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Abstract
We have assembled a standalone, movable system

that can capture long sequences of omnidirectional im-
ages (up to 1,500 images at 6.7 Hz and a resolution of
1140 × 1030). The goal of this system is to reconstruct
complex large environments, such as an entire floor of
a building, from the captured images only. In this pa-
per, we address the important issue of how to calibrate
such a system. Our method uses images of the envi-
ronment to calibrate the camera, without the use of
any special calibration pattern, knowledge of camera
motion, or knowledge of scene geometry. It uses the
consistency of pairwise tracked point features across a
sequence based on the characteristics of catadioptric
imaging. We also show how the projection equation
for this catadioptric camera can be formulated to be
equivalent to that of a typical rectilinear perspective
camera with just a simple transformation.

1 Introduction
The visualization and modeling of large environ-

ments is increasingly becoming an attractive propo-
sition, due to faster computer speeds, cheaper and
higher quality cameras, and bourgeoning commercial
possibilities. Potential applications of very wide field-
of-view imagery include surveillance, teleconferencing,
advertising, especially in the areas of real estate and
tourism [3], multimedia-based endeavours, games, and
their Web-based counterparts.

Approaches to generating very wide field-of-view
images include both taking multiple images and com-
positing them, and using a specialized optic-lens ar-
rangement. The tradeoff between these approaches is
resolution versus speed of acquisition. Using multi-
ple images has the advantage of providing potentially
large resolution at the expense of (usually) off-line pro-
cessing. However, in many Web-based applications,
high resolution is probably an overkill due to limited
bandwidth; for these applications, using a specialized
optic-lens arrangement such as a high resolution cata-
dioptric camera [14] is adequate.

We adopt the approach of using omnidirectional im-
ages as input to a stereo algorithm to reconstruct com-

plicated, large environments. An example of such an
environment is an entire floor of a building. To this
end, we have assembled a standalone system to acquire
long sequences of omnidirectional images. In this pa-
per, we describe a novel approach to catadioptric self-
calibration and show that the catadioptric projection
equation mirrors that of the conventional rectilinear
projection via a simple transformation.
1.1 Previous Work

There is a lot of prior work on camera calibration,
ranging from photogrammetry [4, 5] to calibration us-
ing patterns [22] to calibration using vanishing points
[2, 20]. There are also many self-calibration tech-
niques, that use known camera translational motion
[6], known camera rotation [7], point correspondences
[8, 15, 18, 21], and area registration [11]. All of the
above assume rectilinear camera geometry.

Geyer and Daniilidis’ [9] method for calibrating
a catadioptric camera uses a large dot calibration
pattern, or user-supplied points along straight lines.
Their camera can be calibrated using only one image,
and the output of their calibration technique are the
paraboloid parameter associated with the mirror h,
the principal point (px, py), and the aspect ratio α.
(Recovery of α was described but not shown experi-
mentally.) Our method is a self-calibration approach,
and has the option of recovering the aspect ratio α
and image skew s in addition to h and (px, py).

2 The capturing system
The system we use to capture sequences of omnidi-

rectional images (shown in Figure 1) consists of:

• A color camera with a resolution of 1140 × 1030

• A catadioptric attachment (ParaShot lens and
paraboloid mirror)

• A DC motor

• An uninterruptable power supply (UPS)

• A 450 MHz PC with 2GB memory and a flat-
panel display.



Figure 1: Catadioptric camera system.

The large RAM size enables us to capture a little more
than 1,500 omnidirectional images on the fly in the raw
image mode of 1 byte per pixel. The rate of capture
is about 6.7 frames per second. This can be increased
with optimized coding, since the specified rate of cap-
ture is 11.75 frames per second. With the use of the
UPS, the system can perform standalone capture for
about half an hour.

We have taken sequences of images under two con-
ditions: The first is while the camera is being rotated
about a vertical axis by the motor (which has variable
speeds) while the platform is stationary. The other is
while the camera is stationary with respect to the plat-
form and the platform is manually moved. The third
possible condition in which both camera and platform
are moved has not been currently used.

3 Catadioptric formulation
The catadioptric camera consists of a telecen-

tric lens that is designed to be orthographic and a
paraboloid mirror. Figure 2 shows the cross-section
of the image plane-mirror representation through the
center (i.e., focus) of the paraboloid mirror.

