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ABSTRACT 
While context-free grammars (CFGs) remain as one of the most 
important formalisms for interpreting natural language, word n-
gram models are surprisingly powerful for domain-independent 
applications. We propose to unify these two formalisms for both 
speech recognition and spoken language understanding (SLU). 
With portability as the major problem, we incorporated domain-
specific CFGs into a domain-independent n-gram model that can 
improve generalizability of the CFG and specificity of the n-gram. 
In our experiments, the unified model can significantly reduce the 
test set perplexity from 378 to 90 in comparison with a domain-
independent word trigram. The unified model converges well 
when the domain-specific data becomes available. The perplexity 
can be further reduced from 90 to 65 with a limited amount of 
domain-specific data. While we have demonstrated excellent 
portability, the full potential of our approach lies in its unified 
recognition and understanding that we are investigating. 

1. INTRODUCTION 
For the given speech signal X, spoken language understanding 
task is to find out the corresponding action A*, that satisfies the 
following equation: 
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where A stands for actions from dialog manager, S stands for 
semantic objects which are generated from a semantic parser [1, 
2], and 1 2... nw w w=W  is the word sequence from a speech 
recognizer [3]. Equation (1) indicates that we need to have a 
unified decoder from speech to understanding.  

The goal of the language model (LM) P(W) is to 
provide adequate information for predicting the likely word 
sequence. This can not only constrain the search space but also 
dramatically improve the accuracy of speech recognition. The 
CFG is not only powerful enough to describe most of the structure 
in spoken language but also restrictive enough to have efficient 
parsers. P(W) can be regarded as 1 or 0 depending upon whether 
the word sequence is accepted or rejected by the grammar. While 
the CFG provides us with a deeper structure, it is still 
inappropriate for robust spoken language processing since the 
grammar is almost always incomplete. A CFG-based system is 
only good when you know what sentences to speak, which 
diminishes the value and usability of the system. The advantage of 
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CFG’s structured analysis is thus nullified by the poor coverage in 
most real applications. For application developers, it is also often 
highly labor-intensive to create CFGs.  

On the other hand, grammaticality is irrelevant for the n-
gram model. Because it can be trained with a large amount of 
data, the n-word dependency can often accommodate both 
syntactic and semantic shallow structure seamlessly. The 
prerequisite of this approach is that we must have a sufficient 
amount of training data. The problem for n-gram models is that 
we need a lot of data and the model may not be specific enough. 

Nasr et al. [4] have considered a new unified language 
model that is composed of several local models and a general 
model linking the local models together. The local model used in 
their system is based on the stochastic FSA which is estimated 
from the training corpora. This approach still faces the portability 
problem, as it is hard to get domain-specific data to estimate these 
stochastic FSAs. Others [5-7] also considered a similar model 
using CFGs but once again, there is no clear way to leverage 
domain-independent LMs for domain-specific applications under 
the same probabilistic framework. In addition, none of these 
systems considered tightly integrating speech recognition (X to 
W), parsing (W to S), and dialog management (S to A) as 
illustrated in Equation (1). 

2. A UNIFIED LANGUAGE MODEL 
Our unified language model is trying to take advantage of both 
rule-based and data-driven approaches. We want to come up with 
the method that is the best in terms of not only performance but 
also portability. Let’s consider the following training sentences: 

Meeting at three with Zhou Li. 
Meeting at four PM with Derek. 
If we use a word trigram, we will estimate P(Zhou|three 

with) and P(Derek|PM with) etc. There is no way we can capture 
needed long-span semantic information in the training data. A 
unified model will have a set of CFGs that can capture the 
semantic structure of the domain. For the example listed here, we 
may have a CFG for {name} and {time} respectively. We can then 
use our NL engine to parse the training data we used for training 
our trigram to spot all the potential semantic structures in the 
training data. The training sentences now look like: 

Meeting {at three:TIME} with {Zhou Li:NAME} 
Meeting {at four PM:TIME} with {Derek: NAME} 
With analyzed training data, we can estimate our n-gram 

probabilities as usual. We will have probabilities such as 
P({name}|{time} with) instead of P(Zhou|three with), which is 
more meaningful and accurate. Inside each CFG, we can also 
derive P("Zhou Li"|{name}) and P("four PM”|{time}) from the 
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existing n-gram (n-gram probability inheritance) so that they are 
normalized. If we add a new name to the existing {name} CFG, 
we can use the existing n-gram probabilities to renormalize our 
CFGs for the new name. The new approach can be regarded as a 
standard n-gram in which the vocabulary consists of words and 
structured classes. The structured class can be very simple such as 
{date}, {time}, and {name} or can be very complicated such as a 
CFG that contains deep structured information. Probability of a 
word or class will depend on the previous words or CFG classes.  

