Non-Dependent Types for Standard ML
Modules

Claudio V. Russo

LFCS, Division of Informatics, University of Edinburgh,
JCMB, KB, Mayfield Road, Edinburgh EH9 3JZ
www: http://www.dcs.ed.ac.uk/"cvr, email: cvr@dcs.ed.ac.uk

(funded under a grant from the EPSRC)

Abstract. Two of the distinguishing features of Standard ML Modules
are its term dependent type syntax and the use of type generativity in its
static semantics. From a type-theoretic perspective, the former suggests
that the language involves first-order dependent types, while the latter
has been regarded as an extra-logical device that bears no direct relation
to type-theoretic constructs. We reformulate the existing semantics of
Modules to reveal a purely second-order type theory. In particular, we
show that generativity corresponds precisely to existential quantification
over types and that the remainder of the Modules type structure is based
exclusively on the second-order notions of type parameterisation, univer-
sal type quantification and subtyping. Our account is more direct than
others and has been shown to scale naturally to both higher-order and
first-class modules.

1 Introduction

Standard ML [11] has a rich and influential Modules language. Core language
definitions of type and term identifiers can be packaged together into possibly
nested terms called structures. Access to structure components is by the dot
notation and provides good control of the name space in a large program.

The use of the dot notation to project types from terms suggests that the
type structure of Standard ML is based on first-order dependent types. In this in-
terpretation, proposed in [9] and refined in [2], nested structures are modelled as
dependent pairs whose types are first-order existentially quantified types. Stan-
dard ML functors, that define functions mapping structures to structures, are
modelled using dependent functions whose types are first-order universally quan-
tified types. Adopting first-order dependent types in a programming language is
problematic as it rules out the consistent extension to first-class modules [2] and
violates the phase distinction between compile-time type checking and run-time
evaluation [3]. More recently proposed module calculi [1,4-8] that capture some,
but not all, of the features of Standard ML, and significantly generalise them, re-
sort to non-standard formulations of dependent types. Though appealing, these
calculi have undesirable properties (undecidable subtyping in [1, 8] and the lack
of principal types in [1,4-6,8]).

Core Types un=t type identifier

| u— function type
| int integers
| sp.t type projection
Signature Bodies B :=typet=u;B transparent type specification
| typet;B opaque type specification
| valx:u;B value specification
| structure X:S;B structure specification
| eB empty body
Signature Expressions S ::= sig B end encapsulated body

Fig. 1. Type Syntax of Mini-SML

In this paper, we take a second look at the type structure of Standard ML
Modules by studying a representative toy language, Mini-SML. The static se-
mantics of Mini-SML is based directly on that of Standard ML, but our choice
of notation reveals an underlying type structure that, despite the term depen-
dent type syntax, is based entirely on the simpler, second-order notions of type
parameterisation, universal type quantification and subtyping. What remains to
be explained is the role of type generativity in the semantics, that lends it a
procedural, non type-theoretic flavour by requiring a global state of generated
types to be maintained and updated during type checking. We explain and elim-
inate generativity by presenting an alternative, but equivalent, static semantics
based on the introduction and elimination of second-oder existential types, thus
accounting for all of Mini-SML’s type structure in a purely second-order type
theory.

2 Syntax

Mini-SML includes the essential features of Standard ML Modules but, for pre-
sentation reasons, is constructed on top of a simple Core language of explicitly
typed, monomorphic functions. The author’s thesis [12], on which this paper
is based, presents similar results for a generic Core language that encompasses
ones like Standard ML’s (which supports the definition of parameterised types,
is implicitly typed, and polymorphic). The type and term syntax of Mini-SML
is defined by the grammar in Figures 1 and 2, where t € Typld, x € Valld,
X € Strld, and F € Funld range over disjoint sets of type, value, structure and
functor identifiers.

A core type u may be used to define a type identifier or to specify the type of
a Core value. These are just the types of a simple functional language, extended
with the projection sp.t of a type component from a structure path. A signature
body B is a sequential specification of a structure’s components. A type com-
ponent may be specified transparently, by equating it with a type, or opaquely,
permitting a variety of realisations. Value and structure components are speci-
fied by their type and signature. The specifications in a body are dependent in
that subsequent specifications may refer to previous ones. A signature expression

Core Expressions en=x value identifier
| Ax:u.e function
| ee application
| i integer constant
| sp.x value projection

Structure Paths sp =X structure identifier
| sp.X structure projection

Structure Bodies b= typet =u;b type definition
| datatypet = uwithx,x';b datatype definition
| valx=¢e;b value definition
| structure X = s;b structure definition
| local X = sinb local structure definition
| functor F (X:S) = sinb functor definition
| e empty body

Structure Expressions s ::=sp structure path
| struct b end structure body
| F(s) functor application
| s transparent constraint
| s:> S opaque constraint

Fig. 2. Term Syntax of Mini-SML

S merely encapsulates a body. A structure matches a signature expression if it
provides an implementation for all of the specified components, and possibly
more.

