PUTTING LANGUAGE INTO LANGUAGE MODEL ING

Frederick Jelinek

Ciprian Chelba

Center for Language and Speech Processing
The Johns Hopkins University, Baltimore, MD-21218, USA
{jelinek,chelba} @jhu.edu

ABSTRACT

In this paper we describe the statistical Structured Language
Model (SLM) that uses grammatical analysis of the hypothe-
sized sentence segment (prefix) to predict the next word. Wefirst
describe the operation of a basic, completely lexicalized SLM
that builds up partial parses as it proceeds left to right. We then
develop a chart parsing agorithm and with its help a method to
compute the prediction probabilities P(w;4+1|W). We suggest
useful computational shortcuts followed by a method of train-
ing SLM parameters from text data. Finally, we introduce more
detailed parametrization that involves non-terminal |abeling and
considerably improves smoothing of SLM statistical parameters.
We conclude by presenting certain recognition and perplexity re-
sults achieved on standard corpora.

1. INTRODUCTION

In the accepted statistical formulation of the speech recognition
problem [1] the recognizer seeks to find the word string

o~

W = arg max P(A|W)P(W)

where A denotes the observable speech signal, P(A|W) isthe
probability that when the word string W is spoken, the signal
A results, and P(W) isthe apriori probability that the speaker
will utter W.

The language model estimates the values P(W). With
W =wi,ws,...,w, weget by Bayes' theorem,

n

P(W) ZHP(wi|w1,w2,...,wi_1)

i=1

Since the parameter space of P(w;|lwi,ws,...,wi—1) iS to0
large!, the language model is forced to put the history W;_; =
wi, wa, ..., w;—1 INt0 an equivalence class determined by a
function ®(h). Asaresult,

P(W) =[] P(wi|®(W. 1)) @)

i=1

Research in language modeling consists of finding appro-
priate equivalence classifiers & and methods to estimate
P(w;|®2(W;_1)).

The language model of state-of-the-art speech recognizers
uses (N — 1)-gram equivalence classification, that is, defines

B(Wi_1) = Wi N1, WimN42,. -, Wi—1

Once the form ®(W,;_1) is specified, only the problem of esti-
mating P(w;|®(W,;_1)) from training data remains.

tTHIS WORK WAS FUNDED BY THE NSF IRI-19618874
GRANT STIMULATE

1The words w; belong to a vocabulary V whose size isin the tenths
of thousands.

In most cases, N = 3 which leads to a trigram language
model. The latter has been shown to be surprisingly powerful
and, essentially, all attemptsto improve onit in the last 20 years
have failed. The one interesting enhancement, facilitated by
maximum entropy estimation methodology, has been the use of
triggers[2] or singular value decompositidi3] (either of which
dynamically identify the topic of discourse) in combination with
N —gram models..

2. GRAMMATICAL ANALYSISOF THE HISTORY

It has always seemed desirabl e to base the language model on an
equivalence classifier ® that would take into account the gram-
matical structureof the history h. Until very recently all at-
tempts to do so have faltered. The causes of failure were prob-
ably (a) the left-to right requirement for a language model, (b)
inadequate parametrization, and (c) sparseness of data.

Fortunately, we have had some initial success with the Struc-
tured Language Mod€SLM) [4], [5],[12] that both reduces en-
tropy and the error rate. |n this presentation we give adescription
of operation of abasic SLM (Section 3), discussitstraining, pro-
vide anew parsing algorithm, generalize the basic approach, and
conclude by reviewing the results achieved so far.

It should be stressed that the development of the SLM isin
its infancy, and that with further study we expect considerable
progress, particularly by improved parametrization and shortcuts
in training.

Finaly, it is worth mentioning that cursory inspection of the
structural analysis provided by the SLM indicates the possibility
of its use as a general parser. We plan to pursue this avenue of
research in the future.