Inside each CFG, we can use the standard probabilistic 
CFG. However, without real data to estimate these probabilities, 
there is no easy way to derive the probability for each production 
rule. In addition, the context-free nature of probabilistic CFGs 
may not offer any real advantage over n-gram models which have 
strong local context constraints.  We therefore investigated how 
the CFGs can inherit probability from a (possibly general) word n-
gram LM.  

3. PROBABILITY INHERITANCE 
Formally, an input utterance 1 2... nw w w=W  can be segmented 

into a sequence 1 2... mt t t=T where each it  is either a word in W 
or a CFG non-terminal that covers a sequence of words 

it
u  in W. 

The likelihood of W under the segmentation T is therefore 
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In addition to trigram probabilities, we need to include 
( | ),

it iP u t  the likelihood of generating a word sequence 
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Here </s> represents the special end-of-sentence word. Three 
different methods are used to calculate the likelihood of a word 
given history inside a CFG non-terminal. 

3.1 Uniform Distribution 
A history 1 2 1...

i i it t t lh u u u −=  corresponds to a set ( )Q h , where each 

element in the set is a CFG state generating the initial 1l −  words 
in the history from the non-terminal it . A CFG state constrains 
the possible words that can follow the history. The union of the 
word sets for all of the CFG states in ( ),Q h  ( )QW h  defines all 
legal words (including the symbol “</s>” for exiting the non-
terminal it  if 1 2 1...

i i ii t t t lt u u u −⇒& ) that can follow the history 

according to the CFG constraints. The likelihood of observing 
it lu  

following the history can be estimated by:  
( | ) 1 ( )

it l QP u h W h= .    (4) 

3.2 Inherited Word N-grams 
The uniform model does not capture the empirical word 
distribution underneath a CFG non-terminal. A better alternative 
is to inherit existing domain-independent n-gram probabilities. 
These probabilities need to be appropriately normalized in the 
same probability space. Thus we have: 

12

2 1( )

( | , )
( | )

( | , )
i i i

i

i iQ

t l t t ll
t l

t l t lw W h

P u u u
P u h

P w u u
−−

− −∈

=
∑

    (5) 

3.3 CFG-Specific Inheritance 
Another way to improve the modeling of word sequence covered 
by a specific CFG non-terminal is to use a specific n-gram LM 

2 1( | , )t n n nP w w w− −  for each non-terminal t. The normalization is 
performed the same as in Equation (5). 

Multiple segmentations may be available for W due to 
the ambiguity of natural language. The likelihood of W is 
therefore the sum over all segmentations S(W): 
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4. A UNIFIED DECODER 
It is desirable to extend this framework further to unify both CSR 
and SLU instead of the current two-pass SLU systems. As 
illustrated in Equation (1), the full potential of our new approach 
is that we can unify a number of components (speech recognizer, 
parser, and dialog manager) under the same probabilistic 
framework for optimal performance, which integrates the 
traditional rule-based NL approach and the most powerful data-
based NL model (n-gram) seamlessly for both speech recognition 
and understanding.  

If we can identify these CFGs in the decoder, the need 
for a separate NL parser and speech recognizer may diminish. The 
advantage of our unified approach is that we can spot semantic 
concepts directly from the speech signal. 

Our current Whisper decoder [3] can only support either 
CFGs or word n-grams. These two grammars are mutually 
exclusive. We are in the process of changing the decoder so that 
we can embed CFGs in the n-gram search framework to take 
advantage of our unified language model. 