Core expressions e describe a simple functional language extended with the
projection of a value identifier from a structure path. A structure path sp is a
reference to a bound structure identifier or the projection of one of its substruc-
tures. A structure body b is a sequence of definitions: subsequent definitions in
the body may refer to previous ones. A type definition abbreviates a type. A
datatype definition generates a new (recursive) type with value constructor x and
value destructor x'. Value, structure and local definitions bind term identifiers
to the values of expressions. A functor definition introduces a named function on
structures: X is the functor’s formal argument, S specifies the argument’s type,
and s is the functor’s body that may refer to X. The functor may be applied
to any argument that matches S. A structure expression s evaluates to a struc-
ture. It may be a path or an encapsulated structure body, whose type, value and
structure definitions become the components of the structure. The application
of a functor evaluates its body with respect to the value of the actual argument,
generating any new types created by the body. A transparent constraint restricts
the visibility of the structure’s components to those specified in the signature,
which the structure must match, but preserves the realisations of type compo-
nents with opaque specifications. An opaque constraint is similar, but generates
new, and thus abstract, types for type components with opaque specifications.

Standard ML only permits functor definitions in the top-level syntax. Mini-
SML allows local functor definitions in structure bodies, which can now serve as
the top-level: this generalisation avoids the need for a separate top-level syntax.

a€ Var & {a,8,0,7,...} type variables

M ,N,P,Q € VarSet f Fin(Var) sets of type variables

u € Type == « type variable

| w— v function space

| int integers

¢ € Real 4 Yar 33 Type realisations
S:U | St € Typld 3 Type,

S € Str def SxU |8, € Valld fig Type, semantic structures

SX | Sx € Strld 3 sty

L € Sig := AP.S semantic signatures

X € EzStr .= 3P.S existential structures

F € Fun :=VP.S - X semantic functors

¢, u |Ct € Typld i Type,
CxU |Cx € Valld 3 Type,
CxU |¢x e Strld 3 Str,
Cr Cr € Funld 5 Fun

C € Context def semantic contexts

Fig. 3. Semantic Objects of Mini-SML

3 Semantic Objects

Following Standard ML [11], the static semantics of Mini-SML distinguishes
between the syntactic types of the language and their semantic counterparts
called semantic objects. Semantic objects play the role of types in the static
semantics. Figure 3 defines the semantic objects of Mini-SML. We let O range
over all semantic objects.

Notation: For sets A and B, Fin(A) denotes the set of finite subsets of A,

and A B B denotes the set of finite maps from A to B. Let f and g be finite

maps. D(f) denotes the domain of definition of f. The finite map f + g has
def

domain D(f) U D(g) and values (f + g)(a) = if a € D(g) then g(a) else f(a).

Type variables a € Var are just variables ranging over semantic types u €
Type. The latter are the semantic counterparts of syntactic core types, and
are used to record the denotations of type identifiers and the types of value
identifiers.

A realisation ¢ € Real maps type variables to semantic types and defines
a substitution on type variables in the usual way. The operation of applying a
realisation ¢ to an object O is written ¢ (O).

Semantic structures S € Str are used as the types of structure identifiers and
paths. A semantic structure maps type components to the types they denote,
and value and structure components to the types they inhabit. For clarity, we

define the extension functions t & u, S % {t—u}+S,x:u,S def {x—u}+S,
and X : S, S’ def {X+— S8} + 8, and let €s denote the empty structure ().

Note that A, 3 and V bind finite sets of type variables.

A semantic signature AP.S is a parameterised type: it describes the family
of structures ¢ (S), for ¢ a realisation of the parameters in P.

The ezistential structure 3P.S, on the other hand, is a quantified type: vari-
ables in P are existentially quantified in § and thus abstract.

A semantic functor VP.S — X describes the type of a functor identifier: the
universally quantified variables in P are bound simultaneously in the functor’s
domain, S, and its range, X'. These variables capture the type components of the
domain on which the functor behaves polymorphically; their possible occurrence
in the range caters for the propagation of type identities from the functor’s
actual argument: functors are polymorphic functions on structures. The range
X of a functor is an existential structure X = 3Q.S’. @ is the functor’s set of
generative type variables, as described in the Definition of Standard ML [11].
When a functor with this range is applied, the type of the result is a variant of
S', obtained by replacing variables in @ with new, generative variables.

The Definition of Standard ML [11] is decidedly non-committal in its choice
of binding operators, using the uniform notation of parenthesised variable sets
to indicate binding in semantic objects. We prefer to differentiate binders with
the more suggestive notation A, V and 3.

