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ABSTRACT

In the past several years, a number of different language
modeling improvements over simple trigram models have
been found, including caching, higher-order n-grams, skip-
ping, modified Kneser-Ney smoothing, and clustering. While
all of these techniques have been studied separately, they
have rarely been studied in combination. We find some sig-
nificant interactions, especially with smoothing techniques.
The combination of all techniques leads to up to a 45%
perplexity reduction over a Katz smoothed trigram model
with no count cutoffs, the highest such perplexity reduction
reported.

1. INTRODUCTION

For many years, simple trigram models, smoothed with
Katz smoothing [5] or similar techniques, have represented
the standard baseline for language modeling. During that
time, many improvements over this simple model have been
suggested, including skipping [11, 3, 10], clustering [1, 10],
caching [6, 7, 8], higher-order n-grams, smoothing [2, 10],
and sentence mixture models [4]. While each of these tech-
niques leads to improvements over the baseline, only rarely
have the techniques been examined in combination. In
many cases, a set of these techniques — for instance, skip-
ping, smoothing and clustering — may all attempt to im-
prove performance in similar ways — in this case, by better
combination of data. Similarly, other sets of techniques
— e.g. higher-order n-grams and sentence mixture models
— may both introduce similar drawbacks, like data spar-
sity. When a set of techniques has the same advantages or
drawbacks, how will they interact? Only a few papers have
looked at combinations of techniques, and no paper has
tried to combine so many. Putting all of these techniques
together leads to perhaps the best reported improvement
over a Katz smoothed trigram model, up to a 45% perplex-
ity reduction and an 8.26% reduction in speech recognition
word-error rate.
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2. TECHNIQUE DESCRIPTIONS

In this section, we will describe each of the techniques we
have used. We begin by defining some simple notation. The
goal of language modeling is to determine the conditional
probability of a word, given its history, P(w;|wi...wi—1).
As i becomes large, estimating this probability becomes
difficult, so approximations such as P(w;|wi..w;—1) =
P(w;|w;—2w;—1) are typically made. This trigram proba-
bility is much easier to compute than the fully conditioned
C(wi—2w;—1w;)
Clw;—2wi—1)
where C'(w;—2w;—1w;) represents the number of occurences
of the sequence w;_2w;_1w; in some training corpus. Un-
fortunately, this approximation is noisy, so it is typically
smoothed by combining it with estimates of P(w;|w;—1)
and P(w;). One of the most commonly used smoothing
techniques is called Katz smoothing [5]. We will denote
a Katz smoothed trigram model by Pi ., (wilwi—2wi—1).
For many years, Katz smoothing or deleted interpolation
represented the state-of-the-art in smoothing techniques.

probability; a rough approximation is simply

Smoothing: In [2], a detailed comparison of many
smoothing techniques was performed and it was found that
a modified interpolated form of Kneser-Ney smoothing [10]
consistently outperformed all other smoothing techniques.
The basic insight behind Kneser-Ney smoothing is the fol-
lowing. Consider a conventional bigram model of a phrase
such as Pi,t,(Francisco|eggplant). Since the phrase San
Francisco is fairly common, the conventional unigram prob-
ability (as used by Katz smoothing or deleted interpola-
c(Francisco)

» Cw)
Francisco occurs in exceedingly few contexts, and its prob-
ability of occuring in a new one is very low. Kneser-Ney
smoothing uses a modified backoff distribution based on
the number of contexts each word occurs in, rather than
the number of occurrences of the word. Thus, a probabil-
ity such as Py (Francisco|eggplant) would be fairly low,
while for a word like stew that occurs in many contexts,
Py (stew|eggplant) would be relatively high, even if the
phrase eggplant stew did not occur in the training data. In
particular, Kneser-Ney smoothing uses the following for-
mula (given here for a bigram)

tion) will also be fairly high. But, the word

[{v|C(vw;)>0}]|

PN (wilwi-1) = +’\(“’1‘1)Zw {v]C(vw)>0}|

C(wi—1)



where D is a discount factor optimized on heldout data,
and A(w;—1) is chosen so that the probabilities sum to 1,
and where [{v|C(vw;) > 0}] is the number of words v that
w; can occur in the context of. The formula can be easily
extended to trigrams and beyond.

Higher-order n-grams: The most obvious exten-
sion to trigram models is to simply move to higher-order n-
grams, such as four-grams and five-grams. As we will show,
when combined with the proper smoothing techniques, five-
grams can lead to improved performance. (In pilot exper-
iments, moving beyond five-grams lead to only negligible
gains.)

