BOOSTING GAUSSIAN MIXTURES IN AN LVCSR SYSTEM

Geoffrey Zwetg and Mukund Padmanabhan

IBM T. J. Watson Research Center

{gzweig,mukund }@watson.ibm.com

ABSTRACT

In this paper, we apply boosting to the problem of
frame-level phone classification, and use the resulting
system to perform voicemail transcription. We develop
parallel, hierarchical, and restricted versions of the clas-
sic AdaBoost algorithm, which enable the technique
to be used in large-scale speech recognition tasks with
hundreds of thousands of Gaussians and tens of mil-
lions of training frames. We report small but consistent
improvements in both frame recognition accuracy and
word error rate.

1. INTRODUCTION

Boosting is a technique for sequentially training and
combining a collection of classifiers in such a way that
the later classifiers make up for the deficiencies of the
earlier ones. Many variants exist [1, 7, 2, 3], but all fol-
low the same basic strategy. There is a sequence of iter-
ations, and at each iteration a new classifier is trained
on a welighted set of the training examples. Initially,
every example gets the same weight, but in subsequent
iterations, the weights of hard-to-classify examples are
increased relative to the easy ones. The outputs of
the classifiers are then combined in such a way as to
guarantee certain bounds on both training and testing
error [2, 6]. Boosting algorithms have been successfully
applied to a wide variety of problems, including a re-
cent application to boosting neural nets in a continuous
speech recognition system [8].

One of the main advantages of boosting is that it
1s possible to automatically generate very long streams
of classifiers - anywhere from tens to thousands - that
usually produce better and better composite perfor-
mance. Although boosting was originally presented as
a method for combining relatively weak classifiers, in
this paper we focus on using the technique to com-
bine state-of-the-art Gaussian-mixture systems. Unfor-
tunately, these systems are very large, and generating

This work was supported by DARPA Grant MDA972-97-C-
0012.

and combining long streams of them requires some al-
gorithmic modifications. The main contribution of this
work 1s to develop and test parallel, hierarchical, and
restricted variants of boosting that are suitable for use
in extremely large systems.

2. THE ADABOOST ALGORITHM

In this section, we review the AdaBoost algorithm, and
describe hierarchical and restricted extensions that al-
low for large speedups in training time. We base this
work on the specific variant AdaBoost.M2 of [1], which
we will refer to simply as AdaBoost.

2.1. Parallel AdaBoost for ML Classifiers

The input to the AdaBoost algorithm is a set of labeled
training pairs, (2, y;), where z; represents the features
associated with the sth example, and y; is its label. In
our application, the z; are acoustic feature-vectors and
the y; are context-dependent phone labels. At each
iteration ¢, a function h:(z,y) is learned that maps a
feature/label pair into a number between 0 and 1. The
function need not represent a probability distribution,
though in our implementation it does. A weight, 3, is
assigned to each classifier, and the output of the com-
posite classifier is given by

H(z,y) =) <10g %) he(z,y).

t

In our implementation, the atomic classifiers are
mixtures of Gaussians, with one mixture for each con-
text dependent phone. Denoting the jth Gaussian of
phone i’s mixture by G7, and its mixture weight by m,
and the prior on phone i by P(z), the classifier learned
at each iteration has the form:

P) X, m)Gy(a)
Y. P(9) Y, miGi(a)

The AdaBoost algorithm maintains a distribution

ht($:y) = (1)

For each iteration t:

1. For each class c in parallel, weight and train:

b Dt(i)y) =

{ﬁ,y;&celseo t=20

Dy (1+he1(zic)—hea1(z:,y))/2
Z:_ll * 1 t—1 t—1 t > 0

e Weight example j as w(j) = Zy D:(j,v).

e Train a new ML model for class ¢ with the
welighted examples.

e Store Z{ =, >, D:(4,y).
2. Compute Z; = Y Z;
3. For each class c in parallel, compute pseudoloss:

e = 15030, B (1 — he(ai, ¢) + he(zs,)

4. Compute total pseudoloss ¢, = > €f and beta:
B = 1?&. If B > 1, terminate and use only
iterations 1...¢ — 1.

Figure 1: Parallelized AdaBoost. In the parallelized
sections, the index 7 refers only to examples of class c.
k is the number of classes.