3. ASIMPLE STRUCTURED LANGUAGE MODEL

In this section we will describe the simplest SLM. It is com-
pletely lexical. That is, phrases are annotated by headwords but
not by non-terminals. The text itself is not tagged. Because of
the necessarily sparse (relative to what is required for the task)
amount of data from which its parameters would be estimated, a
practical SLM would require non-terminal annotation. An SLM
"complete” in this sense is described in [4] and we will discuss
itin Section 9.

In the following description we act as if the words w; of a
sentence are fed in sequence to the SLM which makes definite
probability-based decisions concerning its actions. But a lan-
guage model needs to operate asin (1). We will therefore even-
tually need to give an algorithm computing

P(wil®(Wi-1)) = > P(wi, Tiei[Wica) (2

where the sum is over al the possible structures T;_; assigned
by the SLM to the history W, _;. Such an agorithm isgiven in
Section 6 and its more practical version in Section 7.

Asthe operation of the SLM proceeds a sentence and its parse
are generated. The parse consists of a binary tree whose nodes
are marked by headwordsof phrases spanned by the subtree

stemming from the node. The headword at the apex of the fi-
nal treeis < s >. The operation of the basic SLM is based
on constructormoves and predictor moves. The headword of a
phrase can be any word belonging to the span of the phrase.

1. Constructor moves.

The constructor looks at the pair of right-most exposed
headwords®, h_, h_1 and takes an actiona with probabil-
ity Q(a| h—2,h_1) where a € {adjoin right, adjoin left,
null}. The definitions of the three possible actions are:

e adjoin right: Create an apex marked by the iden-
tity of h_; and connect it by a leftward branch
to the (formerly) exposed headword h_, and by
a rightward branch to the exposed headword h_;
(i.e., the headword h_ is percolated up by one tree
level). Increase the indices of the current exposed
headwords h_s,h_4,... by 1. These headwords to-
gether with h_; become the new exposed headwords
R i,k 9,h g,....1le,h 1 =h_q,and
B o, =h_i_1fori=23,....

e adjoin left: Create an apex marked by the identity
of h_» and connect it by a leftward branch to the
(formerly) exposed headword h_» and by arightward
branch to the exposed headword h_ (i.e., the head-
word h_» is percolated one tree level up). Increase
the indices of the new apex, as well as those of the
current exposed headwords h_3,h_4,... by 1. These
headwords thus become the new exposed headwords
B i h o,h g,....le h_; =h_i_; for
i=1,2,3,....

e null: Leave headword indexing and current parse
structure as they are and pass control to the predictor.

If a € {adjoin right, adjoin left} the constructor stays
in control and chooses the next action with probability
Q(a|h—2,h_1) where the latest (possibly newly created)
headword indexation is aways used. If a = null, the con-
structor suspends operation and the control is passed to the
predictor.

Note that a null move means that in the eventual parse the
presently right-most exposed headword will be connected
to the right. The adjoin moves connect the right-most ex-
posed headword to the left.

2. Predictor moves:

The predictor generates the next word w; with probability
P(w; = vlh_2,h_1), v € VU < |s >. Theindexing
of the current headwords h_1,h_2,h_3,... is decreased
by 1 and the newly generated word becomes the right-most
exposed headword. Thus h'_1 = wj, h'_i = h_i41 for
1=2,3,.... Control isthen passed to the constructor.

The operation ends when the SLM completes the tree by
marking its apex by the headword < s >.

To complete the description of the operation of the SLM, we
have to take care of initial conditions:

Start of operation: The predictor generates the first word w,
with probability
Pi(wi =v)=Pwi =v|<s>),veEV
Theinitial headwords (both exposed) become

h_2 =< s >, h—1 = w;. Control is passed to the con-
structor.

2A headword is exposed if, at the time in questignit is not the
progeny of another headword, i.e., if it is not (yet) part of a phrase with
ahead of itsown.

