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We describe SRI’s speaker tracking and detection system in the NIST
1998 Speaker Detection and Tracking Development Evaluation. The sys-
tem is designed for tracking switchboard conversations and uses a two-
speaker and silence hidden Markov model (HMM) with a minimum state
duration constraint and Gaussian mixture model (GMM) state distribu-
tions adapted from a single gender- and handset-independent imposter
model distribution. Speaker tracking is used to segment waveforms for
speaker detection, which is carried out by averaging frame scores of the
Viterbi path and normalizing for handset variation via a novel parameter
interpolation extension of HNORM for use with waveform segments of ar-
bitrary lengths. A short-duration penalty to augment the acoustic scores is
also introduced via a nonlinear combination function. Results on the NIST
1998 Speaker Detection and Tracking Development Evaluation dataset are
reported. 02000 Academic Press
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1. INTRODUCTION
—

As speech starts being exploited fully as an information source, multispeaker
tracking and detection systems are increasingly in demand in a wide range
of applications, from indexing and archiving of broadcast news sources to
software robot assistants that track dialogs and supply relevant information.
In this work, we report research on multispeaker tracking and detection by
HMM-based speaker change models, handset normalization, and duration-
based penalties. Most of the material and results in this paper have appeared
in the conference article [3].

An early representative of the work on speaker detection in the presence of
multiple talkers is the Top-N 1 second (1s) segments classification algorithm
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(developed by BBN) in which the best N scoring 1ls segments are selected
and used to compute the detection score. The Top-N approach is a simple
method of computing statistics by filtering out the interfering speech and has
proven to be effective in this capacity for verification of a single talker who
dominates a multiple-talker utterance. However, its simplicity prevents it from
addressing situations where the target speaker has less speech than the other
speaker(s), or where two or more speakers share the utterance period evenly.
More sophisticated approaches include BBN’s subsequent approach in Siu [6]
and Wilcox [7]. In [6], a single Gaussian mixture was used to represent speech
(and another mixture was used to represent the noise). In [7], a single mixture
model and a tied mixture model was used to represent the speakers. Both [6] and
[7] focused on the problem of speaker segmentation without the use of training
data for any speakers.

In this paper, our primary goal is to introduce a speaker tracking and
detection system for two-channel telephone conversations in the case where
training data are available for the target speaker. The conversation is modeled
as a two-speaker and silence hidden Markov model (HMM). A similar model
was used earlier in [7]. In our model, Gaussian mixture model (GMM) state
distributions are adapted from a single gender- and handset-independent
imposter model distribution, and a minimum state duration is imposed.
Speaker tracking is used to segment speakers for detection, which is carried
out by averaging frame scores of the Viterbi path. A second goal of this
work is to develop extensions of handset normalization techniques for single
speaker verification to speaker tracking and multiple speaker verification. For
both tasks, handset effects are mitigated by a novel parameter-interpolation
extension of HNORM [4] for use with waveform segments of arbitrary lengths.
A final goal of the research is to introduce a way to use a short duration penalty
to bias the acoustic scores via a nonlinear score combination function. We test
the effectiveness of the system and normalization techniques and report results
on the NIST 1998 Speaker Detection and Tracking Development Evaluation
dataset.

We begin by introducing the task and the database in Section 2. The speaker
change model is described in Section 3. Section 4 develops the extension of
HNORM for use in speaker tracking and detection and reports its performance.
Likewise, duration penalty to bias the scores is introduced together with
experimental results in Section 5. We summarize our findings in Section 6.

2. TASK AND DATABASE
—

The 1999 NIST Multispeaker detection and tracking task has been detailed in
this issue [2]. Basically, the two-speaker detection task is to determine whether
a specified target talker is speaking during a given segment of conversational
speech between two people, that is, a switchboard call. The tracking task is to
detect those time intervals (if any) during a given segment of speech when a
specified target talker is speaking. An additional task, one-speaker detection, is
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the same detection task on separated switchboard channels, that is, waveforms
containing a single speaker.

The Speaker Detection and Tracking Development Evaluation data had
structure similar to that of the NIST 1999 Multispeaker Detection and Tracking
Evaluation [2]. The training in the Multispeaker development evaluation is
the “two-session” condition where two separate waveforms of 1-min duration
each are supplied as training for a single speaker. These two waveforms have
been recorded in two separate sessions from the same telephone number, and
presumably with the same handset. The models trained (adapted) with these
data are therefore most probably tuned to a single handset type, which makes
handset normalization necessary, as explained in Section 4. The test waveforms
for the two-speaker detection and tracking tasks are 1 min long. The one-
speaker task waveforms may vary between 0 and 60 s depending on the presence
of the specified talker. There are 250 male and 250 female speakers with about
72,000 trials for the two-speaker detection task, 108,000 trials for the one-
speaker detection task, and 4,000 trials for the tracking task.