Skipping: Of course, in practice, it may be
fairly unlikely that a five-word sequence that occurs in
the training data also occurs in the test data; but it
will be less unlikely that some similar sequence occurs
[11, 3, 10]. In particular, we examine probabilities of
the form P(w;|w;—aw;—sw;—1) and P(w;|w;—aw;—2w;—1).
There are many possible ways that skipping can be done;
the utility of these particular sequences was found during
pilot experiments. (For experiments limited to trigrams,
we examine probabilities of the form P(w;|w;—3w;—1) and
P(wi |w¢,3w¢,2).)

Clustering: Next, we describe our clustering tech-
niques, which are a bit different (and, in pilot experiments,
slightly more effective) than traditional clustering [1, 10].
Consider a probability such as P(Tuesday|party on). Per-
haps the training data contains no instances of the phrase
party on Tuesday, although other phrases such as party on
Friday do appear. If we put words into classes, such as
the word Tuesday into the class WEEKDAY, we can then
decompose the probability

P(Tuesday|party on) =
P(WEEKDAY|party on) x P(Tuesday|party on WEEKDAY)

This decompostion is a strict equality, but in practice, be-
cause of smoothing, may lead to significantly better results.
More generally, we will denote this probability as

P(Wilwi—2wi—1) x P(w;|w;_aw;_1W5)

We call this technique “predictive” clustering.

Another way of using clustering is on the conditioned
words. For instance, if parties are in the class of EVENT,
we could compute P(Tuesday|EVENT on) If there were
no occurrences in the training data of EVENT on Tues-
day we could then backoff to P(Tuesday|on); if there
were no occurrences of on Tuesday we could back off to
P(Tuesday|PREPOSITION) before finally backing off to
the unigram. As a concise way of indicating this backoff,
we will write

P(Tuesday| PREPOSITION on EVENT party)

More generally, we will denote this kind of backoff by
P(wi|w;—2Wi—ow;—1Wi_1), to mean the backoff order is
from P(wi|wi,2Wi,2wi,1Wi,1) to P(wi|Wi,2wi,1Wi,1)
to P(wi|lwi—1Wi—1) to P(w;|W;—1) to P(w;). Since we al-
ways use hard clusters — clusters in which each word be-
longs to a single cluster — P(w;|w;—oaWi_gw;—1W;—1) =
P(w;|w;—2w;—1), and similarly for the other probabilities.
We call this technique “conditional” clustering.

These techniques can be combined together to produce
even better results than either could produce separately. In
particular, we use the following formula:

P(w;|wi—swi—1) =
P(Wi|wi—2 Wi _ow;—1Wi_1) X P(w;|ws—2Wi—ow; 1 Wi—1W5)

There is no need for the clusters used for the predictive
clustering and the conditional clustering to be the same
[12]. For instance, consider a pair of words like a and an.
In general, a and an can follow the same words, and so,
for predictive clustering, belong in the same cluster. But,
there are very few words that can follow both a and an — so
for conditional clustering, they belong in different clusters.
We have also found in pilot experiments that the optimal
number of clusters used for predictive and conditional clus-
tering are different; in this paper, we use 128 clusters for
the conditional clusters, and 256 clusters for the predictive
clusters.

The clusters are found automatically using a tool that
attempts to minimize perplexity. In particular, for the con-
ditional clusters, we try to minimize the perplexity of train-
ing data for a bigram of the form P(w;|W;_1); for the con-
ditional clusters, we try to minimize P(w;—1|W;) — although
this is not quite the correct quantity to minimize, it means
that we can use the same clustering code with minimal mod-
ifaction (switch the order of the bigrams) for both kinds of
clustering, and it works well in practice.

Caching: If a speaker uses a word, it is likely that
he will use the same word again in the near future. This
observation is the basis of caching [6, 7, 8]. In particular,
in a unigram cache, we form a unigram model from the
most recently spoken words (all those in the same article if
article markers are available, or a fixed number of previous
words if not.) This unigram cache can then be linearly
interpolated with a conventional n-gram. We can use other
kinds of caches; for instance, we could form a smoothed
trigram from the previous words, and interpolate. The best
performing technique we have tried — the one used here in
experiments — is to use a unigram cache, and a smoothed
trigram cache; however, the smoothed trigram cache is only
used if either the bigram or trigram context of the data is
found somewhere in the cache. The weights for both caches
vary linearly with the amount of data in the cache. This
technique was marginally better than a straight unigram
interpolation in pilot experiments.