D(i,y) over all possible example/label pairs (z;,y) !,
and the goal at each iteration ¢ is to produce a classifier
h; that minimizes the “pseudoloss”:

€& = %Zth(i,y)(l = he(2i, yi) + he(zi, y))

Minimizing this quantity has been shown to minimize
upper bounds on training, and, in the binary-case, on
testing error-rates [2, 6]. In order to train with a
maximum-likelihood procedure, we replace the detailed
distribution D(i,y) with a simpler one that assigns a
single weight to each example z;, by summing over all
class-wise weights: w(7) = Zy D:(%,y). Whereas min-
imizing the true pseudoloss would require a gradient
descent technique - because changing the parameters
associated with one class will affect all the others (see
Equation 1) - this simplification allows us to train mod-
els for each class independently and in parallel, and is
also used in [8]. The parallelized algorithm is presented
in Figure 1. The quantity Z; is a normalizing constant.

The exact form of the parallel algorithm is moti-
vated by the fact that with thousands of classes and
tens of millions of examples, it is impossible to store
D.(3,y), and therefore each time it is used, it must be
recomputed from scratch. In Figure 1, it is computed

1D(mi,yi) is always 0, so this is equivalent to a distribution
over mislabel pairs.

600

“class.1" +
"class.2" ©

o

400

200

-200

-400 |-

-600 -

-800 L L i

Figure 2: Training points.

600

“class.1" +
“class2" ®
400

200

-200

-400 |-

-600 -

-800 L L L L
-600 -400 -200 0 200 400 600

Figure 3: The points accounting for 90% of Z7, after
20 iterations.

twice for each example - once in step 1, and once in step
3. In the original algorithm [1] (which is expressed in
terms of five steps), it is used three times - once in step
1, once in step 3, and once in step 5. In the paral-
lel algorithm, the distribution D:(4,y) is not actually
normalized until step 3, but this delayed normalization
does not affect the answer, since it is only the relative
weights of the examples that matter during training.

By setting h to a constant value, the pseudoloss will
trivially achieve a value of 0.5, and beta a value of 1.
Hence a functional classifier will always have a beta
less than 1, ensuring that examples with large values
for h(z;,y;) will be de-emphasized in step 1.

Intuitively, the boosting algorithm works by placing
high weight on hard-to-classify examples, and thereby
focusing attention on the decision boundaries between
classes. Figure 2 displays the points in a three class,
two-dimensional classification task. Figure 3 shows the
points accounting for 90% of the total weight of each
class (i.e. 90% of Z;) after 20 iterations.

The computational demands of AdaBoost are se-
vere: in order to compute the pseudoloss or update

Input: Phone confusion matrix C' in which C(3, j)
represents the fraction of occurrences of phone ¢ that
are classified as phone j.

Initialize: Construct a set & of sets S; in which S;
contains a single member representing phone 3.
Define:

W(Z’ -7) = ZMembers(S,,) EMembers(Sj) C(Z’ J)l VZIJ
Repeat until |S| = k: Merge the pair of sets S;, S;

for which W9) is maximum - remove S; and S; from

5411551
S and replace them with S; U S;.
Output: S.

Figure 4: Phone clustering algorithm. The output is a
set of k£ phone clusters.

the weight distributions, it is necessary to compute
hi(z;,y) for all pairs of examples and classes. If there
are f frames, ¢ Gaussians learned per iteration, and ¢
iterations, the runtimeis O(fgi). When the D;(%,y) are
recomputed from scratch to conserve memory and disk
space (thus requiring the computation of hq...hs—1 in
addition to h;), the runtime is O(fgi?). This has mo-
tivated us to explore two streamlined variants of Ad-
aBoost.