Special constructor probabilities:

1, a=null
Qlalh—z =<s>h7<]s>) = { 0, otherwise
©)
1, a =right
Qlalhs #< s>, h1 =<5 >) = { 0, othervvgise
4
1, a=left
Qlalh—z =<s>h=<ls>) = { 0, otherwise
©)
Special predictor probabilities:
P(<|s> |h2#<s>h 1)=0 (6)

It should be noted that requirement (6) allows the end of sen-
tence marker < |s > to be generated only if the parse is ready
for completion when there are only two exposed headwords, the
first of which is the beginning of sentence marker < s > and
the second isan “ordinary” lexical headword h—;. Once < |s >
is generated, rules (4) and (5) are applied in succession thereby
completing the parse. Note that rule (3) allows the generation of
w—_2 While preventing the joining of wy and w; into a phrase.

An example of afinal parse of the sentence “ THE LANGUAGE
MODEL ESTIMATES THE VALUES P(W)” isshownin Figure 1,
and Figure 2 shows its devel opment (asub—parse) just before the
second THE is generated (note in particular the exposed heads
h_1 = ESTIMATES, h_» = MODEL, h_3 = < § >).

<s> The language model estimates the value P(w) <|s>

Figure 1. Complete Parse

model

<s> Thelanguage model estimates

Figure 2. Partial Parse

Letai,1,ai,2,--.,a:r, betheactionstaken by the constructor
when it is presented with the history W;. Necessarily, a;x, =
null and a;,; € {left,right} for1 < j < k;. Then

n+1

k;
HP wl|h i— 1 H az]|h (7)

where T; denotesthe partial parse constructed on W;, including
its headwords, and h(T;) denotes the two most recent exposed
headwords h_; and h_» of the partial parse T;. Of course,
Tpi1 =T,

4. THE LANGUAGE MODEL
As pointed out in Section 3, we must now show how the SLM

can be used to compute the language model probabilities (2)

(ujl|(§ ZP wz, i— 1|Wz l)

To do so, we will first develop a chart parsing agorithm
[6],[7],[8]. In a previous paper [4] we have shown how to ap-
proximate the summation in (2) with the help of stacksthat hold
as entries the dominant terms P (w;, Ti—1|W;_1) of that sum.

The chart parsing agorithm is, of course, of interest in its own
right since the SLM may be used simply as a parser. The algo-
rithm will also lead to a Viterbi-like determination of the most
probable parse (see Section 8)

~

T = arg m%xP(T,W) (8)

5. A CHART PARSING ALGORITHM

We now proceed under our simplified assumption that the SLM
operates on words only and does not use either tags or non-
terminals. We will derive arecursion (see (10)) that can be used
to calculate P(W).

As before, W denotes a string of words wy, . . ., wn+1 that
form the complete sentence, where w;, 1 = 1,...,n are ele-
ments of a vocabulary V, wo =< s > (the beginning of sen-
tence marker, generated with probability 1) and w,+1 =< |s >
(the end of sentence marker). The first word, w; is generated
with probability Py (wi) = P(wi| < s >), the rest with prob-
ability P(w;|h—2,h_1) where h_»,h_1 are the most recent
exposed headwords valid at the time of generation of w;. The
algorithm we will develop will be computationally quite com-
plex because the exposed headword pairs h('T;) determine the
parser’'s moves, and as T; varies, h('T;) can be any word pairs
wj,wi, 0 < 7 <1 <ibelonging to the prefix W;.

Let

zyli, j] = P(w] .1, h(w]) = ylh-1(wp ') = 2, wi),

1 <7 < j < n+1, denotethe probability that, given that z isthe

last exposed headword preceding times and that w; is generated,

the following words w’ 41 = Wit1...,w; aegenerated, w; =

Wiy, Wit -+ -, Wj becomes aphrase and y isits headword.
Define further the boundary conditions

zyli,j] =0, if z ¢ {wo,...

and,forj =1,2,...,n,

,wi—itory & {wi,...

wylj, j] = { 1 for z € {wo,...,wj_1},y = w; ©)

0 otherwise
Thenforl<i<j<n+1,

zyli,j] = (10)

S S »
+ ZZazvzl

where

H(wir1|z, y) y2[l + 1, 5] Q(leftly, z)

*(wigalz,v) vyll + 1,] Q(rightlv, y)

P*(w|h,2,h,1) = P(w|h,2,h,1) Q(null|h,2,h,1)
The probability we are interested in is then given by

P(W) = wown+1[1,n + 1] (112)

3For justification see the two paragraphs following (11).