5. MIPAD 
We are developing a multimodal interactive pad (MiPad) that 
offers a conversational, multi-modal interface to Personal 
Information Manager (PIM) functionality, including calendar, task 
list and e-mail. The ultimate goal is an interaction model that 
spans across a number of different platforms and users. The initial 
target device is in the palmtop form factor, and is intended for use 
by mobile professionals. We have chosen this as the platform 
because it is clearly a useful tool and has several opportunities for 
improvements. With existing palmtop PDAs, it is very difficult to 
enter large amount of text, to fill a form, and to issue commands 
that contain multiple parameters. Multimodal interaction with 
speech and pen can help address these problems, which can 
significantly improve the usability with the Tap and Talk 
interface.  



  

MiPad uses the Whisper speech recognizer [3] with a 
60,000 words vocabulary. The system can be adapted to the user 
for improved performance. The current understanding system is 
based on our robust parser [8] and event-driven dialog manager 
[9]. 

6. EXPERIMENTAL RESULTS 
In the preliminary study, we only focused our experiments on 
portability of our domain-independent language model. We 
investigated how to build a domain specific language model 
without using domain specific data.  

6.1 Baseline System 
We built a general purpose trigram LM with vocabulary of 2,000 
words. The model was trained with the same data as that used for 
the Microsoft Dictation trigram. We used text corpora from 
newspapers, TV program transcripts, and memos. The training 
data has more than 2 billion words. The test set consists of 2,000 
sentences related to MiPad’s PIM applications such as scheduling 
a meeting, finding information from the contact list, and email. 
We collected these sentences in-house for  the development of 
MiPad. Some of the training sets which we used in our 
experiments are so small that some words in the vocabulary never 
occur in the training set. Therefore, we always interpolated all 
LMs with a uniform word distribution with a small interpolation 
coefficient (0.05) to provide the necessary smoothing. 

The perplexity  of our baseline Microsoft dictation 
language model on our MiPad test data is 3781. There is a clear 
mismatch between the dictation language model and 
conversational MiPad test data. 

6.2 A TFIDF Model 
The general purpose trigram was trained with a large variety of 
data. A majority of the data is likely to be irrelevant to our 
domain. Thus a topic-dependent language model such as that 
suggested in [10] can be used to select relevant text materials to 
build a more domain-specific LM. 

We used an Information Retrieval (IR) technique to 
extract more relevant data from the training set. We ran the CFG 
in the generative mode to generate “sentences” and used them as a 
query for IR [10]. For each sentence in the training data, its 
similarity to the query is calculated using the cosine similarity 
measure of the respective TFIDF vectors. Only those sentences 
that are similar to the query were used for training the trigram. 
The  perplexity of the trigram trained on the filtered data 
(henceforth TFIDF model) is 271. 

6.3 A CFG-Derived Word Trigram 
We cannot use CFGs directly to evaluate the perplexity since a 
large number of sentences are not covered by our CFGs. Instead, 

                                                           
1 Using the standard DARPA NAB word trigram LM which has a larger 
vocabulary, the perplexity on this MiPad test set is more than 1000 
while the typical Wall Street Journal text perplexity is about 100. This 
strongly indicates that there is a mismatch between these two domains.  

we used our CFGs to generate sentences and used these sentences 
to estimate a word trigram.  

The perplexity of the CFG-derived trigram LM is 207, 
which indicates the coverage of the CFG alone is indeed limited. 

6.4 An Interpolated Trigram 
We interpolated the TFIDF trigram LM and the CFG word trigram 
LM. Since we did not assume any domain specific data, 0.5 was 
used as the interpolation weight for the component LMs. The 
perplexity of the resulting LM is reduced to 112, which is a 
significant  perplexity reduction over both the component LMs. 
Clearly the TFIDF data and the CFG-derived data contain highly 
complementary information. 

6.5 A Unified Model 
We parsed the data obtained from the aforementioned IR 
technique with our robust chart parser. A word/non-terminal 
trigram LM was trained with the parsed data. Since the occurrence 
of domain specific CFG non-terminals (like {date}, {time}, 
{appointments}) is much lower in the general data than in the 
domain specific data, we used the CFG again in the generative 
mode to obtain domain specific synthetic data that contained 
words and non-terminals. Starting from the top level CFG non-
terminal, the procedure randomly decided whether to keep the 
non-terminal in the synthetic sentence or to expand it to sub-
symbols according to the CFG rules for that non-terminal. A 
trigram LM was constructed on the synthetic data and it was 
interpolated with the unified model trained on the parsed TFIDF 
data. The interpolation weight for each component LM is 0.5. 