2.2. Restricted AdaBoost

The simplest way of reducing the computational load
1s to identify for each example z; a small subset of
“candidate” classes, and to assume that the h values
for all the other classes will always be 0. We do this
by computing ho(z;,y) after the initial iteration for
all classes y, and then defining the set of candidate
classes as those that come within some fixed fraction
of the maximum h value for z;. In our implementa-
tion, we fixed the candidate-inclusion fraction at one
part in a thousand, and roughly 50 out of the 2000
context-dependent phones ended up as candidates for
each frame. Assuming that there are ¢ candidates on
average per frame, the runtime is reduced from O(fgi?)

to O(fg + fei?).

2.3. Hierarchical AdaBoost

In the hierarchical version of AdaBoost, we partition
the phones into clusters, and use boosting only to differ-
entiate between the phones within a single cluster. As-
suming there are m clusters of equal size, both in terms
of the number of constituent phones and the number
of training frames, the total gomputational load is re-
duced from O(fgi?) to O(%).

In the following, we will index clusters by &, and use
h*(z,vy) to refer to the level of plausibility assigned to

the example-label pair (z,y) according to the models
associated with cluster k. Further, k, represents the
cluster containing class y. In the hierarchical version
of boosting, we compute h(z;,y) as

P(kylz:)h™ (21, 9) (2)

P(ky)P(£l|ky) Ky (g,
S, P(ky)P(ailky) " oY) ()

h(ﬂﬁi, y) =

The cluster priors P(k,) are determined as the fraction
of the total training data belonging to any phone in
cluster k,. Using z to represent phones, P(z|ky) is
computed as:

P(z|ky) = Y P(zlky)P(z]2).

z€ky

The quantity P(z|ky) is the fraction of training data
within cluster k, that belongs to phone z, and P(z|z2) is
computed by evaluating the mixture of Gaussians asso-
ciated with z. We use only the Gaussian mixtures from
the first iteration of boosting to determine P(z|ky).
This 1s because the Gaussians in subsequent iterations
are placed near the decision boundaries of the phones
within a cluster, and may not give a good representa-
tion of the points within the cluster as a whole.

To obtain the phone clusters, we use the bottom-
up clustering scheme illustrated in Figure 4, and in our
experiments used 15 clusters.

3. EXPERIMENTAL RESULTS

We evaluated our algorithms by testing them on a
voicemail transcription task [5]. The training data con-
sists of ordinary voicemail messages gathered at IBM,
and the test set is 86 similar messages. Altogether,
there are several million training frames, and 240 thou-
sand test frames. The 39-dimensional acoustic vectors
consisted of cepstra, deltas, and double-deltas. We
used a baseline system with 134k Gaussians and 2313
context-sensitive phonetic units to do a Viterbi align-
ment of the data in order to get the examples for each
phone that we then trained on. The baseline system
1s about as large a system as we can train with the
available data.

After boosting, we used the composite H values to
rank-order the phone-labels for each frame in the test
data. These ranks were then fed into the standard IBM
decoder [4]. In order to downweight silence and mum-
bling, we found it beneficial to equalize the phone pri-
ors in Equation 1 by initially weighting the examples
of each class inversely proportional to the total number
of examples in that class.

| System | 1st It. | 2nd | 3rd | 4th | bth |

| System | 1st It. | 2nd | 3rd | 4th | 5th |

69k-H | 40.64% | 40.29 | 39.77 | - - 69k-H | 1.0 0.996 | 0.989 | - -
69k-R | 40.64 40.58 | 39.77 | - - 69k-R | 1.0 0.999 | 0.997 | - -
134k-H | 39.71 39.73 | 39.74 | - - 134k-H | 1.0 0.995 | 0.986

134k-R | 39.71 39.48 | 39.15 | 39.10 | 38.92 134k-R | 1.0 0.999 | 0.996 | 0.992 | 0.988

Table 1: Word error rates for hierarchical (H) and re-
stricted (R) boosting.

| System | 1st It. | 2nd | 3rd | 4th | 5th |
69k-H 16.3% | 16.8 | 17.1 | - -
69k-R 16.3 16.8 | 17.0 | - -
134k-H | 16.6 17.6 | 17.9
134k-R | 16.6 1771179 | 179 | 18.1

Table 2: Frame recognition rates.