,wjtori > j

To justify formula (10), observe the following: one of the
ways to generate w;41,...,w; and creste a phrase spanning
[z, 7] whose headword is y, given that the headword of the pre-
ceding phrase is = and the word w; was generated, is that there
isastring wi+1, . . ., w; generated, that a phrase spanning [z,]
is formed whose headword is y (and preceding that phrase is
another one whose headword is z), that the word w1 is gener-
ated from its two preceding headwords (i.e., z, y), that the string
Wi4a,. .., w; isgenerated and the span [I + 1, 5] formsafollow-
ing phrase whose headword is, say, z (and the headword of its
preceding phrase must be y!) and that the two phrases are joined
as one whose headword is y.

Another way to create a phrase whose headword is y and to
generate w;41, - . . , wy, given that the headword of the preced-
ing phrase is z and the word w; was generated, is almost iden-
tical, except that the first of the two phrases is headed by some
headword v and the second by headword y, and when these two
phrases are joined it is the second headword, y, which is perco-
lated upward to head the overall phrase. Of course, in this case
wy+1 iSgenerated from its preceding two headwords z and v.

Our chart algorithm will proceed left-to-right,* starting with
wowi[1,1] = 1. The probabilities of phrases covering word
position spans [i, 5], ¢ < j will be calculated from (10) after
the corresponding information concerning spans [k, j — 1],k =
1,...,5—2and[l, 4], | = i+1,...,5—1 had been determined®

6. COMPUTING P(Wri1|W)

We can now use the concepts and notation developed in the
preceding section to compute |eft-to-right probabilities of word
generation by the SLM. Let z[i] denote the probability that
the sequence wo, w1, wa,...,w;, w;+1 1S generated and the
partial parse of W; is any subtree T; whose last exposed
headword is z.° Further, define the set of words W' =
{wo,w1,ws,...,w;}. Thenwe havefor! = 1,2,...,n the
following recursion:

=% X ol

=0 yEW’

| yali + L1 P*(winaly,2) (12)

forz € {ws,...

o ={ "¢ Tz

,wg }, with theinitial condition

It follows directly from (12) that fori = 1,2,...,n

7wi7wi+1) = Z l’[l]

P(wo,wl,wg,. .

zEW?
and therefore
E.’EEWi l’[l]
P(wit1|wo, w1, w2, ..., w;) = ——r"——— (13)
Zyewi—l yli — 1]
It follows that to calculate P(w;|wo, w1, w2, ..., wi—1) We

must have had in our possession the vaues z[j], j =

450 can the famous CYK algorithm [6],[7],[8] that is similar to but
simpler than ours. As amatter of fact, it is obvious from formula (10)
that the presented algorithm can also be run from bottom up, but such
adirection would be computationally wasteful asindicated in Section 7
that discusses computational shortcuts.

5Note from (9) that the values zy[3, 7] are known.

SThat is, T; is a subtree "covering” the prefix W; =
wop, w1, ws,...,w;, the constructor passes control to the predictor
which then generates the next word w; 4 1. Thus

i = P(Wi hoy(T

i) = T, Wit1)

0,1,...,s—1,and thevaueszy[l,j] for1 <1< j <i—1for
the appropriate combinations of =,y € W™, To then calculate
P(wit1|wo, w1, ws,...,w;) wemust first calculate the values
zy[l, 4] for 1 < 1 < 4 and with their help z[4] for z,y € W".