A context C is finite map mapping type identifiers to the semantic types they

denote, and value, structure and functor identifiers to the types they inhabit.

For clarity, we define the extension functions C,t> u ey {t—u},C,x:u def

CHixmu}, 0, X: St (xS}, and C,F: F ¥ C+ {F s 7).

We let V(O) denote the set of variables occurring free in O, where the notions
of free and bound variable are defined as usual. Furthermore, we identify seman-
tic objects that differ only in a renaming of bound type variables (a-conversion).

The operation of applying a realisation to a type (substitution) is extended
to all semantic objects in the usual way, taking care to avoid the capture of free
variables by bound variables.

Definition 1 (Enrichment Relation) Given two structures S and S', S en-
riches §', written S = S', if and only if

- D(S) 2 D(S),

— for allt € D(S'), S(t) = S'(t),

— for allx € D(S"), S(x) =S'(x), and

— for all X € D(S'), S(X) = §'(X).

Enrichment is a pre-order that defines a subtyping relation on semantic struc-
tures (i.e. S is a subtype of S’ if and only if S = §').

Definition 2 (Functor Instantiation) A semantic functor VP.S — X in-
stantiates to a functor instance 8" — X', written VP.S - X > 8 — X', if and
only if p(S) =S8" and p (X) = X', for some realisation ¢ with D(p) = P.

Definition 3 (Signature Matching) A semantic structure S matches a sig-
nature AP.S" if and only if there exists a realisation ¢ with D(p) = P such that
Sz e(S).

t € D(C) Chubu ChHu b
CHt>C(t) Cru—upu—u Crintpint

Cksp:S teD(S)
CFspt>S(t) (1)
Cruvu CitpubBpAP.S t¢D(S) PNV(u) =0

Chubu

CFBpL Cktypet=u;B>AP.t>u,S
ad V() C,trat-BpAP.S t¢D(S) a¢P
CFtypet;B> A{a}UP.t>a,S (2)

Cruvu Cx:ubBpAP.S x¢€D(S) PNV(u)=10
Ckvalx:u;BpAPx:u,S
CFS>APS PNVIC)=0 C,X:SFBpAQS XgDIS') Qn(PUVS)=0
CF structure X : S;BrAPUQ.X: 8,8

Chenv Ales
C-FBr L
CrsigBend> L
x € D(C) Chuvu Cx:ute:v (Cre:u su CHe :u
Chx:C(x) CHXx:ue:u— Chee :u
Cksp:S§ xe€D(S)
Chki:int Ctspx:S8(x)

XeD(lC) Crsp:S XeD(S)
CFrX:C(X) CrspX:SX)

Cksp:S

Fig. 4. Common Denotation and Classification Judgements

4 Static Semantics

In this section we introduce two distinct static semantics for structure bodies
and structure expressions. The systems rely on shared judgement forms relating
Core types, signature bodies and signature expressions to their denotations, and
Core expressions and structure paths to their types. The common judgements
are shown in Figure 4. We can factor out these judgements because they do not
generate any new free variables in their conclusions. Observe that the opaque
type specifications in a signature expression give rise to the type parameters of
the semantic signature it denotes (Rule 2).

4.1 Generative Semantics

Figure 5 presents a static semantics for structure bodies and expressions that

employs generative classification judgements in the style of Standard ML [11].
Consider the form of the judgements C,N F b :S = M and C,N F s :

S = M. The set of variables N is meant to capture a superset of the variables

Cruvu Citpu,NFb:S=M
C,Nl—b:8:>M‘ C,NFtypet=ub:t>u,S=M

ag N Citpalkupu
Citra,x:u—>a,x :a—su,NU{a}bb:8=>M

C,N I datatypet = u withx,x;b: (tba,x:u = a,x :a—=4,8) = {a}UM (3)
Cke:u Cx:u,NFb:S=M
C,NFvalx=e;b:x:u,S§ =M

C,NFs:S=P CX:S§NUPFbL:S8 =Q

C,N Fstructure X = sb:X:8,8'=PUQ (4)

CCN+s:S=P CX:§NUPFbL:S8 = Q
C,NFlocalX = sinb:8" = PUQ

C-SpAPS PAN=0 CX:S8§NUPkFs:S8 =Q
C,F:YP.S§ 53Q8',NFb:8" =M

C,N Ffunctor F (X:S) = sinb: 8" = M

C,NFep:ies=10
Cksp:S§ CCNFb:S=>=M
C,Nksp:S=10 C,N Fstructbend: S = M
CCNEs:S=P CF)>S8 —-3Q8" §=8 QnNn(NUP)=10
C,NFF(s):8"=>PuUQ (5)
C,NFs:S=P CFS>AQR.S" S>¢(S) Dlp) =@
C,Nks:S:p(8)=P
C,NFs:S=P CFSpAQ.S S=¢(S) D) =Q QNN=40
C,NFs:>S5:8=Q (6)