Performance measures for the task are the ROC and the detection cost
function (DCF), which is basically the Bayes risk with preset miss and false
alarm costs and target and imposter priors. A detailed description of DCF can
be found in this issue [2].

3. SPEAKER CHANGE MODEL
—

Our model of the two-channel telephone conversation consists of an ergodic
HMM (Fig. 1) with three states for modeling turns among talkers on channels
A and B and silence. The state distributions are GMMs with 512 Gaussians.
All the target speaker GMMs are adapted from a single gender- and handset-
independent imposter GMM trained on Switchboard conversations from previ-
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FIG. 1. Ergodic HMM speaker change model with minimum duration constraints.
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ous NIST evaluations [8]. The details of adaptation for speaker verification are
reviewed in this issue by its originators [1]. The silence/nonspeech model has
the same structure as the imposter model and is trained on data segmented by
an energy based speech detector. The talker states have a minimum duration
of 0.3 s. This value has been observed by experiment to be effective for speaker
tracking, an optimal trade-off between robust granularity (longer minimum du-
rations) and noisy fine resolution (shorter or no minimum durations). The loop
probabilities p = ¢ have been estimated on a development set as 0.999 and are
fixed for all target speakers.

For the speaker tracking and multiple speaker detection tasks, initially the
same HMM scoring algorithm is run:

1. Likelihood scores: computation of target, imposter, and silence scores for
each frame

2. Segmentation: Viterbi for best path or forward-backward for posterior
computation

The best path through the ergodic HMM automatically defines a segmentation
by assigning a state for each frame. The posterior scores obtained via the
forward-backward algorithm need to be thresholded to generate a hard decision
for each frame to generate a segmentation. Experiments did not produce an
edge for the more principled approach of computing the posteriors over the
faster Viterbi computation; therefore the results reported are all with Viterbi
segmentation.

For speaker tracking, once the waveform is segmented, likelihood ratios
for each segment are computed from the target and the imposter models.
For multispeaker detection, average of scores from the frames segmented as
target is augmented by statistics of duration to generate a score per test
waveform. Single speaker detection is accomplished with the same GMMs and
imposter model. The performance of the speaker tracking system is tested on
the development dataset and the resulting detection ROC curve is shown in
Fig. 2.

4. HNORM WITH VARIANCE MODELING
—

Handset variation is the single greatest source of error in speaker verification
over telephone channels on databases such as Switchboard. Effective handset
normalization schemes against the vulnerability of current spectral matching
techniques (features such as cepstrum) for speaker verification have been
developed [4, 5]. In this section, we present a generalization of HNORM [4]
useful for speaker tracking and detection with a wide range of waveform
durations.

In the speaker tracking system, all scores are normalized with respect to
handset variation via an extension of HNORM. HNORM is an extension of
ZNORM, in which the mean and the variance of scores of a speaker model on a
set of imposter waveforms with the same handset type are estimated, and then
the scores are ZNORM’ed with the set of parameters fitting the handset type of
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FIG. 2. Tracking detection curve.

the test waveform. For a given speaker model, we denote the scores on a set of
imposter waveforms with handset type « as {S7, S5, ..., S¢ }. Then, the first- and
second-order statistics for the model on handset type « are

1 K

Ha =5 DS (1)
j=1
1 K

02 = e DS —pl. (2)
j=1

HNORM normalizes the score of the waveform i that has the handset type « as
S 3)

Note that Eqgs. (1), (2) assume that the K waveforms are of comparable size.
The standard deviation of the scores will decrease significantly as a function of
the number of frames in the waveform. Let {sk},’{\’:1 denote the frame scores of
a given waveform with a certain model. Assume for a moment that the frame
scores s; are i.i.d. with some distribution function F with mean u¢ and variance
(rg. The overall score is the average of the frame scores:

_S1+"'+S}’l

S 4)
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The mean of the random variable S is equal to that of the s;, i.e., S = o. The
variance of S, however, is given by

No?
2 2 0
I8 = Olsittsn)/N = N2 5)

and is dependent on the number of frames, N. Therefore, if s; were independent,

2
2 %
N)=—, 6
Og (N) N (6)
that is, the variance of the overall score would decrease in inverse proportion
to N, the number of frames used in scoring.
Because of the inherent correlation in the speech signal, the information does
not accumulate that fast. A more reasonable model for variance is

1 N
2 2

N) = — . 7
o5 (N) =0y ( N) (7

where 0 <s <1, or
log(02(N)) = —slog(N) + log(ad). (8)
In this model, correlation between the speech frames is taken into account
to reduce the score variance more slowly than in the independent case. The
slope of information accumulation, s, measures the rate at which variance

is reduced. Once we have such a model, we can predict the variance with a
given number of frames, and use the predicted variance in HNORM, resulting

linear fit

slope of information
accumulation

log(score variance)

HNORM training .
waveforms

log(# of frames)

FIG. 3. sHNORM.
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FIG. 4. Detection curve: 1sp vs 2sp without sHNORM (left) and with sHNORM (right).

in the introduction of SHNORM, an extension of HNORM with an estimated
information accumulation slope.

