
Polymorphic versus Monomorphic

Flow-Insensitive Points-To Analysis for C�

Jeffrey S. Foster1, Manuel Fähndrich2, and Alexander Aiken1

1 University of California
Berkeley, 387 Soda Hall #1776, Berkeley, CA 94720

{jfoster,aiken}@cs.berkeley.edu
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052

maf@microsoft.com

Abstract We carry out an experimental analysis for two of the de-
sign dimensions of flow-insensitive points-to analysis for C: polymorphic
versus monomorphic and equality-based versus inclusion-based. Holding
other analysis parameters fixed, we measure the precision of the four de-
sign points on a suite of benchmarks of up to 90,000 abstract syntax tree
nodes. Our experiments show that the benefit of polymorphism varies
significantly with the underlying monomorphic analysis. For our equality-
based analysis, adding polymorphism greatly increases precision, while
for our inclusion-based analysis, adding polymorphism hardly makes any
difference. We also gain some insight into the nature of polymorphism
in points-to analysis of C. In particular, we find considerable polymor-
phism available in function parameters, but little or no polymorphism in
function results, and we show how this observation explains our results.

1 Introduction

When constructing a constraint-based program analysis, the analysis designer
must weigh the costs and benefits of many possible design points. Two important
tradeoffs are:

– Is the analysis polymorphic or monomorphic? A polymorphic analysis sepa-
rates analysis information by call site, while monomorphic analysis conflates
all call sites. A polymorphic analysis is more precise but also more expensive
than a corresponding monomorphic analysis.

– What is the underlying constraint relation? Possibilities include equalities
(solved with unification) or more precise and expensive inclusions (solved
with dynamic transitive closure), among many others.

Intuitively, if we want the greatest possible precision, we should use a poly-
morphic inclusion-based analysis, while if we are mostly concerned with effi-
ciency, we should use a monomorphic equality-based analysis. But how much
� This research was supported in part by the National Science Foundation Young
Investigator Award No. CCR-9457812, NASA Contract No. NAG2-1210, an NDSEG
fellowship, and an equipment donation from Intel.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 175–199, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

176 Jeffrey S. Foster et al.

Monomorphic
Steensgaard’s

Polymorphic
Steensgaard’s

Monomorphic
Andersen’s

Polymorphic
Andersen’s

✑
✑✑✰

◗
◗◗�

◗
◗◗�

✑
✑✑✰

Figure1. Relation between the four analyses. There is an edge from analysis x
to analysis y if y is at least as precise as x.

more precision does polymorphism add, and what do we lose by using equal-
ity constraints? In this paper, we try to answer these questions for a particular
constraint-based program analysis, flow-insensitive points-to analysis for C. Our
goal is to compare the tradeoffs between the four possible combinations of poly-
morphism/monomorphism and equality constraints/inclusion constraints.

Points-to analysis computes, for each expression in a C program, a set of
abstract memory locations (variables and heap) to which the expression could
point. Our monomorphic inclusion-based analysis (Sect. 4.1) implements a ver-
sion of Andersen’s points-to analysis [4], and our monomorphic equality-based
analysis (Sect. 4.2) implements a version of Steensgaard’s points-to analysis [29].
To add polymorphism to Andersen’s and Steensgaard’s analyses (Sect. 4.3), we
use Hindley-Milner style parametric polymorphism [21].

Our analyses are designed such that monomorphic Andersen’s analysis is at
least as precise as monomorphic Steensgaard’s analysis [16,28], and similarly
for the polymorphic versions. Given the construction of our analyses, it is a
theorem that the hierarchy of precision shown in Fig. 1 always holds. The main
contribution of this work is the quantification of the exact relationship among
these analyses. A secondary contribution of this paper is the development of
polymorphic versions of Andersen’s and Steensgaard’s points-to analyses.

Running the analyses on our suite of benchmarks, we find the following results
(see Sect. 5), where � is read “is significantly less precise than.” In general,

Monomorphic Steensgaard’s�
Polymorphic Steensgaard’s�
Polymorphic Andersen’s

Monomorphic Steensgaard’s�
Monomorphic Andersen’s ≈
Polymorphic Andersen’s

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 177

The exact relationships vary from benchmark to benchmark. These results are
rather surprising—why should polymorphism not add much precision to Ander-
sen’s analysis but benefit Steensgaard’s analysis? While we do not have definitive
answers to these questions, Sect. 5.3 suggests some possible explanations.