QMFaS:N‘

Fig. 5. Generative Classification Judgements

generated so far. Classification produces, besides the semantic object S, the set
of variables M generated during the classification of the phrase b or s. The vari-
able sets are threaded through classification trees in a global, state-like manner.
This avoids any unsafe confusion of existing variables with the fresh variables
generated by datatype definitions (Rule 3), functor applications (Rule 5), and
opaque constraints (Rule 6). The generative nature of classification is expressed
by the following property:

Property 1 (Generativity) IfC,N+b/s = S, M then NN M = (.1

Note that the sets of generated variables are not redundant. Suppose we
deleted them from the classification judgements and replaced occurrences of N
by V(C), so that variables are generated to be fresh with respect to just the
current context instead of the state.

! When P is a predicate, we use the abbreviation P(b/s) to mean P(b) and P(s).

For a counterexample, consider the following phrase:

structure X = struct datatype t = int with x,y end;
structure Y = struct structure X = struct end;
datatype u = int — int with x|y’
end;

)

valz = (Y.y' (X.x1))2

This phrase is unsound because the definition of z leads to the sad attempt
of applying 1 to 2. The phrase should be rejected by a sound static semantics.

In the putatively simpler, state-less semantics, we only require that the type
variables chosen for t and u are distinct from the variables free in the context of
their respective definitions. The annotated phrase shows what can go wrong:

0 0

[structure X = struct [datatype t, = int with x,y end;
{a} {a}

[structure Y = struct [structure X = struct end;

0
[datatype u, = int — int with x',y’
end;
{a}
[val z = (Y.¥', Lint—int (X Xint—a Da)ing—ing 2

Assuming an initially empty context, we have annotated the beginning of
each structure body b with the set N of variables free in the local context, using

N

the notation [b, the defining occurrences of t and u are decorated with their
denotations, and key subphrases with their types. The problem is that t and u
are assigned the same type variable a, even though they must be distinguished.
The problem arises because «, already set aside for t, no longer occurs free in
the local context at the definition of u: the free occurrence is eclipsed by the
shadow of the second definition of X. Thus the semantics may again choose «
to represent u, and incorrectly accept the definition of z.

The generative semantics that uses a state maintains soundness as follows:

0 0 {a}
J structure X = struct | datatype t, = int with x,y? end;
{a} {a}
J structure Y = struct | structure X = struct end;
{a} {8}
| datatype ug = int — int with x', y'1
end;
{a.8} ,
lvalz=(Y.y B—int—int (X Xintsa 1)a) 2

Assuming an initially empty context and state, we have indicated, at the
beginning of each structure body b, the state N of variables generated so far,

and, at its end, the variables M generated during its classification. We use the
N M
notation | b 1, corresponding to a classification ..., N Fb: ... = M. Observe

that generated variables are accumulated in the state as we traverse the phrase.

At the definition of u, «a is recorded in the state, even though it no longer occurs
free in the current context, forcing the choice of a distinct variable 3. In turn,
this leads to the detection of the type violation, which is underlined.

These observations motivate:

Definition 4 (Rigidity) C is rigid w.r.t. N, written C, N rigid, if and only if
V(C) C N.

As long as we start with C, N rigid, as a consequence of Property 1, those
variables in M resulting from the classification of b and s will never be confused
with variables visible in the context, even if these are temporarily hidden by
bindings added to C during sub-classifications.

A similar example motivates the generativity of functor application. Consider
this unsound phrase that applies 1 to 2 in the definition of z:

functor F(X: sig type t end) = struct datatype u = X.t with x,y end
in

structure Y = F((struct type t = int end));

structure Z = F((struct type t = int — int end));

valz = (Z.y (Y.x1))2

In a semantics with non-generative functors, we would simply add the vari-
ables returned by a functor’s body to the state at the functor’s definition, omit-
ting the generation of fresh variables each time it is applied. Then each applica-
tion of the functor would return the same generative types. In our example, this
means that the types Y.u and Z.u would be identified, allowing the unsound
definition of z to be accepted. In the generative semantics, each application of
F returns new types, so that Y.u and Z.u are distinguished and the definition
of z is correctly rejected. Observe that the definition of u depends on the func-
tor argument’s opaque type component t, whose realisation can vary with each
application of F. The non-generative semantics for functors is unsound because
it does not take account of this dependency; the generative semantics does.