Table 1 presents word-error results for two different
sized hierarchical and restricted systems: one which we
built from scratch by adding roughly 69k Gaussians at
each iteration, and one in which we started with the
134k baseline system and added roughly 116k Gaus-
sians per iteration. The smaller systems were run for
3 iterations for testing purposes. The larger hierarchi-
cal system was run for 3 iterations because one of the
clusters contained a large number of classes with many
associated frames; this was a bottleneck that prevented
more iterations. Except for the larger hierarchical sys-
tem, the word-error rates continually decrease. We hy-
pothesize that the hierarchical scheme is more suscep-
tible to overtraining because for a given class belonging
to a given cluster, there are many examples that lie in
regions of space that are associated with classes which
are not cluster members. In the hierarchical scheme,
these examples will receive low weight because it looks
like they have no competition from other classes. In
contrast, the restricted scheme is sensitive to all possi-
ble classes. To verify this, we looked at the candidate
lists generated for each frame, and found that on aver-
age only 38% of the candidate classes are in the cluster
assoclated with the frame’s class. We believe that this
1s because with noisy data it is hard to find clusters
that do not have a significant number of exceptions.

Table 2 shows the frame recognition rates on the
alphabet of 2313 context-dependent phones, with the
examples from each class weighted equally.

To get a notion of how sharply boosting focused
on probable classes, at each iteration we computed the
entropy H of the weight distribution over the examples
for each phone. The quantity 27 gives a measure of
the effective number of examples for that phone at that
iteration, and in Table 3, we show how the total number

Table 3: Normalized number of training examples.

of effective examples varied, normalized to a fraction
of the total number of training frames. The fact that
the hierarchical scheme focuses on a smaller number
of examples is consistent with its observed tendency to
overtrain.

4. CONCLUSION

The combination of theoretical expectations with ex-
perimental verification leads us to believe that boosting
1s an effective way of building large systems. Experi-
mentally, we have found that hierarchical and restricted
variants of the basic AdaBoost algorithm allow us to
improve on very large systems.

5. REFERENCES

[1] Yoav Freund and Robert Schapire. Experiments with
a new boosting algorithm. In Proceedings of the Thir-
teenth International Conference on Machine Learning,

Bari, Italy, July 1996. Morgan Kaufmann.

[2] Yoav Freund and Robert Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119-137, 1997.

[3] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: A statistical view of boosting. Tech-
nical report, www-stat.stanford.edu/ hastie/Papers/,

1998.
[4] P.S. Gopalakrishnan, L.R. Bahl, and L.R. Mercer. A

tree search strategy for large-vocabulary continuous

speech recognition. In JCASSP-95, 1995.
[6] M. Padmanabhan, G. Saon, S. Basu, J. Huang, and

G. Zweig. Recent improvements in voicemail transcrip-

tion. In Eurospeech-99, 1999.
[6] R. Schapire, Y. Freund, P. Bartlett, and W.S. Lee.

Boosting the margin: A new explanation for the ef-
fectiveness of voting methods. Annals of Statistics,

26(5):1651-1686, 1998.

[7] R. Schapire and Y. Singer. Improved boosting algo-
rithms using confidence-rated predictions. In Proc. 11th
Annual Conference on Computational Learning Theory,

1998.

[8] Holger Schwenk. Using boosting to improve a hybrid
hmm /neural network speech recognizer. In ICASSP-99,
1999.