As derived in [14], the expression for the mirror
surface is

w′ =
h2 − (u′2 + v′2)

2h
=

h2 − r2

2h
(1)

The actual observed image pixel location (u, v) is
linked to the camera pixel location (u′, v′) by a cal-
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Figure 2: A slice through the paraboloid mirror center.
O is the center.
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where α is the aspect ratio, s is the image skew, and
(px, py) is the principal point.

3.1 Projection equation
Suppose a point P = (x, y, z)T relative to O in Fig-

ure 2 is mapped to camera pixel (u′, v′)T. The actual
3D point on the mirror surface that P is projected
onto is given by
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with λ > 0. Hence

λz =
h2 − (λ2x2 + λ2y2)

2h
(4)

Solving for λ, we have

λ = h

√
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As a result, we can rewrite the projection equation
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Substituting (7) into (2), we get
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This is exactly the form for rectilinear perspective pro-
jection. Hence, using this formulation, we can apply
structure from motion on the tracks in the omnidi-
rectional image sequence in the exact manner as for
rectilinear image sequences. The actual 3D points
(x, y, z)T can then be computed from the resulting
“pseudo” 3D points (x, y, z′)T using the relationship

z =
z′2 − (x2 + y2)

2z′ , (9)

since z′ =
√

x2 + y2 + z2 + z. We intend to use this
formulation in our structure recovery from sequences
of omnidirectional images.
3.2 Epipolar considerations

The derivations for the catadioptric epipolar geom-
etry are similar to that of [19], with the biggest dif-
ference being their use of hyperboloid mirror and per-
spective camera. Our system uses a paraboloid mirror
and orthographic camera.

For a pair of images with indices 1 and 2, corre-
sponding points (in homogeneous coordinates to indi-
cate their positions on the mirror surface) satisfy the
epipolar constraint

qT
j2Eqj1 = 0, (10)

where E is the essential matrix associated with the
image pair, and qjk is defined in (3).

From Figure 3, the normal to the plane passing
through both camera centers (with respect to O2) is

n2 = Eqj1 =




a
b
c


 (11)

Hence the equation of the plane is of the form

n2 · p = 0 or au′ + bv′ + cw′ = 0 (12)

After substituting (1) into (12) and rearranging terms,
we get
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c
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Figure 3: Epipolar plane for the two camera positions
centered at O1 and O2. qj1 and qj2 are the respective
projections of 3D point Pj .

This is the equation of a circle centered at (ah
c , bh

c )
with a radius of h

c

√
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as
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From (2), we obtain the epipolar curve in the second
image corresponding to qj1 in the first image as
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(15)
3.3 Masking

In our proposed self-calibration approach, we use
point tracks across an omnidirectional image sequence.
One problem that we face is the set of “blind spots”
caused by obstruction of view by the supports for the
mirror and camera. We cannot assume that points
tracked along the perimeter of these “blind spots” will
be stationary across the sequence, since it is possible
that erroneous tracks can occur due to occluded edges
giving rise to spurious corners.

To avoid the problems caused by the “blind spots”
on the image, we manually create a mask that is used
by the calibration program to ignore points inside or
within five pixels of the mask boundary. An exam-
ple of the mask superimposed on an omnidirectional
image is shown in Figure 8(a).

We have identified two methods for self-calibration:
the first using an identified circumscribing circle of
the omnidirectional image, and the other, which we
propose, using the consistency of pairwise point cor-
respondences with catadioptric imaging. We describe
the circle-based method first.



4 The direct circle-based
self-calibration method

The idea of this direct circle-based method, which
uses only one image, is to identify the bounding circle
of the omnidirectional image. This can be done manu-
ally or automatically by using a predefined threshold,
finding the boundary, and fitting a circle to the result-
ing boundary. The center of the circle is deemed to
be the image principal point. Since the field of view
of the omnidirectional image is known (105◦ for the
ParaShot), the camera parabolic parameter can then
be directly computed using the radius of the circle.

