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ABSTRACT
In this paper we explore the use of lattice-based information for

unsupervised speaker adaptation. As initially formulated, maxi-
mum likelihood linear regression (MLLR) aims to linearly trans-
form the means of the gaussian models in order to maximize the
likelihood of the adaptation data given the correct hypothesis (su-
pervised MLLR) or the decoded hypothesis (unsupervised MLLR).
For the latter, if the first-pass decoded hypothesis is extremely erro-
neous (as it is the case for large vocabulary telephony applications)
MLLR will often find a transform that increases the likelihood for
the incorrect models, and may even lower the likelihood of the cor-
rect hypothesis. Since the oracle word error rate of a lattice is much
lower than that of the 1-best or N-best hypotheses, by performing
adaptation against a word lattice, the correct models are more likely
to be used in estimating the transform. Furthermore, the particular
MAP lattice that we propose enables the use of a natural confi-
dence measure given by the posterior occupancy probability of a
state, that is, the statistics of a particular state will be updated with
the current frame only if the a posteriori probability of the state at
that particular time is greater than a predefined threshold.

Experiments performed on a voicemail speech recognition task
indicate a relative 2% improvement in the word error rate of lattice
MLLR over 1-best MLLR.

1. INTRODUCTION

Acoustic adaptation is playing an increasingly important
role in most speech recognition systems, to compensate
for the acoustic mismatch between training and test data,
and also to adapt speaker independent systems to individ-
ual speakers. Most speech recognition systems use acous-
tic models consisting of multi-dimensional gaussians that
model the pdf of the feature vectors for different classes.
A commonly used adaptation technique in this framework is
MLLR [3], which assumes that the parameters of the gaus-
sians are transformed by an affine transform into parameters
that better match the test or adaptation data. This technique
is also often used in unsupervised mode, where the correct
transcription of the adaptation data is not known, and a first
pass decoding using a speaker independent system is used
to produce an initial transcription.

Although MLLR appears to work fairly well even when
the unsupervised transcription is mildly erroneous (presum-
ably because of strong parameter tying: often the same
transformation is applied to all the gaussians of the acous-
tic model), it is possible to improve on this performance by

taking into account the fact that the initial transcription con-
tains errors. This may be done by considering not just the
1-best transcription produced during the first pass decoding,
but the top N candidates. Alternatively, if the first pass de-
coding produces a word graph, this can be used as the ref-
erence word graph, instead of the 1-best or N-best reference
transcriptions. We describe a formulation that affinely trans-
forms the means of the gaussians to maximize the log like-
lihood of the adaptation data under the assumption that a
word graph is available that represents all possible word se-
quences that correspond to the adaptation data. The word
graph is produced during a first pass decoding with speaker
independent models. It is also possible to consider only
those regions of the word graph that represent a high con-
fidence of being correct to further improve the performance.
This use of confidence to guide training or adaptation is sim-
ilar in spirit, but different in its use of MAP-lattice posteri-
ors, from recent work by, e.g. [12, 10, 11].

In Section 2, we describe the theoretical aspect of the for-
mulation, in Section 3, we describe the first pass decoding
strategy that is used to produce the word graphs, in Section
4, we describe a confidence related pruning method that en-
ables regions of low confidence to be discarded, and finally
in Section 5, we describe the results of experiments on a
Voicemail corpus.

2. THEORETICAL FRAMEWORK

Notation: ��� denotes the multi-dimensional observation
at time � , ��� � denotes the � observations corresponding to
the adaptation data. The pdf of each context dependent pho-
netic state � is modeled by mixtures of gaussians, each with
a mean and diagonal covariance 	�
���
�
 . � is used to indicate
the current values of the gaussian parameters, and

�� is used
to denote the future values (to be estimated). The probabil-
ity density of the observation � � given the pdf of state � is
denoted ����� � ��� ��� . In this paper, we will assume that � and�� are related in the following way:

�	�
�����	�
 , �
�
 �!
"
 , i.e.
only the current means of the gaussians are linearly trans-
formed, and all means are transformed by the same matrix� .

In the regular MLLR framework, the problem is defined
as follows: find

�� (or equivalently � ) so that the log likeli-
hood of the adaptation data, �#� � is maximized, assuming that
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Figure 1: HMM structure used to generate MAP lattices. This
HMM uses word internal acoustic context and the inter-word tran-
sition arcs encode a Kneser-Ney bigram language model.

$ is the transcription corresponding to the adaptation data.
The transcription $ can be represented as a sequence of %
states &('*),+�-�-.-/&('*) 0 , and the 1 observation frames can be
aligned with this sequence of states. However, the alignment
of the 1 frames with the sequence of states is not known.
Let &32 denote the state at time 4 . The objective can now be
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In our proposed lattice-based MLLR, we assume that the
word sequence corresponding to the adaptation data can-
not be uniquely identified and incorporate this uncertainty
in the form of a lattice or word graph. The word graph
is produced by a first pass decoding with speaker indepen-
dent models. The formulation of the maximum likelihood
problem is identical to (1) with one big difference. In (1),
the states &32 were assumed to belong to the alphabet of %
states &('*),+�-�-.-/&('*) 0 , with the only allowed transitions being&a`cbd&(` and &(`ebf&a`Kg�+ . In the lattice-based MLLR for-
mulation, the transitions between the states is dictated by
the structure of the word graph. Additionally, it is possible
to take into account the language model probabilities also
(which are ignored in the MLLR formulation), by incorpo-
rating them into the transition probability corresponding to
the transition from the final state of a word in the word graph
to the initial state of the next connected word in the word
graph.