7. LIMITING THE EFFORT IN CALCULATING
P(Wi41|Wi)

It is the nature of the SLM that, with positive probability, a
phrase spanning [z, j] can have asits headword any of the words
{ws,...,w;}. Asaresult, the computational complexity of the
algorithms of the preceding two sections is proportional to n°.

This makes these algorithms impractical, unless ascheme can be
devised that would purge from the chart a substantial fraction of
itsentries.

Observe first that the number of constructor moves creat-
ing any particular binary tree spanning [4, 5] is constant, and
that the number of different binary trees that can span [i, j] is
aso constant. Therefore, the values of the probabilities zy|z, j]
are comparable to each other regardless of the identity of =z €
{wo,w1,...,wi—1} ady € {wi,...,w;}. They can thus be
thresholded with respect to max,,y zy[z, 7]

It must, of course, be kept in mind that thresholding isonly an
opportunistic device: Thefact that zy[z, j] << max, . vz[s, j]
does not mean that zy([i, j] cannot be part of some hlghly prob-
able parse, since, for instance, yz[j + 1, k] may be very large
and thus compensate for the relatively small value of zy[s, j].
That is, the headword y might be “needed” to compl ete the parse
zz[i, k|. Similarly, the value of vz[m, i — 1] could be very large
which would make the phrase vy[m, j] attractive, again, in spite
of the smallness of zy[i, 7].

Next note that if z[k] << max, z[k] thenitisunlikely that
a high probability parse will account for the interval [0, k] with
a sub-parse whose last headword is z. In such a case then, the
caculationof zy[k+1,5], 7 € {k+2,...,n+1} will probably
not be needed (for any y) because in (10) and (12) zy[k + 1, j]
will be multiplied by vz[i, k] and [k], respectively.

Again, thefact that z[k] is small does not mean that the head-
word z cannot be useful in producing the future. 1.e, it is still
possible (though unlikely) that zy[k + 1, 5] for some y and j
will be so large that at least some parses over the interval [0, j]
having z asthe last exposed headword at time & will correspond
to asubstantial probability mass.

Should we wish to take advantage of the thresholding oppor-
tunities inherent in the above observations, we ought to com-
pute the probabilities (10) and (12) in the following sequence:
once z[i] and zy[j,7],j = 1,2,...,i—1, 1 = 1,2,...,l are
known, probabilities vz[k, ! + 1] are computed in the sequence
k=1,1-1,...,1. Equation (12) then alows us to compute
z[l + 1] for the various headwords = and the cycle continues.
During this computation, thresholding mentioned in the preced-
ing two paragraphs is carried out.

Thresholding has certain unpleasant consegquences. In partic-
ular, if in order to save on computation some small quantities
are set to 0 then the quantity defined by (13) will no longer be
a probability since we can not guarantee that it will be normal-
ized. To assure proper normalization, we can proceed asfollows.
Define

-1

Qi(y,z) = Q(nullly,z) > y[i] yali+1,]] (14)

=0

where the termsin the sum are those obtained after thresholding,
if any. Further let S; = {y,z : Qi(y,z) > 0}. Then

EQy,

y,mES

P_(wi+1|w0aw1aw2a"'awl = wl|y’)

(15

7Infact, exactly j — 4 adjoint moves and j — 4 null moves are needed
to construct a binary tree spanning [z, 5].

isaproper probability with

K = Z Qu(y,)

Y, zES]

8. TRAINING

It follows from Section 3 that the statistical parameters spec-
ifying the SLM are the predictor probabilities P(v|z,y) and
the constructor probabilities Q(a|z,y), v,z,y € V, a €
{left, right, null}. As usua, we would like to choose these
parameters by an appropriate maximum likelihood procedure ap-
plied to data. In principle, it would be possible to proceed anal o-
gously to the inside — outside algorithm for probabilistic context
free grammars [9]. The recursion (10) of Section 5 already cor-
responds to the inside algorithm and we could develop an out-
side analogue as well. However, such are-estimation would be
extremely costly.