Notice from this table that monomorphic Andersen’s analysis is approxi-
mately as precise as polymorphic Andersen’s analysis, while polymorphic Steens-
gaard’s analysis is much less precise than polymorphic Andersen’s analysis. Note,
however, that polymorphic Steensgaard’s analysis and monomorphic Andersen’s
analysis are in general incomparable (see Sect. 5.1). Still, given that polymorphic
analyses are much more complicated to understand, reason about, and imple-
ment than their monomorphic counterparts, these results suggest that monomor-
phic Andersen’s analysis may represent the best design choice among the four
analyses. This may be a general principle: in order to improve a program analysis,
developing a more powerful monomorphic analysis may be preferable to adding
context-sensitivity, one example of which is Hindley-Milner style polymorphism.

Carrying out an experimental exploration of even a portion of the design
space for non-trivial program analyses is a painstaking task. In interpreting our
results there are two important things to keep in mind. First, our exploration of
even the limited design space of flow-insensitive points-to analysis for C is still
partial—there are dimensions other than the two that we explore that may not
be orthogonal and may lead to different tradeoffs. For example, it may matter
how precisely heap memory is modeled, how strings are modeled, whether C
structs are analyzed by field or all fields are summarized together, and so on.
Section 5 details our choices for these parameters. Also, Hindley-Milner style
polymorphism is only one way to add context-sensitivity to a points-to analy-
sis, and other approaches (e.g., polymorphic recursion [15]) may yield different
tradeoffs.

Second, our experiments measure the relative precision of each analysis. They
do not measure the relative impact of each analysis in a compiler. For example, it
may be that some points-to sets are more important than others to an optimizer,
and thus increases in precision may not always lead to better optimizations. How-
ever, a more precise analysis should not lead to worse optimizations than a less
precise analysis. We should also point out that it is difficult to separate the bene-
fit of a pointer analysis in a compiler from the design of the rest of the optimizer.
Measures of relative precision have the advantage of being independent of the
specific choices made in using the analysis information by a particular tool.

2 Related Work

Andersen’s [4] and Steensgaard’s [29] points-to analyses are only two choi-
ces in a vast array of possible alias analyses, among
them [5,6,7,8,9,10,11,15,19,20,27,28,31,33,34]. As our results suggest, the ben-
efit of polymorphism (more generally, context-sensitivity) may vary greatly with
the particular analysis.

178 Jeffrey S. Foster et al.

Hindley-Milner style polymorphism [21] has been studied extensively. The
only direct applications of Hindley-Milner polymorphism to C of which we are
aware are the analyses in this paper, the polymorphic recursive analysis proposed
in [15] (see below), and the Lackwit system [23]. Lackwit, a software engineering
tool, computes ML-style types for C and appears to scale very well to large
programs.

Mossin [22] develops a polymorphic flow analysis based on polymorphic re-
cursion and atomic subtyping constraints. Mossin’s system starts with a type-
annotated program and infers atomic flow constraints, whereas we infer the type
and flow annotations simultaneously and do not have an atomic subtyping sys-
tem. [15] develops an efficient algorithm for both subtyping and equality-based
polymorphic recursive flow analyses, and shows how to construct a polymorphic
recursive version of Steensgaard’s analysis. (In contrast, in this paper we use
Hindley-Milner style polymorphism, which can be less precise.) We believe that
the techniques of [15] can also be adapted to Andersen’s analysis.

Other research has explored making monomorphic inclusion-based analyses
scalable. [14] describes an online cycle-elimination algorithm for simplifying in-
clusion constraints. [30] describes a related optimization technique, projection
merging, which merges multiple projections of the same set variable. Our cur-
rent implementation uses both of these techniques, which makes it possible to
run the polymorphic inclusion-based analysis on our larger benchmarks.

Finally, we discuss a selection of related analyses. Wilson and Lam [31] pro-
pose a flow-sensitive alias analysis that distinguishes calls to the same function
in different aliasing contexts. Their system analyzes a function once for each
aliasing pattern of its actual parameters. In contrast, we analyze each function
only once, independently of its context, by constructing types that summarize
functions’ points-to effects in any context.