The information accumulation model leads to a linear model in the log(asz)—
log(N) domain with s as its slope and log(og) as its intercept (Fig. 3). We
estimate the two parameters from a set of scores obtained by running imposter
waveforms of varying lengths against a given model. Once the s and log((rg)
parameters for the ag(N ) function are estimated by a simple linear line fit, each
waveform/segment is normalized by the variance warranted by its duration:

o S,Dt — Ha
exp 1 (log(c2) — slog(N))

9

i

In tracking, scores of segments labeled as belonging to a single speaker are
sHNORMed, and in detection the average of all frame scores in all the labeled
segments is SHNORMed according to Eq. (9).

The detection cost function and equal error rate (EER) performance numbers
of sSHNORM are given in Tables 1 and 2 for the 1-speaker and 2-speaker
detection tasks, respectively. It is observed that sHNORM gives gains of 5-15%
in various performance numbers in both tasks over the baseline. Figure 4 shows
the ROC performance of the system without and with sHNORM, respectively,
in the one-speaker and two-speaker testing conditions.

TABLE 1
Performance on the 1-Speaker Task
System DCF (x10%) EER
Baseline 57 14.6%

With sHNORM 50 13.4%
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TABLE 2
Performance on the 2-Speaker Task
System DCF (x10?%) EER
Baseline 101 23.6%
With sHNORM 96 22.5%

5. SPEAKER DETECTION WITH DURATION AND ACOUSTIC SCORE

COMBINATION
—

We propose a simple and ad hoc way to combine acoustic and duration
information for multispeaker detection. The average of acoustic scores from
the frames segmented as the target is augmented by a duration penalty via
a thresholded nonlinear function to generate a score per test waveform. This
is an ad hoc yet effective way to address the problem of the reliability of
too few frames labeled as target speaker on which to average the scores.
Scores averaged with less than a threshold size (1000 frames, determined
experimentally) are decreased with a linear penalty. The parameters and the
shape of the augmentation (penalty) function have been optimized empirically.
Specifically, let S, be the acoustic likelihood ratio (after sHNORM) score for the
waveform, and let 7 be the number of frames for which the tracking algorithm
has detected the target speaker. Then the combined score is obtained by

Se = Sa + f(T), (10)
where f(-) is given by (Fig. 5)

J @) =(at + D)1 <) (11)

f(T)

0

1000 T, total duration
(frames)
-1

FIG. 5. Duration score augmentation function.
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TABLE 3
Performance on the 1-Speaker Task
System DCF (x10%) EER
Baseline 57 14.6%
With sHNORM 50 13.4%
With sHNORM and duration penalty 42 10.2%

with ¢ =0.001, » = —1, and 7 = 1000. Since sHNORM normalizes the scores to
the realization of a normal distribution with zero mean and unit variance, these
parameters should be essentially independent of the specific type of acoustic
scoring.

The DCF and the EER of the score combination with the duration penalty
are given in Tables 3 and 4 for the 1-speaker and 2-speaker detection tasks,
respectively. Duration penalties result in gains of up to 20% in EER and DCF
in the multiple speaker detection task with respect to the sHNORMed acoustic
scores.

6. SUMMARY
—

We have studied the effectiveness of an HMM speaker change model for
speaker tracking and multispeaker detection. HMM framework allows the
introduction of speaker continuity constraints by minimum state durations and
speaker change penalties via the transition probabilities. The technique can
be easily generalized to N talker conversations by introducing new speaker
states in the ergodic HMM. We have also introduced an extension of HNORM
for waveform segments of varying lengths. By modeling the information
accumulation rate due to frame score correlation, sSHNORM estimates a locus
on the variance-number of frames plane rather than estimating a single
variance. This is a principled alternative to using the same variance estimate
for segments that vary by orders of magnitude in length or having several bins
of lengths with common variances. We also propose a simple way to penalize
short duration speakers in multispeaker detection. This technique relies on the
randomness of the duration of the target speaker in waveforms and therefore
is clearly dependent on the prior distribution of the durations. The results

TABLE 4
Performance on the 2-Speaker Task
System DCF (x10°) EER
Baseline 101 23.6%
With sHNORM 96 22.5%

With sHNORM and duration penalty 80 18.3%
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of both techniques on the NIST 1998 multispeaker development evaluation
demonstrate significant improvement over the baseline HMM system.
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