The simplest way to proceed would be by Viterbi training

based on finding the most probable parse'T of the sentence W.
Since given any parse T thereis a unique sequence of predictor
and constructor actions that achieves it (see Section 3), such re-
estimation would simply consist of re-normalization of counts of

predictor and constructor actions found in the parsesT(:) that
correspond to the sentences W (z), ¢ = 1, 2,..., K making up
the training corpus. Of course, initial statistics would be derived
from parses present in some convenient treebank.[10],[11]

For the sake of brevity we now state without proof the ba-
sic recursion of the Viterbi algorithm® Let zy'[i, 5] denote the
probability, given that z isthe last exposed headword and w; is
generated, of the most probable sequence of movesthat generate
the words w;+1 ..., w; with y becoming the headword of the
phrase w;, wit1 ..., w;. Thenwehavefor 1 <i<j<n+1

that
zy'[i, j] =
L .7 .7l7 b R .7 .)lﬁ
max{’e{li%aixl},z (:,0,2) et S1ho g U)}
where
L(‘Mj? l7 Z) =
y'[i,] P (wigalz, y) y2'[l+1,5] Qleft]y, 2)
(7.]7 l7 v) =

2ol [i, 1] P* (wit1|z,v) vy'[l + 1,] Q(right|v,y)

with the boundary conditions
zy'[i, 5] = 0if & ¢ {wo, ...
and

i [1 for z € {wo, ...
zy'[,J] = { 0 otherwise

swi—i1ory ¢ {w;,. ..

yWj—1},Y = wj

The probability of T will be given by
P(T,W) = wowlﬂ[l,n +1]

Obvioudly, thetree T itself can be obtained by aback-trace of

relations (16) starting from the apex of T.
It would be better to base the parameter estimation on more
than one parse per training sentence, for instance on the L most

probable parses T, . .., T~. In such acase we would weigh the
predictor and constructor counter contri butions correspondi ng to

the parse T by the probability P T W /Zy L P(T , W).

8 Compare to the development of (9) in Section 5.

,wjlori > j

The agorithm obtaining the L—best parsesis computationally
quite expensive. An aternative would be to obtain the Viterbi
parse T* by the recursion (16), and the remaining L — 1 parses
by sampling (with replacement) the parses contained in the chart
corresponding to the recursion (10). Such sampling would be
carried out top—down. For instance, we see from (10) that a span
designated by zy[s, 5] is “made up” either of spans zy[i,!] and
yz[l + 1, j] or of spans zv[i,!] and vy[l + 1, j]. The sampler
would then choose the first span with a probability proportional
to P* (wl+1|xa y) le[i, l] yz[l +]-aj] Q(left|ya Z), efc.

9. SMOOTHING AND PARAMETRIZATION

The basic SLM described in Section 3 involves lexical head-
words of phrases that have not been annotated by either non-
terminals or parts-of-speech. This presents a problem when
estimates of P(w|h—1,h—2) and Q(alh—1,h_2) derived from
(necessarily sparse) training data are needed during operation on
test data.. The parameter space of these probabilitiesis just too
large. One could try to use standard linear smoothing formulas

P(wlh—1,h—2) = >\3f(w|h—1,h—2)+>\2f(w|h—1)+>\1f((118
and

Q(wlh-1,h—2) =vsf(alh-1,h—2) +v2f(alh-1) + Ulf((f%
to overcome the problem. But formula (17) is particularly
problematic: intuition would tell us that the choice of a €
{left, right, null} should depend on both A_; and h_,!

Besides, the partial parse T; surely carries alot of grammat-
ica information that could be taken advantage of. Therefore,
the parser should annotate all of its headwords so that in for-
mulas (16) and (17) h = (v,t) where v € V (the vocabu-
lary) and t € N (the set of non-terminals that includes parts
of speech), and a = (e, t) with @ € {left, right, null} and
t € N. This means that in addition to a constructor and predic-
tor, the operation of an SLM must include a taggerwhich tags
thejust predicted words w; by parts of speech ¢ with probability
R(t|w, hfl, hfz).