To find the relationship between the mirror param-
eter h and the radius of the omnidirectional image,
consider Figure 2. From

z =
h2 − r2

2h
and t = tan θ =

r

z
(16)

we have
t =

2rh
h2 − r2 (17)

After some manipulation, we arrive at

h = r
1 +

√
1 + t2

t
= r cot

θ

2
(18)

Thus we can compute h if we know r = rmax (i.e., the
radius of the omnidirectional image) corresponding to
θ = θmax = 105◦.

This method is very easy to implement. However, if
the circle is to be automatically extracted, finding the
optimal threshold is difficult due to changing lighting
conditions. In addition, a single static threshold may
not be sufficient, due to directional lighting that may
make one side brighter than the other.

5 Proposed self-calibration method
Our proposed self-calibration method uses point

feature tracks across an omnidirectional image se-
quence. It uses consistency of pairwise correspondence
with the imaging characteristics of the catadioptric
camera described in Section 3.2.
5.1 Generating tracks

The first step is to generate point tracks; this is ac-
complished using tracker developed by Shi and Tomasi
[17]. An example of a collection of feature tracks gen-
erated is shown in Figure 4. Note that we did not track
across very long sequences because of the highly dis-
torting imaging characteristic of the catadioptric cam-
era. We typically track across 20-30 images, spanning
between 15◦ and 25◦.
5.2 Parameter estimation

The estimation of the unknowns (i.e., h, (px, py), r,
and s as defined in (1) and (2)) is accomplished by
using the least-median error metric (see, for example,

Figure 4: Example of tracking for office scene: 100
feature tracks are superimposed on the first omnidi-
rectional frame.

[24]). In our approach, we use an exhausive combina-
tion of pairs of images that are at least four frames
apart and have a minimum of 10 correspondences in
our objective function to be minimized. This is to
maximize the use of point features and to avoid pos-
sible degeneracies associated with very small camera
motion. The estimation of essential matrix of pairs of
images uses the method described in [23].

To recover the camera parameters, we minimize the
objective function

O =
Npairs∑
i=1

medj⊂S(bi,ei)Eij (19)

where Npairs is the number of different image pairs,
“med” refers to the median of the series of errors Eij ,
bi and ei are the frame numbers corresponding to the
ith pair, and S(bi, ei) is the set of indices of feature
tracks that spans across at least frames bi and ei. Eij

can be the algebraic error metric

E(1)
ij =

(
qT

j,ei
Eiqj,bi

)2
(20)

or image error metric

E(2)
ij = d2 (

qT
j,ei

, Eiqj,bi

)
+ d2 (

qT
j,bi

, ET
i qj,ai

)
(21)

where d(m,n) is the image distance from m to the
epipolar curve specified by n of the form specified in
(15). However, as we shall see, using the image error
metric is more robust, and this is the metric that we
use in our proposed calibration approach.

The estimation of the unknown parameters
h, (px, py), α, and s is performed using the Nelder-
Mead simplex search algorithm [16]. The initial values



of h and (px, py) are those extracted using the circle-
based technique, while the initial values of α and s are
1 and 0, respectively. While this algorithm is not the
most efficient, it is guaranteed to converge to a local
minimum and is very simple to implement.

6 Results
We have applied our proposed self-calibration tech-

nique to a number of different sequences, and have pro-
duced results that are consistently good. The known
lines in the dewarped images produced with the ex-
tracted parameters appear to be straight. While the
simple circle-based and algebraic distance-based self-
calibration techniques do on occasion produce reason-
able results, they are not as consistent as those of
the proposed method (i.e., with the image-based met-
ric). Figure 5 shows a comparison of results between
the three approaches. As can be seen, our proposed
method produced the best results. The numerical out-
puts for the same sequence are listed in Table 1.

Circle-based Algebraic error Image error
h 345.33 530.85 408.28
p (630.54, (609.36, (575.22,

480.78) 410.50) 453.62)
α — 0.988621 0.952877
s — -0.001724 0.002096

Table 1: Comparison of results from different self-
calibration methods for the lounge scene. Both h and
p are in pixels.

As a further test to validate the recovered intrin-
sic parameters, we extracted a mosaic of an office us-
ing a sequence of parallax-free images. The camera
is rotated such that the rotation axis passes through
its virtual projection center. This is accomplished by
continually adjusting the position of the camera and
checking for parallax by rotating the camera and view-
ing the images. The steps taken to create the full mo-
saic is shown in Figure 6.