Ruf [26] studies the tradeoff between context-sensitivity and context-insen-
sitivity for a particular dataflow-style alias analysis, discovering that context-
sensitivity makes little appreciable difference in the accuracy of the results. Our
results partially agree with his. For Andersen’s inclusion-based analysis we find
the same trend. However, for Steensgaard’s equality-based analysis, which is
substantially less precise than Ruf’s analysis, adding polymorphism makes a
significant difference

Emami, Ghiya, and Hendren [11] propose a flow-sensitive, context-sensitive
analysis. The scalability of this analysis is unknown.

Landi and Ryder [20] study a very precise flow-sensitive, context-sensitive
analysis. Their flow-sensitive system has difficulty scaling to large programs;
recent work has focused on combined analyses that apply different alias analyses
to different parts of a program [35].

Chatterjee, Ryder, and Landi [6] propose an analysis for Java and C++ that
uses a flow-sensitive analysis with conditional points-to relations whose validity
depends on the aliasing and type information provided by the context. While
the style of polymorphism used in [6] appears related to Hindley-Milner style
polymorphism, the exact relationship is unclear.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 179

Das [7] proposes a monomorphic alias analysis with precision close to An-
dersen’s analysis but cost close to Steensgaard’s analysis. The effect of adding
polymorphism to Das’s analysis is currently unknown but cannot yield more
precision than polymorphic Andersen’s analysis.

3 Constraints

Our analyses are formulated as non-standard type systems for C. We follow
the usual approach for constraint-based program analysis: As the analyses infer
types for a program’s expressions, a system of typing constraints is generated
on the side. The solution to the constraints defines the points-to graph of the
program.

Our analyses are implemented with the Berkeley Analysis Engine (BANE) [1],
which is a framework for constructing constraint-based analyses. BANE supports
analyses involving multiple sorts of constraints, two of which are used by our
points-to analyses. Our implementation of Andersen’s analysis uses inclusion
(or set) constraints [2,18]. Our implementation of Steensgaard’s analysis uses a
mixture of equality (or term) and inclusion constraints. The rest of this section
provides background on the constraint formalisms.

Each sort of constraint comes equipped with a constraint relation. The rela-
tion between set expressions is ⊆, and the relation between term expressions is
=. For our purposes, set expressions se consist of set variables X ,Y, . . . from a
family of variables Vars (caligraphic text denotes variables), terms constructed
from n-ary constructors c ∈ Con , a special form proj (c, i, se), an empty set 0,
and a universal set 1.

se ::= X | c(se1, . . . , sen) | proj (c, i, se) | 0 | 1

Similarly, term expressions are of the form

te ::= X | c(te1, . . . , ten) | 0

Here 0 represents a special, distinguished nullary constructor.
Each constructor c is given a signature Sc specifying the arity, variance, and

sort of c. If S is the set of sorts (in this case, S = {Term,Set}), then constructor
signatures are of the form

c : ι1 × · · · × ιarity(c) → S

where ιi is s (covariant) or s (contravariant) for some s ∈ S. Intuitively, a con-
structor c is covariant in an argumentX if the set denoted by a term c(. . . ,X , . . .)
becomes larger as X increases. Similarly, a constructor c is contravariant in an
argument X if the set denoted by a term c(. . . ,X , . . .) becomes smaller as X
increases. To improve readability, we mark contravariant arguments with over-
bars.

One example constructor from Andersen’s analysis is

lam : Set×Set× Set → Set

180 Jeffrey S. Foster et al.

The lam constructor models function types. The first (covariant) argument names
the function, the second (contravariant) argument represents the domain, and
the third (covariant) argument represents the range.

Steensgaard’s analysis uses a constructor

ref : Set×Term×Term → Term

to model locations. The first field models the set of aliases of this location, and
the second and third fields model the contents of this location. See Sect. 4.2 for
a discussion of why a set is needed for the first field. More discussion of mixed
constraints can be found in [12,13].

Our system also includes conditional equality constraints L ≤ R (defined on
terms) to support Steensgaard’s analysis (see Sect. 4.2). The constraint L ≤ R
holds if either L = R or L = 0 holds. Intuitively, if L is ever unified with a
constructed term, then the constraint L ≤ R becomes L = R. Otherwise L ≤ R
makes no constraint on R.