Table 1 Comparison of language models on the MiPad 
test data when no domain-specific data is available 

Language Model Perplexity 

Baseline Trigram 378 

TFIDF Trigram  271 

CFG-derived Trigram 207 

Interpolated Trigram 112 

Unified Language Model 90 

 
Since many in-domain words are subsumed by CFG 

non-terminals, their probability of being a standalone word is 
underestimated. This is not very harmful if the CFG has good 
coverage. However, as we stated in the very beginning, high CFG 
coverage is not realistic for spoken language. To compensate for 
it, we interpolated the word/non-terminal LM described above 
with the word ngram model described in Section 6.4. 

We investigated different methods of assigning the 
likelihood to a word sequence inside a CFG non-terminal, as 
discussed in Section 3. The best  perplexity is 90, which is 
obtained from using inherited trigrams inside the CFG. The 
inherited trigram is CFG non-terminal specific as described in 
Section 3.3. The perplexity results are shown in Table 1. 



  

6.6 Comparison with Domain Specific Models 
We can train a domain specific trigram that should have much 
better performance in comparison with the domain-independent 
trigram. The key problem is we need to collect a large amount of 
training data, which is impractical for most application 
developers. For MiPad, we have collected 3,000 sentences and 
reserved 2,000 for testing. We used the other 1,000 utterances for 
training. The perplexity of the model is a reference for comparison 
with the model obtained without domain specific data. 

Table 2 Comparison of language models on the MiPad 
test data when domain-specific data becomes available 

Language Model Perplexity 

Word Trigram 186 

Interpolated Trigram 91 

Unified Language Model  65 

 
Given the small amount of training data, we believed 

that the LM was likely to be undertrained. To improve the 
robustness, we interpolated the domain-specific trigram LM with 
CFG-derived trigram LM (Section 6.3). As shown in Table 2, the 
perplexity is significantly reduced to 65 with the unified model 
when limited amount of training data become available. In 
contrast, the interpolated word trigram has a much higher 
perplexity. This illustrates that our unified model can truly make 
more effective use of CFGs and domain-specific data than 
interpolated word trigram models. 

7. DISCUSSION AND SUMMARY 
Since we can have CFGs inherit n-gram probabilities, we can 
fully unify both CFGs and n-grams in the same probabilistic 
framework. When training data becomes available, the unified 
model is adaptable and it will converge to the best domain-
specific structured n-gram language model. We can either adapt 
the system using new rules or data. When we port our system to a 
new domain, we can create some CFGs that may have limited 
coverage (as always), but the system can broaden the coverage of 
our CFGs automatically based on the n-gram language model. We 
can thus relatively easily port our SLU applications from one 
domain to another. 

The full potential of the proposed approach lies in its 
unified recognition and understanding. As indicated in Equation 
(1), we believe that early use of semantic knowledge is very 
important to improve the robustness of the SLU system. We are in 
the process of  systematically evaluating both the recognition and 
understanding performance in comparison to the conventional 
detached systems (speech recognition first and then SLU), which 
requires rewriting both the speech recognizer and SLU engine. 

In our current approach, we have not used any deep 
linguistic concepts and our CFGs can be written and used by 
application developers who have domain-specific knowledge. 
This is important, as most application developers do not have any 
linguistic expertise. Furthermore, our architecture also provides a 

new framework to incorporate linguistics-driven NLP ideas in the 
future. 

Our preliminary experiments indicate that the unified 
model could significantly improve the SLU system’s portability, 
which has been a major problem for widespread application of 
spoken language technologies. The unified language model 
reduced the test set perplexity from 378 to 90 in comparison with 
a domain-independent word trigram. There are two key 
components in making such a dramatic perplexity reduction. The 
first one is the use of domain specific knowledge in CFGs. By 
interpolating a trigram derived from such CFGs with the domain-
independent trigram, we can reduce the perplexity from 378 to 
112, while the CFG-derived trigram alone has a much higher 
perplexity of 207. The second one is unification of CFGs and n-
gram models, which further reduced the perplexity form 112 to 
90. 

When a limited amount of domain-specific data 
becomes available, the unified model offers further improved 
performance. The perplexity for the domain-specific word trigram 
was reduced from 186 to 91 when interpolated with the CFG-
derived trigram. With the unified model, the perplexity was 
further reduced from 91 to 65. 
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