunistic device: The fact that xy[i; j] << maxv;z vz[i; j]
does not mean that xy[i; j] cannot be part of some highly prob-
able parse, since, for instance, yz[j + 1; k] may be very large
and thus compensate for the relatively small value of xy[i; j].
That is, the headword y might be “needed” to complete the parse
xz[i; k]. Similarly, the value of vx[m; i� 1] could be very large
which would make the phrase vy[m; j] attractive, again, in spite
of the smallness of xy[i; j]:

Next note that if x[k] << maxz z[k] then it is unlikely that
a high probability parse will account for the interval [0; k] with
a sub-parse whose last headword is x: In such a case then, the
calculation of xy[k+1; j]; j 2 fk+2; : : : ; n+1gwill probably
not be needed (for any y) because in (10) and (12) xy[k + 1; j]
will be multiplied by vx[i; k] and x[k], respectively.

Again, the fact that x[k] is small does not mean that the head-
word x cannot be useful in producing the future. I.e., it is still
possible (though unlikely) that xy[k + 1; j] for some y and j
will be so large that at least some parses over the interval [0; j]
having x as the last exposed headword at time k will correspond
to a substantial probability mass.

Should we wish to take advantage of the thresholding oppor-
tunities inherent in the above observations, we ought to com-
pute the probabilities (10) and (12) in the following sequence:
once x[i] and xy[j; i]; j = 1; 2; : : : ; i � 1; i = 1; 2; : : : ; l are
known, probabilities vz[k; l + 1] are computed in the sequence
k = l; l � 1; : : : ; 1: Equation (12) then allows us to compute
x[l + 1] for the various headwords x and the cycle continues.
During this computation, thresholding mentioned in the preced-
ing two paragraphs is carried out.

Thresholding has certain unpleasant consequences. In partic-
ular, if in order to save on computation some small quantities
are set to 0 then the quantity defined by (13) will no longer be
a probability since we can not guarantee that it will be normal-
ized. To assure proper normalization, we can proceed as follows.
Define

Ql(y; x)
:
= Q(nulljy; x)

l�1X
i=0

y[i] yx[i+ 1; l] (14)

where the terms in the sum are those obtained after thresholding,
if any. Further let Sl = fy; x : Ql(y; x) > 0g: Then

P�(wi+1jw0; w1; w2; : : : ; wi) =
1

Ki

X
y;x2Si

Qi(y; x) P (wijy; x)

(15)

7In fact, exactly j� i adjoint moves and j� i null moves are needed
to construct a binary tree spanning [i; j].

is a proper probability with

Kl =
X

y;x2Sl

Ql(y; x)

8. TRAINING

It follows from Section 3 that the statistical parameters spec-
ifying the SLM are the predictor probabilities P (vjx; y) and
the constructor probabilities Q(ajx; y); v; x; y 2 V , a 2
fleft; right;nullg: As usual, we would like to choose these
parameters by an appropriate maximum likelihood procedure ap-
plied to data. In principle, it would be possible to proceed analo-
gously to the inside – outside algorithm for probabilistic context
free grammars [9]. The recursion (10) of Section 5 already cor-
responds to the inside algorithm and we could develop an out-
side analogue as well. However, such a re-estimation would be
extremely costly.

The simplest way to proceed would be by Viterbi training
based on finding the most probable parse bT of the sentence W.
Since given any parse T there is a unique sequence of predictor
and constructor actions that achieves it (see Section 3), such re-
estimation would simply consist of re-normalization of counts of
predictor and constructor actions found in the parses bT(i) that
correspond to the sentences W(i); i = 1; 2; : : : ; K making up
the training corpus. Of course, initial statistics would be derived
from parses present in some convenient treebank.[10],[11]

For the sake of brevity we now state without proof the ba-
sic recursion of the Viterbi algorithm.8 Let xyy[i; j] denote the
probability, given that x is the last exposed headword and wi is
generated, of the most probable sequence of moves that generate
the words wi+1 : : : ; wj with y becoming the headword of the
phrase wi; wi+1 : : : ; wj : Then we have for 1 � i < j < n+ 1
that

xyy[i; j] =

max

�
max

l2fi;j�1g;z
L(i; j; l; z); max

l2fi;j�1g;v
R(i; j; l; v)

�

where

L(i; j; l; z) =

xyy[i; l]P �(wl+1jx; y) yzy[l + 1; j]Q(leftjy; z)

R(i; j; l; v) =

xvy[i; l]P �(wl+1jx; v) vyy[l + 1; j]Q(rightjv; y)

with the boundary conditions

xyy[i; j] = 0 if x =2 fw0; : : : ; wi�1g or y =2 fwi; : : : ; wjg or i > j

and

xyy[j; j] =
n

1 for x 2 fw0; : : : ; wj�1g; y = wj

0 otherwise

The probability of bT will be given by

P (bT;W) = w0w
y
n+1[1; n + 1]

Obviously, the tree bT itself can be obtained by a back-trace of
relations (16) starting from the apex of bT.

It would be better to base the parameter estimation on more
than one parse per training sentence, for instance on the L most
probable parses bT1; : : : ; bTL. In such a case we would weigh the
predictor and constructor counter contributions corresponding to
the parse bTi by the probability P (bTi;W)=

PL

j=1
P (bTj;W).

8Compare to the development of (9) in Section 5.