4.2 Type-Theoretic Semantics

To a type theorist, the generative judgements appear odd. The intrusion of the
state imposes a procedural ordering on the premises of the generative rules that
is in contrast with the declarative, compositional formulation of typing rules in
Type Theory. The fact that the type of the term may contain “new” free type
variables, that do not occur free in the context, is peculiar (conventional type
theories enjoy the free variable property: the type of a term is closed with re-
spect to the variables occurring free in the context). Perhaps for this reason,
generativity has developed its own mystique and its own terminology. In Stan-
dard ML [11], type variables are called “type names” to stress their persistent,
generative nature. Generativity is often presented as an extra-logical device, use-
ful for programming language type systems, but distinct from more traditional

Chuvu C,trpubb:3IP.S PNV(u)=0
Cktypet=uwb:3Pt>u,S

a g V(C) C,it>babuvu
Ctra,x:u—a,x ta—=ukFb:3IP.S" PNn{a}UV(u)=0

CF datatypet = u withx,x;b:3{a}UP.(tba,x:u = a,x :a— u,8") (7)
Cre:u Cx:ubb:3P.S PNV(u)=0
Ckvalx=eb:3Px:u,S

Chks:3PS PAVC) =0 C,X:85+b:3Q.8 QN(PUVS)) =0

CF structure X = s;b:IPUQRX:S,S’ (8)
CFs:3P.8 PNV =0 CX:SFb:3Q.8 QNP=0
CrlocalX = sinb:3PU Q.S (9)

CHS>AP.S PNV(C)=0 CX:SFs:X
C,F:YP.S— Xtb:X

Crfunctor F (X:S) = sinb: &’ (10)

CFep:I.es

Cf-:;ipﬂ(fs Cl-stfuit?l;jnd:)(
Cks:3P.S PNVECE)=0 CF)>S —-3Q.8" §=8 QnP=10
CHF(s):3PUQ.S"

Cks:3P.S CFS»AQS PAV(AQS) =0 S>¢(S) D(p)=Q
Cks:S:3P.¢(8)

Cks:3P.8 CFS»AQ.S" PNV(AQR.S)=0 S=¢(S) Dlp) =@
Cks:>S5:3Q.8

Fig. 6. Type-Theoretic Classification Judgements

type-theoretic constructs. In this section, we show how to replace the generative
judgments by more declarative, type-theoretic ones.

Figure 6 presents an alternative static semantics for structure bodies and
expressions, defined by the judgements C - b : X and C F s : X. Rather than
maintaining a global state of variables threaded through classifications, we clas-
sify structure bodies and expressions using ezistential structures.

The key idea is to replace global generativity with the introduction and elim-
ination of existential types — in essence: local generativity. In the rules, the side
conditions on bound variables prevent capture of free variables in the usual way.
Because they are bound, the variables can always be renamed to satisfy the side
conditions. For intuition, we explain some of the rules:

(datatype t = u with x,x’;b): The denotation of u is determined in the
context extended with the recursive assumption that t denotes a, where « is a
hypothetical type represented by a variable that is fresh for C. This determines

the types of the constructor x and the destructor x’ that are added to the con-
text before classifying the body b. Provided b has existential structure 3P.S,
which may contain occurrences of a, we conceptually eliminate the existential
quantification over S, introducing the hypothetical types P, extend the record
of components t, x and x’ by S and then existentially quantify over both the
hypothetical type a and the hypothetical types P we just introduced.

(structure X = s;b): Provided s has existential structure 3P.S, we elimi-
nate the existential, introducing the hypothetical types P, and classify b in the
context extended with the assumption X : S to obtain the existential structure
3Q.S’ of b. Now 3Q.S’ may contain some of the hypothetical types in P that
should not escape their scope. We eliminate this existential, extend the compo-
nent X : S by &’ and existentially quantify over the hypothetical types P U Q.

(functor F (X : S) = sin b): The signature expression S denotes a family of
semantic structures, AP.S. For every ¢ with D(¢) = P, F should be applicable
at any enrichment, i.e. subtype, of ¢ (S). To this end, we classify the body s of
F in the context extended with the assumption X : S. By requiring that P is
a locally fresh choice of type variables, we know that S is a generic structure
matching AP.S, and that variables in P act as formal type parameters during
the classification of the body. Classifying s yields an existential structure X’ that
may contain occurrences of the parameters P. If this succeeds for a generic choice
of parameters, it will also succeed for any realisation of these parameters®. We
discharge the type parameters by universal quantification over P and add the
assumption that F has the polymorphic type VP.S — & to the context. The
scope b of the functor definition determines the type X’ of the entire phrase.