Sentence Mixture Models: Iyer and Ostendorf
[4] observed that within a corpus, there may be several dif-
ferent sentence types, and that by modeling each sentence
type separately, improved performance can be achieved. In
particular, let s; denote the condition that the sentence
under consideration is a sentence of type j. Then the prob-
ability of the sentence, given that it is of type j can be
written as

n
H P(w¢|wi_2wi_1sj)
i=1
Sometimes, the global model (across all sentence types) will

be better than any individual sentence type. Let so be a
special context that is always true:

P(w;|wi—2w;—150) = P(w;|wi—2w;—1)



Let there be S different sentence types (4 < S < 8 is typi-
cal); let 09...05 be sentence interpolation parameters opti-
mized on held-out data subject to the constraint Ef:o oj =
1. The overall probability of a sentence can be denoted by

S n
Z (e} H P(wi\wifgwiflsj)
j=0  i=1

The probabilities P(w;|w;—sw;—15;) may suffer from data
sparsity, so they are linearly interpolated with the global
model P(w;|wi—2w;—1). This formulation is equivalent to
one in which the sentence type is a hidden variable for each
test sentence. Sentence types for the training data were
found by using the same clustering program used for clus-
tering words; in this case, we tried to minimize the sentence-
cluster unigram perplexities, a slighly simpler technique
than that previously used [4].

Combining techniques: Our overall technique is
somewhat complicated. At the highest level, we use a sen-
tence mixture model, in which we sum over sentence-specific
models for each sentence type. Within a particular sentence
mixture model, we combine different techniques with pre-
dictive clustering. That is, we combine sentence-specific,
global, cache, and global skipping models first to predict
the cluster of the next word, and then again to predict the
word itself given the cluster. Our overall technique can be
summarized by the following equations.

For each sentence type, we wish to linearly interpolate
the sentence-specific 5-gram model with the general 5-gram
model, the two skipping models, and the two cache mod-
els. We wish to do this whether we are predicting the
cluster of the word given its context, or the word, given
both cluster and context. Let A1 j;...\¢,; be interpolation
parameters (optimized on held-out data). Then, the func-
tion sen; (A, wi—4...w;—1, B) is

SEN; (A, Wi—4... Wi—1, B) =

A1, PN (A wi —a Wi _gwi 3 Wi _sw; o Wi _ow; 1 Wi_1 Bsj )+
>‘2,]'PKN(A|wi—4Wi—4wi—3Wi—Swi—QWi—Qwi_1Wi_1B)—|—
A3, PN (Al wi—aWi—aw; —sWi_sw;_1W;_1B)+

A, PN (Alwi —aWi—gwi—oWi—ow; -1 Wi—1 B)+
)‘5;jpcache(A|B)+

6,5 Peache (Alwi—2w;—1B)

A and B will either be the class of the word we are trying
to predict and a dummy value (e), respectively, or the word
we are trying to predict and the class of the word."

Now, we can write out our probability model:

Peverything(wl'“wn) =
S n
E gj Hsenj (WZ, Wi—4... Wi, .) X semn; (wi, Wi+4... Wi, Wz)
j=0 i=1
The parameters used for Kneser-Ney smoothing, as well as

Ak,; are actually different, depending on whether we are
predicting a cluster or a word.

1This formula is actual an oversimplification because the val-
ues A5 ; and Mg ; depend on the amount of training data in a
linear fashion, and if the context w;_1 B does not occur in the
cache, then the trigram cache is not used. In either case, the
values of the A’s have to be renormalized so that they sum to 1.

Clearly, combining all of these techniques together is
not easy, but as we will show in the results section, the
effects of combination are roughly additive, and the effort
is worthwhile.

3. RESULTS

We performed several sets of experiments. We primarily
performed our experiments on data with verbalized punc-
tuation, but the data we used for acoustic testing used non-
verbalized punctuation. All of our experiments used the
NAB corpus, primarily the Wall Street Journal (WSJ) sec-
tion. In particular, we always used ws94_044 for heldout
data, and ws94_045 for test. Because of the way our code
was implemented, we used relatively small heldout and test
sets consisting of every eighth sentence taken from the first
160,000 words of the respective files. We performed tests
using 100,000, 1,000,000, 10,000,000 words of training data
(all taken from the beginning of the WSJ section of NAB),
and the complete corpus (except heldout and test): 290
million words for verbalized punctuation, 260 million words
for non-verbalized punctuation. End-of-sentence was in-
cluded in perplexity computations, but out-of-vocabulary
words were not. The vocabulary size was always 60,000
words.