Our language of set constraints has no explicit operation to select components
of a constructor. Instead we use constraints of the form

L ⊆ c(. . . ,Yi, . . .) (∗)

to make Yi contain c−i(L) if c is covariant in i, and to make c−i(L) contain Yi

if c is contravariant in i. However, such a constraint is inconsistent if L contains
terms whose head constructor is not c. To overcome this limitation, we define
constraints of the form

L ⊆ proj (c, i,Yi)

This constraint has the same effect as (∗) on the elements of L constructed
with c, and no effect on the other elements of L.

Solving a system of constraints involves computing an explicit solved form of
all solutions or of a particular solution. See [3,12,13] for a thorough discussion
of the constraint solver used in BANE.

4 The Analyses

This section develops monomorphic and polymorphic versions of Andersen’s and
Steensgaard’s analyses. The presentation of the monomorphic version of Ander-
sen’s analysis mostly follows [14,30] and is given primarily to make the paper
self contained.

For a C program, points-to analysis computes a set of abstract memory lo-
cations (variables and heap) to which each expression could point. Andersen’s
and Steensgaard’s analyses compute a points-to graph [11]. Graph nodes repre-
sent abstract memory locations, and there is an edge from a node x to a node y
if x may contain a pointer to y. Informally, the analyses begin with some initial
points-to relationships and close the graph under the rule

For an assignment e1 = e2, anything in the points-to set for e2 must also
be in the points-to set for e1.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 181

a = &b;

a = &c;

*a = &d;

a

b

d

c

✏✏✏✏✶
�����

�����

✏✏✏✏✶ a b,c d✲ ✲

(a) Andersen’s Analysis (b) Steensgaard’s Analysis

Figure2. Example points-to graph

For Andersen’s analysis, each node in the points-to graph may have directed
edges to any number of other nodes. For Steensgaard’s analysis, each node may
have at most one out-edge, and graph nodes are coalesced if necessary to enforce
this requirement. Figure 2 shows the points-to graph for a simple C program
computed by Andersen’s analysis (a) and Steensgaard’s analysis (b).

4.1 Andersen’s Analysis

In Andersen’s analysis, types τ represent sets of abstract memory locations and
are described by the following grammar:

ρ ::= Px | lx
τ ::= X | ref (ρ, τ, τ) | lam(ρ, τ , τ)

Here the constructor signatures are

ref : Set×Set×Set → Set
lam : Set×Set× Set → Set

X and Px are set variables, and lx is a constant (a constructor of arity 0).
Contravariant arguments are marked with overbars. Note that function types
lam(· · ·) are contravariant in the domain (second argument) and covariant in
the range (third argument).

Memory locations can be thought of as abstract data types with two oper-
ations, one to get the value stored in the location and one to set it. Intuitively,
the get and set operations have types

– get : void → X
– set : X → void

where X is the type of data held in the memory location. Dereferencing a location
corresponds to applying the get operation, and updating a location corresponds

182 Jeffrey S. Foster et al.

to applying the set operation. Note that the type variable X appears covari-
antly in the type of the get operation and contravariantly in the type of the set
operation.

Translating this intuition into a set constraint formulation, the location of a
variable x is modeled with the type ref (lx,X ,X), where lx is a constant repre-
senting the name of the location, the covariant occurrence of X represents the
get method, and the contravariant occurrence of X (marked with an overbar)
represents the set method. For convenience, we choose not to represent the void
components of the get and set methods’ types.

We also associate with each location x a set variable Px and add the con-
straints X ⊆ proj (ref , 1,Px) and X ⊆ proj (lam , 1,Px). This constrains Px to
contain the set of abstract locations, including functions, in the points-to set X .
The points-to graph is then defined by the least solution of Px for every loca-
tion x. In the set formulation, the least solution for the points-to graph shown
in Fig. 2a is

Pa = {lb, lc} Pb = {ld} Pc = {ld}

In addition to reference types we also must model function types, since C al-
lows pointers to functions to be stored in memory. The type lam(lf, τ1, τ2) repre-
sents the function named f (every C function has a name) with argument τ1 and
return value τ2. For simplicity the grammar allows only one argument. In our im-
plementation, arguments are modeled with an ordered record {τ1, . . . , τn} [25].1

Figure 3 shows a fragment of the type rules for the monomorphic version
of Andersen’s analysis. Judgments are of the form A � e : τ ;C, meaning that
in typing environment A, expression e has type τ under the constraints C. For
simplicity we present only the interesting type rules. The full rules for all of C
can be found in [16].