(F(s)): Provided s has existential structure 3P.S, we locally eliminate the
quantifier and choose an appropriate instance S’ — 3Q.S’ of the functor’s type.
This step corresponds to eliminating the functor’s polymorphism by choosing a
realisation ¢ of its type parameters. The functor may applied if the actual argu-
ment’s type S enriches the instance’s domain &', i.e. provided S is a subtype of
S'. The range 3Q.S" of the instance determines the type of the application, and
may propagate some of the hypothetical types in P via the implicit realisation
. To prevent these from escaping their scope, we abstract them by extending
the existential quantification over 8" to cover both P and Q.

(s : S): Provided s has existential type IP.S and S denotes, we first eliminate
the existential quantification and then check that & matches the denotation
of S. The denotation AQ.S" describes a family of semantic structures and the
requirement is that the type S of the structure expression is a subtype of some
member ¢ (S') of this family. Since ¢ is applied to S’ in the conclusion 3P . (S'),
the actual denotations of type components that have opaque specifications in S
are preserved: however, the visibility of some components of s may be curtailed.
The realised structure ¢ (S’) may mention hypothetical types in P. Existentially
quantifying over P prevents them from escaping their scope.

2 (it can be shown that derivations are closed under realisation, hence for any ¢ with
domain P, because C,X : S Fs: X we also know that ¢ ((C,X:S8)) Fs: ¢ (X) and
this is equivalent to C, X : ¢ (§) Fs: ¢ (X), since PNV(C) =0)

(s :> S): We proceed as in the previous case, but the type of s :> S is
3Q.S’, not IP.¢ (S’). Introducing the existential quantification over @ hides
the realisation, rendering type components specified opaquely in S abstract.

Before we can state our main result we shall need one last concept:

Definition 5 (Ground Functors and Contexts) A semantic functor F =
VP.S — X is ground, written - F Gnd if and only if P C V(S). A context C is
ground, written - C Gnd, precisely when all the semantic functors in its range
are ground.

The ground property of a semantic functor F ensures that whenever we apply
a functor of this type, the free variables of the range are either propagated from
the actual argument, or were already free in F. With this observation one can
prove the following free variable lemma:

Lemma 1 (Free Vars) If+ C Gnd then C Fb/s: X implies V(X) C V(C).

Note that the ground property of contexts is preserved as an invariant of the
classification rules. We only need to impose it when reasoning about classifica-
tions derived with respect to an arbitrary context, which might be non-ground.

We can revisit the example of Section 4.1 to demonstrate how our alternative
semantics maintains soundness, without relying on a global state of generated

type variables. Assume the initial context is empty. We indicate the existential
X

types of the defining structure expressions using the notation [s, and the types
of the identifiers X and Y in the context using the notation | X. We also indicate

S
the type variables chosen to represent t and u at their point of definition:

F{a}.(tba,x:int—a,y:a—int)
structure | X = [struct datatype t, = int with x,y end;
(t>a,x:int—a,y:a—int)
IH{a}.(Xies,upa,x':(int—int) »a,y :a—int—int)
structure | Y = [struct structure X = struct end;
(X:es,upf,x":(int—int)— 3,y : 3 —int—int)
datatype u, = int — int with x',y’

end;

valz = (Y'ylﬁ—>int—>int (X-Xint—m l)a) 2

The existential type of the structure expression defining X is:
Hal.(tra,x:int - a,y : @ — int).

Since « is fresh for the empty context, we can eliminate this existential quantifier
directly so that, after the definition of X, the context of Y contains a free
occurrence of a. As in the unsound state-less semantics discussed in Section 4.1,
we are free to re-use a to represent u at the definition of u, because a no longer
occurs in the context after the second definition of X. However, inspecting the
existential type,

X =3{a}.X:es,uba,x' : (int — int) - a,y’ : @ — int — int),

of the structure expression defining Y, we can see that this variable is dis-
tinguished from the free occurrence of a in the context by the fact that it is
existentially bound. Before we can extend the context with the type of Y, we
need to eliminate this existential quantifier. The first side-condition of Rule 8
requires that we avoid capturing the free occurrence of « in the context of Y.
To do this, it is necessary to choose a renaming of X', in this case

HB}.(X :es,ur B,x": (int — int) —» 8,y’ : 8 — int — int),

for a variable 3 that is locally fresh for the context of Y, and, in particular, dis-
tinct from a.. After eliminating the renamed quantifier and extending the context
with the type of Y, the abstract types X.t and Y.u are correctly distinguished
by a and [, catching the underlined type violation in the definition of z.

5 Main Result

Having defined our systems, we can now state the main result of the paper:
Theorem 1 (Main Result) Provided - C Gnd and C, N rigid:

Completeness IfC,N+Fb/s = S, M then C+b/s:3IM.S.
Soundness IfC + b/s : X then there exist S and M such that C,N F b/s =
S, M with X = IM.S.