The addition of non-terminal annotation then allows us to re-
place (17) by the much more sensible (for instance)

Q(wlh-1,h—2) =vsf(alh—1,h—2)+vaf(alt—1,t2)+v1f(a)

Naturally, the smoothing formula (16) can also be adjusted, at
least by

P(wlh—1,h—2) = (18)

Nof(wlhr,h2) + Xa f(wlho) + Aaf (wlv_1) + A f(w)

Even with the addition of non-terminal annotation, the proper
parametrization of the SLM remains a subject of research. The
constructor in particular could benefit from more information
about the current partial parse T;.° So h_3 might be useful,
oratleastt_s.

The information extracted from T; might be made even more
comprehensive if we took advantage of the maximum entropy
estimation paradigm [2]. We have had some success with such
an approach already [13].

10. PRELIMINARY RESULTS

We have tested the SLM on the Wall Street Journal and Switch-
board tasks [5],[12]. Compared to the state-of-the-art trigram
language model, the SLM has a lower perplexity by 15% and
5%, respectively. It lowers the recognition error rate (WER) by
1% and 1% absolute, respectively. We are about to carry out
experiments on the Broadcast News task.

Because the average sentence length of the Switchboard task
is 7 words, the SLM is not really suitable for it.

91f the SLM is to remain alanguage model, the left-to-right develop-
ment must be strictly adhered to.

(1
(2

(3]

(4]

(9]

(6]
(7

(8]

(9

[10]

[11]

[12]

[13]

REFERENCES

F. Jelinek: Statistical methods for speech recognitithl, T
Press, Cambridge, MA, 1998

R. Rosenfeld, “A Maximum Entropy Approach to Statis-
tica Language Modeling,” Computer, Speech and Lan-
guage,vol. 10, 1996

JR. Bellegarda: “A Latent Semantic Analysis Framework
for Large-Span Language Modeling,” Proceedings of Eu-
rospeech 97pp. 1451 - 1454, Rhodes, Greece, 1997

C. Chelba and F. Jelinek: “Exploiting Syntactic Structure
for Language Modeling,” Proceedings of COLING-ACL,
pp. 225-284, Montreal, CA, 1998

C. Chelba and F. Jelinek: “Recognition Performance of a
Structured Language Model,” Proceedings of Eurospeech
99, to appear, College Park, MD, 1999

J. Cocke, unpublished notes

D.H. Younger: “Recognition and Parsing of Context Free
Languages in Time N®,” Information and Contrgl 10,
1967, pp. 198-208

T. Kasami: “An efficient recognition and syntax agorithm
for context-free languages,” Scientific Report AFCRL-65-
758, Air Force Cambridge Research Lab., Bedford MA,
1965

JK. Baker: “Trainable Grammars for Speech Recogni-
tion,” Proceedings of the Spring Conference of the Acous-
tical Society of Americgop. 547-550, Boston MA, 1979

G. Leech and R. Garside: “Running a Grammar Factory:

the Production of Syntactically Analysed Corporaor ' Tree-
banks',” in: Stig Johansson and Anna-Brita Stenstrom: En-
glish Computer Corpora: Selected Papers and Research
Guide Mouton de Gruyter, Berlin, 1991.

M. Marcus, B. Santorini, and M. Marcinkiewicz, “Building
a large annotated corpus of English: the Penn Treebank,”
Computational Linguisticssol. 19, No. 2, 1993.

C. Chelbaand F. Jelinek: “Structured Language Modeling
for Speech Recognition,” Proceedings of NLDB99p ap-
pear, Klagenfurt, Austria, 1999

J. Wu and S. Khudanpur: “Combining Non-local, Syntac-
tic and N-gram dependencies in Language Modeling,” Pro-
ceedings of NLDB99p appear, Klagenfurt, Austria, 1999