We briefly discuss the rules. To avoid having separate rules for l- and r-
values, we model all variables as l-types. Thus the type of a variable x is our
representation of its location, i.e., a ref type.

– Rule (VarA) states that typings in the environment trivially hold.
– The address-of operator (AddrA) adds a level of indirection to its operand
by adding a ref constructor. The location (first) and set (third) fields of the
resulting type are 0 and 1, respectively, because &e is not itself an l-value
and cannot be updated.

– The dereferencing operator (DerefA) removes a ref and makes the fresh
variable T a superset of the points-to set of τ . Note the use of proj in case
τ also contains a function type.

– The assignment rule (AsstA) uses the same technique as (DerefA) to get
the contents of the right-hand side, and then uses the contravariant set field
of the ref constructor to store the contents in the left-hand side location.
See [16] for detailed explanations and examples.

1 Note that we do not handle variable-length argument lists (varargs) correctly even
with records. Handling varargs requires compiler- and architecture-specific knowl-
edge of the layout of parameters in memory. See Sect. 5.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 183

A � x : A(x); ∅ (VarA)

A � e : τ ;C

A � &e : ref (0, τ, 1);C
(AddrA)

A � e : τ ;C
C′ = C ∧ τ ⊆ proj (ref , 2, T)

A � *e : T ;C′
(DerefA)

A � e1 : τ1;C1 A � e2 : τ2;C2

C = C1 ∧ C2 ∧
τ1 ⊆ proj (ref , 3, T) ∧
τ2 ⊆ proj (ref , 2, T)
A � e1=e2 : τ2;C

(AsstA)

A[x �→ ref (lx,X ,X)] � e : τ ;C

A � let x in e ni : τ ;C
(LetRefA)

τf = ref (0, lam(lf,X ,Rf), 1)

τx = ref (lx,X ,X)
A[f �→ τf , x �→ τx] � e : τ ;C

C′ = C ∧ τ ⊆ proj (ref , 2,Rf)

A � fun f x = e : τf ;C
′

(LamA)

A � *e1 : τ1;C1 A � e2 : τ2;C2

C = C1 ∧ C2 ∧
τ2 ⊆ proj (ref , 2, T) ∧
τ1 ⊆ proj (lam, 2, T) ∧
τ1 ⊆ proj (lam, 3,R)

A � e1 e2 : ref (0,R, 1);C

(AppA)

Figure3. Constraint generation rules for Andersen’s analysis. T and R stand
for fresh variables

– The rule (LetRefA) introduces new variables. Since this is C, all variables
are in fact updateable references, and we allow them to be uninitialized.

– The rule (LamA) defines a possibly-recursive function f whose result is e.
We lift each function type to an l-type by adding a ref as in (AsstA). For
simplicity the C issues of promotions from function types to pointer types,
and the corresponding issues with * and & applied to functions, are ignored.
These issues are handled correctly by our implementation. Notice a function
type contains the value of its parameter, X , not a reference ref (lx,X ,X).
Analogously the range of the function type is also a value.

– Function application (AppA) constrains the formal parameter of a function
type to contain the actual parameter, and makes the return type of the
function a lower bound on fresh variable R. Notice the use of *e1 in the
hypothesis of this rule, which we need because the function, an r-type, has

184 Jeffrey S. Foster et al.

been lifted to an l-type in (LamS). The result R, which is an r-type, is lifted
to an l-type by adding a ref constructor, as in (AddrA).

4.2 Steensgaard’s Analysis

Intuitively, Steensgaard’s analysis replaces the inclusion constraints of Ander-
sen’s analysis with equality constraints. The type language is a small modifica-
tion of the previous system:

ρ ::= Px | Lx | lx
τ ::= X | ref (ρ, τ, η)
η ::= X | lam(τ, τ)

with constructor signatures

ref : Set×Term×Term → Term
lam : Term×Term → Term

As before, ρ denotes locations and τ denotes updateable references. Follow-
ing [29], in this system function types η are always structurally within ref (· · ·)
types because in a system of equality constraints we cannot express a union
ref (. . .) ∪ lam(. . .). For a similar reason location sets ρ consist solely of vari-
ables Px or Lx and are modeled as sets (see below).