An operational view of the systems in Figures 5 and 6 is that we have re-
placed the notion of global generativity by local generativity and the ability
to rename bound variables when necessary. The proof of completeness is easy
because a variable that is globally fresh will certainly be locally fresh, enabling
a straightforward construction of a corresponding state-less derivation.

Proof (Completeness). By strong induction on the generative classification rules.
We only describe the case for structure definitions, the others are similar:

Assume premises C,NFs:S= P (i),(,X:S,NUPFb:8 = Q (i)
and induction hypotheses +C Gnd D C, N rigid DCtFs:3P.S (iii) and
FC,X:8Gnd>C,X:8,NUPrigid>C,X:SFb:3Q.8 (iv). Suppose
F C Gnd (v) and C, N rigid (vi). Now by induction hypothesis (iii) on (v) and
(vi) we obtain C Fs:3P.S (vii). Property 1 of (i), together with (vi), ensures
that P NV(C) = 0 (viii). Clearly (v) extends to + C,X : § Gnd (ix). Lemma 1 on
(v) and (vii) ensures V(3P.S) C V(C). It follows from (vi) that V(S) C N U P (x)
and consequently (C,X:S8), N U P rigid (xi). Applying induction hypothesis
(iv) to (ix) and (xi) yields C,X : S Fb:3Q.S" (xii). Property 1 of (ii) ensures
QN (N U P) =0 which, together with (x), entails QN (PUV(S)) =0 (xiii).
Rule 8 on (vii), (viii), (xii) and (xiii) derives the desired result
Ct structure X = s;b:3PUQRX:S,S .

In the complete proof, Property 1 and Lemma 1 conspire to ensure the side
conditions on existentially bound variables and hence that implicit renamings of
these variables are never required.

5.1 Soundness

Soundness is more difficult to prove, because the state-less rules in Figure 6 only
requires sub derivations to hold for particular choices of locally fresh variables. A
variable may be locally fresh without being globally fresh, foiling naive attempts
to construct a generative derivation from a state-less derivation.

To address this problem, we introduce a modified formulation of the state-
less classification judgements with the judgement forms CH b: X andCFH' s: X
that have similar rules but with stronger premises. Instead of requiring premises
to hold for particular choices of fresh variables, the modified rules require them
to hold for every choice of variables. To express these rules, we define the concept
of a renaming m € Var fin Type that is similar to a realisation, but simply maps
type variables to type variables. The operation of applying a renaming to a
semantic object O, written 7(Q), is extended to all semantics objects in a way
that avoids the capture of free variables by bound variables. For instance, the
modified version of Rule 8 receives a stronger second premise:

CHs:3P.S VYVaD(r)=P2OC,X:n{S)FH b:7(3Q.8"Y QN (PUV(S)) =0
CFH structure X = g;b:3PUQR.X:S,S

Similar changes are required to Rules 7, 9 and 10 that extend the context with ob-
jects containing locally fresh variables. The generalised premises make it easy to
construct a generative derivation from the derivation of a generalised judgement.
Although these rules are not finitely branching, the judgements are well-founded
and amenable to inductive arguments. This technique is adapted from [10].

Our proof strategy is to first show that any derivation of a state-less judge-
ment gives rise to a corresponding derivation of a generalised judgement:

Lemma 2 If+C Gnd and C+b/s: X thenCH b/s: X.

We then show that any derivation of a generalised judgement gives rise to a
corresponding generative derivation:

Lemma 3 IfFC Gnd and C ' b/s: X then, for any N satisfying C, N rigid,
there exist S and M such that C, N +b/s =S, M, with X =3IM.S.

The proofs require stronger induction hypotheses and are technically in-
volved. Further details can be found in the author’s thesis [12].

6 Contribution

Theorem 1 is an equivalence result, but we propose that the state-less semantics
provides a better conceptual understanding of the type structure of Standard ML.

The core type phrase sp.t, which introduces a dependency of Mini-SML’s type
syntax on its term syntax, suggests that Mini-SML’s type structure is based on
first-order dependent types. However, arguing from our semantics, we can show
that first-order dependent types play no role in the semantics.

Compare the syntactic types of Mini-SML with their semantics counterparts,
the semantic objects that are used to classify Mini-SML terms. Where type
phrases allow occurrences of type identifiers and term dependent projections
sp.t, semantic types instead allow occurrences of type variables o € Var. Type
variables range over semantic types and are thus second-order variables. While
the component specifications of a signature expression are dependent, in that
subsequent specifications can refer to term identifiers specified previously in the
body, the body of a semantic signature is just an unordered finite map, with
no dependency between its components: the identifiers in a semantic structure,
like the field names of record types, do not have scope. Thus there is a clear
distinction between syntactic types and semantics objects: where syntactic types
have first-order dependencies on term identifiers, semantic types have second-
order dependencies on type variables.