3. FIRST PASS WORD GRAPH GENERATION
We tested lattice-based MLLR in the context of a mul-

tipass lattice decoder recently developed at IBM. In the
first pass, we generate a Maximum A-Posteriori Probabil-
ity word lattice (MAP lattice) [4, 13] using word internal
acoustic models and a bigram language model. To construct
a MAP lattice, we assume that the utterance is produced
by an HMM with a structure as shown in Figure 1. Each
pronunciation variant in the vocabulary appears as a linear
sequence of phones in the HMM, and the structure of this
model permits the use of word-internal context dependent
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Figure 2: Word traces produced by the MAP lattice HMM, and
their connection into a word lattice. In reality, since the N-best
words at each frame are output, a vertical line should intersect a
constant number of word traces; for visual simplicity, we have sim-
plified the picture.

phones. We use a bigram language model with modified
Kneser-Ney smoothing [5, 6], and this factors naturally as
shown in Figure 1. There is an arc from the end of each
word to a null word-boundary state, and this arc has a tran-
sition probability equal to the back-off probability for the
word. From the word-boundary state, there is an arc to the
beginning of each word, labeled with the unigram probabil-
ity. For word pairs for which there is a direct bigram prob-
ability, we introduce an arc from the end of the first word
to the beginning of the second, and this arc has a transition
probability equal to the discounted bigram probability. We
normalize the dynamic range of the acoustic and language-
model probabilities by using an appropriate language model
weight, typically h.i .

The MAP lattice is constructed by computing the poste-
rior state occupancy probabilities for each state at each time:

j I/k 2 8 &Vl J�L + M 8 m 2 QYn 2Qj IKJ L + M
where m 2 Q 8 j IYJ 2 +.^ k 2 8 & M and n 2Q 8 j IKJ L2Kg�+ l k 2 8 & M , and
then computing posterior word occupancy probabilities by
summing over all the states interior to each word. That is, ifo ` is the set of states in word p ` , we compute

j 2 I p ` M 8 [
Qaq�rts

m 2 Q n 2Qj IYJ L + M
at each time frame. We then keep track of the u likeliest
words at each frame, and output these as a first step in the
processing.

Note that a word will be on the list of likeliest words for a
period of time, and then fall off that list. Thus the output of
the first step is essentially a set of word traces, as illustrated



in Figure 2. The horizontal axis is time, and the vertical axis
ranges over all the pronunciation variants.

The next step is to connect the word traces into a lat-
tice. Many connection schemes are possible, but we have
found the following simple strategy to be quite effective. It
requires that one more quantity be computed as the word
traces are generated: the temporal midpoint of each trace as
computed from the first moment of its posterior probability:v�wKxzyY{}|wKxz~/wY����w#��� w��/���v!wKxzyY{}|wKxz~/wY����w��
To construct an actual lattice, we add a connection from the
end of one word trace to the beginning of another if the two
overlap, and the midpoint of the second is to the right of
the midpoint of the first. This is illustrated at the bottom of
Figure 2. (We have also found it convenient to discard traces
that do not persist for a minimum period of time, or which
do not reach an absolute threshold in posterior probability.)

To evaluate our lattices, we computed the oracle word-
error rate, i.e. the error rate of the single path through the
lattice that has the smallest edit distance from the reference
script. This is the best word-error rate that can be achieved
by any subsequent processing to extract a single path from
the lattice. For voicemail transcription, the MAP lattices
have an oracle word error rate of about 9%, and the ratio of
the number of word occurrences in the lattices to the num-
ber of words in the reference scripts is about 64. Due to
the rather lax requirements for adding links between words,
the average indegree for a word is 74. The MAP lattice
that is produced in this way is suitable for a bigram lan-
guage model: the arcs between word-ends can be labeled
with bigram transition probabilities, but is too large for a
straightforward expansion to trigram context. In order to
slim it down, we make a second pass, where we compute
the posterior probability of transitioning along the arcs that
connect word-traces. That is, if �3� is the last state in one
word trace and ��� is the first state in a successor and �#��� is
the weighted language model transition probability of see-
ing the two words in succession, we compute

� �/� w�� �a��� � wY��� � ���G� ��� � � ��� w~��E� wK���~/���������/� � � wK��� �
� � � � � �

This is the posterior probability of being in state � � at time� and in state ��� at time �"��� , and transitioning between
the words at an intermediate time. For each link between
word traces, we sum this quantity over all time to get the to-
tal probability that the two words occurred sequentially; we
then discard the links with the lowest posteriors. It should
be noted that a separate quantity is computed for every link
in the lattice. Thus, even if two links connect traces with
the same word labels, the links will in general receive dif-
ferent posterior probabilities because the traces will lie in
different parts of the lattice, and therefore tend to align to
different segments of the acoustic data. As in [7], we have
found that over 95% of the links can be removed without a
major loss of accuracy. Our pruned lattices have an average

indegree a little under 4, and an oracle error rate of about
11%. After pruning, we expand the lattices to trigram con-
text, and compute the posterior state occupancy probabili-
ties needed for MLLR with a modified Kneser-Ney trigram
language model, and left-word context dependent acoustic
models.