The algorithm obtaining theL�best parses is computationally
quite expensive. An alternative would be to obtain the Viterbi
parse bT1 by the recursion (16), and the remaining L� 1 parses
by sampling (with replacement) the parses contained in the chart
corresponding to the recursion (10). Such sampling would be
carried out top–down. For instance, we see from (10) that a span
designated by xy[i; j] is “made up” either of spans xy[i; l] and
yz[l + 1; j] or of spans xv[i; l] and vy[l + 1; j]: The sampler
would then choose the first span with a probability proportional
to P �(wl+1jx; y)xy[i; l] yz[l+ 1; j]Q(leftjy; z), etc.

9. SMOOTHING AND PARAMETRIZATION

The basic SLM described in Section 3 involves lexical head-
words of phrases that have not been annotated by either non-
terminals or parts-of-speech. This presents a problem when
estimates of P (wjh�1; h�2) and Q(ajh�1; h�2) derived from
(necessarily sparse) training data are needed during operation on
test data.. The parameter space of these probabilities is just too
large. One could try to use standard linear smoothing formulas

P (wjh�1; h�2) = �3f(wjh�1; h�2)+�2f(wjh�1)+�1f(w)
(16)

and

Q(wjh�1; h�2) = v3f(ajh�1; h�2) + v2f(ajh�1) + v1f(a)
(17)

to overcome the problem. But formula (17) is particularly
problematic: intuition would tell us that the choice of a 2
fleft; right;nullg should depend on both h�1 and h�2!

Besides, the partial parse Ti surely carries a lot of grammat-
ical information that could be taken advantage of. Therefore,
the parser should annotate all of its headwords so that in for-
mulas (16) and (17) h = (v; t) where v 2 V (the vocabu-
lary) and t 2 N (the set of non-terminals that includes parts
of speech), and a = (�; t) with � 2 fleft; right;nullg and
t 2 N . This means that in addition to a constructor and predic-
tor, the operation of an SLM must include a taggerwhich tags
the just predicted words wi by parts of speech t with probability
R(tjw; h�1; h�2).

The addition of non-terminal annotation then allows us to re-
place (17) by the much more sensible (for instance)

Q(wjh�1; h�2) = v3f(ajh�1; h�2)+v2f(ajt�1; t�2)+v1f(a)

Naturally, the smoothing formula (16) can also be adjusted, at
least by

P (wjh�1; h�2) = (18)

�3f(wjh�1; h�2) + �2f(wjh�1) + �4f(wjv�1) + �1f(w)

Even with the addition of non-terminal annotation, the proper
parametrization of the SLM remains a subject of research. The
constructor in particular could benefit from more information
about the current partial parse Ti.9 So h�3 might be useful,
or at least t�3:

The information extracted from Ti might be made even more
comprehensive if we took advantage of the maximum entropy
estimation paradigm [2]. We have had some success with such
an approach already [13].

10. PRELIMINARY RESULTS

We have tested the SLM on the Wall Street Journal and Switch-
board tasks [5],[12]. Compared to the state-of-the-art trigram
language model, the SLM has a lower perplexity by 15% and
5%, respectively. It lowers the recognition error rate (WER) by
1% and 1% absolute, respectively. We are about to carry out
experiments on the Broadcast News task.

Because the average sentence length of the Switchboard task
is 7 words, the SLM is not really suitable for it.

9If the SLM is to remain a language model, the left-to-right develop-
ment must be strictly adhered to.

REFERENCES

[1] F. Jelinek: Statistical methods for speech recognition,MIT
Press, Cambridge, MA, 1998

[2] R. Rosenfeld, “A Maximum Entropy Approach to Statis-
tical Language Modeling,” Computer, Speech and Lan-
guage,vol. 10, 1996

[3] J.R. Bellegarda: “A Latent Semantic Analysis Framework
for Large–Span Language Modeling,” Proceedings of Eu-
rospeech 97,pp. 1451 - 1454, Rhodes, Greece, 1997

[4] C. Chelba and F. Jelinek: “Exploiting Syntactic Structure
for Language Modeling,” Proceedings of COLING–ACL,
pp. 225-284, Montreal, CA, 1998

[5] C. Chelba and F. Jelinek: “Recognition Performance of a
Structured Language Model,” Proceedings of Eurospeech
99, to appear, College Park, MD, 1999

[6] J. Cocke, unpublished notes

[7] D.H. Younger: “Recognition and Parsing of Context Free
Languages in Time N3;” Information and Control, 10,
1967, pp. 198-208

[8] T. Kasami: “An efficient recognition and syntax algorithm
for context-free languages,” Scientific Report AFCRL-65-
758, Air Force Cambridge Research Lab., Bedford MA,
1965

[9] J.K. Baker: “Trainable Grammars for Speech Recogni-
tion,” Proceedings of the Spring Conference of the Acous-
tical Society of America, pp. 547-550, Boston MA, 1979

[10] G. Leech and R. Garside: “Running a Grammar Factory:
the Production of Syntactically Analysed Corpora or ’Tree-
banks’,” in: Stig Johansson and Anna-Brita Stenstrom: En-
glish Computer Corpora: Selected Papers and Research
Guide, Mouton de Gruyter, Berlin, 1991.

[11] M. Marcus, B. Santorini, and M. Marcinkiewicz, “Building
a large annotated corpus of English: the Penn Treebank,”
Computational Linguistics, vol. 19, No. 2, 1993.

[12] C. Chelba and F. Jelinek: “Structured Language Modeling
for Speech Recognition,” Proceedings of NLDB99,to ap-
pear, Klagenfurt, Austria, 1999

[13] J. Wu and S. Khudanpur: “Combining Non-local, Syntac-
tic and N-gram dependencies in Language Modeling,” Pro-
ceedings of NLDB99,to appear, Klagenfurt, Austria, 1999