In Figure 1 we display perplexity results. The results
are presented in a slightly unusual way: since it was unclear
what order to add the techniques in, we decided to show re-
sults from a baseline, with each technique added or removed
individually, rather than incrementally. Thus, for instance,
a chart entry in the column “Katz+” and the row “sen-
tence” indicates Katz smoothing combined with sentence
clustering; an entry in the column “All-” and row “cluster”
indicates all techniques except clustering. Because of inter-
actions between some techniques and smoothing methods,
we also used Kneser-Ney smoothing as a baseline.

Examining the results, we find some trends that are
expected, and others that are more surprising. Perhaps
most interesting is the interaction between clustering and
smoothing, which had not been observed (or tested for)
previously. We also note a relatively small but consistent
interaction between sentence mixture models and training
size: the larger the training size, the more the improvement
from sentence mixture models. Predictably, the effect of
caching is much smaller with larger training data sizes. Im-
provements from skipping models grow with the training
data size, but are negligible when the best other techniques
are used.

We also performed word-error rate experiments rescor-
ing 100-best lists of WSJ94 dev and eval, about 600 ut-
terances. The 1-best error rate for the 100-best lists was
10.1% (our recognizer’s models were slightly worse than
even the baseline used in rescoring) and the 100-best er-
ror rate (minimum possible from rescoring) was 5.2%. We
were not able to get word-error rate improvements by using
caching (when the cache consisted of the output of the rec-
ognizer), and were actually hurt by the use of caching when
the interpolation parameters were estimated on correct his-
tories, rather than on recognized histories. The bottom
right chart of Figure 1 shows word-error rate improvement
of each technique, from three baselines: Katz, Kneser-Ney,



100,000 1,000,000 10,000,000
Katz+ KN+ All- Katz+ KN+ All- Katz+ KN+ All-
perplexity 404.07 358.75 | 235.56 221.51 | 196.97 | 126.51 136.28 | 124.95 77.09
%improve 41.70% 42.89% 43.43%
skip 6.61% 4.72% 1.34% 8.09% 5.73% 2.45% 9.16% 7.14% 2.23%
5-gram | -5.62% 0.70% | -2.47% 1.77% 1.31% | -1.35% -5.92% 5.18% 2.17%
sentence 6.64% 5.61% 6.57% 7.19% 6.13% 5.17% 8.10% 7.65% 4.09%
cluster | -33.59% | -36.10% | -5.79% -15.08% | -6.78% 5.07% -6.10% 5.50% | 11.00%
cache | 36.88% | 35.10% | 66.10% 29.65% | 28.09% | 44.06% 25.15% | 24.16% | 30.45%
KN [ 11.22% 15.07% 11.08% 21.02% 8.31% 23.38%
all all-no-punc Error rates — all-no-punc
Katz+ KN+ All- Katz+ KN+ All- Katz+ KN+  All-cache-
perplexity 66.14 63.83 36.37 95.20 91.47 55.74 90.31 90.40 91.11
%improve 45.02% 41.45% 8.26%
skip 9.55% 9.26% 3.88% 11.16% | 10.53% 5.40% 1.03% | 2.40% 1.24%
5-gram | 14.70% | 22.66% | 23.15% 13.89% | 22.12% | 22.79% -0.52% | 2.81% 1.46%
sentence 9.21% 9.43% 7.08% 9.39% 9.43% 7.79% 1.55% 0.73% 1.35%
cluster | -0.36% 4.17% 8.79% -2.75% 4.56% | 10.26% 1.55% | 3.44% 4.50%
cache | 15.07% | 14.77% | 13.91% 7.77% 7.45% 6.21% -2.99% | -1.35%
KN 3.49% 22.66% 3.91% 27.80% 0.93% 7.54%

Figure 1: Relative improvement from each technique on a variety of sizes

and everything, except caching. The most important sin-
gle factor for word-error rate was the use of Kneser-Ney
smoothing, which leads to a small gain by itself, but also
makes clustering, skipping, and 5-grams much more effec-
tive. Clustering also leads to significant gains.

4. CONCLUSION

We believe our results — up to a 45% perplexity reduction —
are the best ever reported for language modeling, as mea-
sured by improvement from a fair baseline, a Katz smoothed
trigram model with no count cutoffs. Our word-error rate
reduction of 8.26% from combining all techniques except
clustering is also very good. The results compare favorably
to other recently reported combination results [9], where,
essentially using a subset of these techniques, from a com-
parable baseline (absolute discounting), the perplexity re-
duction is half as much. Our results show that smoothing
can be the most important factor in n-gram modeling, and
its interaction with other techniques cannot be ignored.
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