The reduction of first-order to second-order dependencies is achieved by Mini-
SML’s denotation judgements. In particular, the denotation of the term depen-
dent type sp.t is determined by the type, not the value, of the term sp. In
conjunction with Rule 2, that assigns type variables to opaque type specifica-
tions, Rule 1 reduces the first-order dependencies of syntactic types on terms to
second-order dependencies of semantic types on type variables.

We can illustrate this reduction by comparing the following signature expres-
sion with its denotation:

sig structure X : sig type t
end;

structure Y : sig type u; Ma, B} (X2 (tra),

typev=X.t > u Y (ue B,
vba —),
end; ta—a—f)
valy: X.t - Y.v Y-

end

The opaque types t and u are represented by type variables o and 3; the depen-
dency on the terms X and Y in the specifications of v and y have disappeared.

As another example, let S be the above signature expression and consider
the following functor and its type:

functor F(Z : S) = V{aaﬂ}-% Et ch)
struct type w = Z.X.t - Z.Y.v; : u[> ’_) 8)
valz = Z.y vVba)

y:ia—a—f)

= . (wpa > a— g,
z:a—a—f)

F returns the type w whose definition depends on the term argument Z. In the

semantic object, this first-order dependency has been eliminated, in favour of a

second-order dependency on the functor’s type parameters a and f.

Our choice of binding notation and the reformulation of the generative classi-
fication rules further underline the fact that Mini-SML, and thus Standard ML, is
based on a purely second-order type theory. In this interpretation, signatures are
types parameterised on type variables, functor are polymorphic functions whose

end

types have universally quantified type variables, and structure expressions have
types with existentially quantified type variables. A universal quantifier is ex-
plicitly introduced when a functor is defined and silently eliminated when it is
applied. An existential quantifier is explicitly introduced by a datatype definition
or an opaque signature constraint, and silently eliminated and re-introduced at
other points in the semantics. Allowing a functor’s actual argument and a con-
straint’s structure expression to have a richer type is an appeal to subtyping
that can easily be factored into a separate subsumption rule as in traditional
formalisations of subtyping in Type Theory. We have not done this to keep the
classification rules syntax directed: this avoids admitting non-principal classifi-
cations and simplifies the statement and proof of soundness.

The style of semantics presented here scales naturally to both higher-order
and first-class modules [12]. The higher-order extension is competive with, though
subtly different from, the calculi of [1, 5, 6, 8]. Where these caculi have the advan-
tage of syntactic types, ours has the advantage of enjoying principal types. The
extension to first-class modules, which requires just three new Core constructs
to specify, introduce and eliminate first-class module types, has a decidable type
checking problem, unlike [1,8]. Both extensions are compatible with ML-style
type inference for the Core.

Acknowledgements: Many thanks to Don Sannella and Healfdene Goguen.

References

1. R. Harper, M. Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In 21st ACM Symp. Principles of Prog. Lang., 1994.

2. R. Harper, J. C. Mitchell. On the type structure of Standard ML. In ACM Trans.
Prog. Lang. Syst., volume 15(2), pages 211-252, 1993.

3. R. Harper, J. C. Mitchell, E. Moggi. Higher-order modules and the phase dis-
tinction. T. R. ECS-LFCS-90-112, Department of Computer Science, University of
Edinburgh, 1990.

4. R. Harper, C. Stone. An Interpretation of Standard ML in Type Theory. T. R.
CMU-CS-97-147, School of Computer Science,Carnegie Mellon University, 1997.

5. X. Leroy. Manifest types, modules, and separate compilation. In Proc. 21st Symp.
Principles of Prog. Lang., pages 109-122. ACM Press, 1994.

6. X. Leroy. Applicative functors and fully transparent higher-order modules. In Proc.
22nd Symp. Principles of Prog. Lang., pages 142-153. ACM Press, 1995.

7. X. Leroy. A syntactic theory of type generativity and sharing. Journal of Functional
Programming, 6(5):1—32, 1996.

8. M. Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1997.

9. D. MacQueen. Using dependent types to express modular structure. In 13th ACM
Symp. on Principles of Prog. Lang., 1986.

10. J. McKinna, R. Pollack. Pure Type Sytems formalized. In Proc. Int’l Conf. on
Typed Lambda Calculi and Applications, Utrecht, pages 289-305, 1993.

11. R. Milner, M. Tofte, R. Harper, D. MacQueen. The Definition of Standard ML
(Revised). MIT Press, 1997.

12. C. V. Russo. Types For Modules. PhD Thesis, Laboratory for Foundations of
Computer Science, University of Edinburgh, 1998.