4. CONFIDENCE PRUNING
Word lattices have been used in a variety of confidence

estimation schemes [8, 9], and in our work, we used the
simplest possible measure - posterior phone probability - to
discard interpretations in which we had low confidence. Re-
call that as a first step in MLLR, we compute the posterior
gaussian probabilities for all the gaussians in the system. We
compute this on a phone-by-phone basis, first computing the
posterior phone probability, and then multiplying by the rel-
ative activations for the gaussians associated with the phone.
For phone �(� with gaussian mixture  z� , and for a specific
time frame � w ,

� �/¡ w���¢ �}� ��� � � � � �O� w*� �(�£� ��� � � ¢ � � � w��v¥¤�¦�§ � ¢ � � w��
Since the gaussian posteriors are used to define a set of

linear equations that are solved for the MLLR transform,
it is reasonable to assume that noisy or uncertain estimates
of the posteriors will lead to a poor estimate of the MLLR
transform. To examine the truth of this hypothesis, we esti-
mated the MLLR transform from subsets of the data, using
only those estimates of � �O� we� �a�.� � � � � that were above a
threshold, typically ¨}©,ª to ¨}©,« .

5. EXPERIMENTS AND RESULTS
The experiments were performed on a voicemail tran-

scription task [1]. The speaker independent system has 2313
context dependent states called leaves (of the context deci-
sion tree) and 134K diagonal mixture components and was
trained on approximatively 70 hours of data. The feature
vectors are obtained in the following way: 24 dimensional
cepstral vectors are computed every 10ms (with a window
size of 25ms). Every 9 consecutive cepstral vectors are
spliced together forming a 216 dimensional vector which is
then projected down to 39 dimensions using heteroscedastic
discriminant analysis and maximum likelihood linear trans-
forms [2].

The test set contains 86 randomly selected voicemail mes-
sages (approximately 7000 words). For every test message,
a first-pass speaker independent decoding produced a MAP
word lattice described in section 3. For the MLLR statistics
we used gaussian posteriors as described in section 4. The
regression classes for MLLR were defined in the following
way: first all the mixture components within a state were
bottom-up clustered using a minimum likelihood distance
and next, the representatives for all the states were clustered
again until reaching one root node. The number of MLLR
transforms that will be computed depends on the number of
counts that particular nodes in the regression tree get. In
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Figure 3: Histogram of the state posterior probabilities.

practice, a minimum threshold of 1500 was found to be use-
ful. For voicemail messages which are typically 10 to 50
seconds long this results in computing 1-3 transforms per
message.

Figure 3 shows the histogram of the non zero phone pos-
teriors computed over all the test sentences. There are two
things to note. First, there are a significant number of en-
tries with moderate (0.1-0.9) probabilities. Secondly, al-
though there are a significant number of entries at the left-
end of the histogram, they have such low probabilities that
they account for an insignificant amount of probabilitymass.
This suggests that we can use high values for the confidence
thresholds on the posteriors without loosing too much adap-
tation data.

Figure 4 shows the word error rate as a function of the
confidence threshold. The optimal results were obtained for
a threshold of 0.8. Increasing the threshold above this value
results in discarding too much adaptation data which coun-
ters the effect of using only alignments that we are very con-
fident in.

Finally, Table 1 compares the word error rates of the
speaker independent system, 1-best MLLR, lattice MLLR
and confidence-based lattice MLLR. The overall improve-
ment of the confidence-based lattice MLLR over the 1-best
MLLR is only about 1.8% relative but has been found to
be consistent across different test sets, with the same 80%
confidence threshold. We expect the application of iterative
MLLR, i.e. repeated data-alignment and transform estima-
tion, to increase the differential. This is because the lattice
has more correct words to align to than the 1-best transcrip-
tion. For comparison, [11] cites a gain on the Wall Street
Journal task of 3-4% relative over standard mllr by combin-
ing confidence measures with mllr.

6. CONCLUSION

In this paper we explored the use of a word lattice in
conjunction with MLLR. Rather than adjusting the gaussian
means to maximize the likelihood of the data given a single
decoded script, we generated a transform that maximized
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Figure 4: Word error rate versus confidence threshold.

System WER
Baseline (SI) 33.72%
1-best MLLR 32.14%
Lattice MLLR 31.98%
Lattice MLLR ¬ thresh. 31.56%

Table 1: Word error rates for the different systems.

the likelihood of the data given a set of word hypotheses
concisely represented in a word lattice. We found that the
use of a lattice alone produces a very small improvement,
but that we can gain a more significant improvement by dis-
carding statistics in which we have low confidence.
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