In our example we use 180 images, each about 1◦
apart. Since the maximum angular field of view for
each camera is 210◦, the total span is about 389◦,
which is enough to wrap around itself. Note that there
is no enforcement of the closed loop constraint in con-
structing the mosaic. The results are shown in Fig-
ure 7. Note that the mosaic using the circle-based
parameters looks blurred, while the other two appear
more focused. However, the parameters extracted us-
ing the algebraic error could not close properly, due to
the underestimation of the rotation angle.

Another two self-calibration examples are shown in
Figures 8 and 9. In these cases, the outputs for the
other two approaches are similar.

(a) (b)

(c) (d)

(e) (f) (g)

Figure 5: Results for a lounge scene: (a) First frame
with 100 feature tracks superimposed, (b) Dewarp-
ing using circle-based self-calibrated parameters, (c)
Dewarping using algebraic distance metric, (d) De-
warping using image distance metric. The follow-
ing cropped versions (with hand drawn lightly-shaded
lines superimposed) are shown to illustrate the effec-
tiveness of these methods: (e) Cropped version of (b),
(f) Cropped version of (c), (g) Cropped version of (d).
Note that the lines are hand drawn such that their
end-points intersect the dewarped sides of the ceiling
tiles. The lines in (g) fits the best.



Parallax-free sequence Point tracks

Compute
relative
rotations
(RANSAC)

Register and
median filter
using
luminance Y

360o mosaic

Figure 6: Steps taken to create a 360◦ mosaic.

Figure 7: Results of mosaicking. Top: Using circle-
based parameters, Middle: Using algebraic error, Bot-
tom: Using image error (proposed).

(a) (b)

Figure 8: Results for an office scene: (a) First frame
(with mask), (b) Dewarping using image distance met-
ric.

(a) (b)

Figure 9: Results for a kitchen scene: (a) First frame
(with mask), (b) Dewarping using image distance met-
ric.

7 Discussion
Our approach has the primary advantage of be-

ing able to calibrate the catadioptric camera at any
place that has a sufficient number of features to track,
since it does not require any special calibration pattern
(compared to [9]) or known camera motion. Particu-
larly interesting is the fact that our self-calibration
approach does not rely on any specific scene struc-
ture such as colinearity of points or straightness of
lines. While it does require multiple images and point
tracks, this is a small price to pay for its flexibility of
use. Although the direct circle-based method has the
advantage of using just one image, the recovery of the
circle parameters, and hence the camera parameters,
may not be very accurate.

Because each image captured has a wide field of
view, estimation of the essential matrix or motion pa-
rameters tends to be rather stable. This tendency has
been demonstrated in various work such as [10, 12].
In our work, we only use pairwise correspondences to
compute the camera parameters. It is certainly more
robust to use trilinearity constraints to remove bad
tracks (e.g., [1]) and potentially characterize trilinear-
ities as functions of the camera parameters in order to



extract these parameters directly.
Not surprisingly, using the image-based measure as

specified in (21) is superior to using just the algebraic
distance measure specified in (20). Another approach,
which should be even more reliable, is to use parallax-
free complete rotation to compute the camera intrinsic
parameters by minimizing the error in constructing
its panoramic mosaic. This is very much in the same
spirit as [13]. The disadvantages are that (1) many
more images are required, and (2) the camera has to
be placed so that its center of projection is very close
to the rotation axis relative to object distances to the
camera. Item (2) may not be easy to satisfy in an
indoor environment.

8 Summary and Conclusions
We have described a reliable method for self-

calibration for the case of the catadioptric camera
with a paraboloid mirror. Our calibration method is
very convenient because it does not require the use
of any special calibration pattern, nor does it assume
any knowledge of camera motion or scene geometry.
It uses the consistency of pairwise tracked point fea-
tures across a sequence based on the characteristics of
catadioptric imaging. In addition, our derivation has
shown that the projection equation of the catadioptric
camera can be converted to a form of the typical recti-
linear perspective camera through a transformation of
the z-coordinate. We intend to capitalize on this form
of projection to simplify our recovery of structure and
motion.
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