Each program variable x is modeled with the type ref (Lx,X ,Fx), where Lx
is a Set variable. For each location x we add a constraint lx ⊆ Lx, where lx is a
nullary constructor (as in Andersen’s analysis). We also associate with location x
another set variable Px and add the constraint X ≤ ref (Px, ∗, ∗), where ∗ stands
for a fresh unnamed variable.

We compute the points-to graph by finding the least solution of the Px
variables. For the points-to graph in Fig. 2b, the result is

Pa = {lb, lc} Pb = {ld} Pc = {ld}

Notice that b and c are inferred to be aliased, i.e., Lb = Lc. If we had instead
used nullary constructors directly in the ρ field of ref , or had the ρ field been a
Term sort, then the constraints would have been inconsistent, since lb �= lc.

In Steensgaard’s formulation [29], the relation between locations x and their
corresponding term variables Px is implicit. While this suffices for a monomor-
phic analysis, in a polymorphic analysis maintaining this map is problematic, as
generalization, simplification, and instantiation (see Sect. 4.3) all cause variables
to be renamed.

Mixed constraints provide an elegant solution to this problem. By explicitly
representing the mapping from locations to location names in a constraint for-
mulation, we guarantee that any sound constraint manipulations preserve this
mapping.

Figure 4 shows the constraint generation rules for Steensgaard’s analysis. The
rules are similar to the rules for Andersen’s analysis. Again, we briefly discuss
the rules. As before, all variables are modeled as l-types.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 185

A � x : A(x); ∅ (VarS)

A � e : τ ;C

A � &e : ref (∗, τ, ∗);C (AddrS)

A � e : τ ;C
C′ = C ∧ τ ≤ ref (∗, T , ∗)

A � *e : T ;C′
(DerefS)

A � e1 : τ1;C1 A � e2 : τ2;C2

C = C1 ∧ C2 ∧
τ1 ≤ ref (∗, T1, ∗) ∧ τ2 ≤ ref (∗, T2, ∗) ∧

T2 ≤ T1

A � e1=e2 : τ2;C

(AsstS)

A[x �→ ref (Lx,X ,Fx)] � e : τ ;C

A � let x in e ni : τ ;C
(LetRefS)

τf = ref (∗, ref (Lf, Tf, lam(X ,Rf)), ∗)
τx = ref (Lx,X ,Fx)

A[f �→ τf , x �→ τx] � e : τ ;C
C′ = C ∧ τ ≤ ref (∗, T , ∗) ∧ T ≤ Rf

A � fun f x = e : τf ;C
′

(LamS)

A � *e1 : τ1;C1 A � e2 : τ2;C2

C = C1 ∧ C2 ∧
τ1 ≤ ref (∗, ∗,F) ∧ F ≤ lam(Y,R) ∧

τ2 ≤ ref (∗, T , ∗) ∧ T ≤ Y
A � e1 e2 : ref (∗,R, ∗);C

(AppS)

Figure4. Constraint generation rules for Steensgaard’s analysis. T , T1, T2,Y,
and R are fresh variables. Each occurrence of ∗ is a fresh, unnamed variable

– Rules (VarS) and (LetRefS) are unchanged from Andersen’s analysis.
– Rule (AddrS) adds a level of indirection to its operand.
– Rule (DerefS) removes a ref and makes fresh variable T contain the points-to
set of τ .

– The assignment rule (AsstS) makes fresh variables Ti contain the points-to
sets of each ei. (AsstS) conditionally equates T1 with T2, i.e., if e2 is a pointer,
its points-to set is unified with the points-to set of e1. Using conditional
unification increases the accuracy of the analysis [29].

– Function definition (LamS) behaves as in Andersen’s analysis. Here,
ref (Lf, Tf, lam(X ,Rf)) represents the function type and the outermost
ref lifts the function type to an l-type. Again a function type contains the r-
types of its parameter and return value rather than their l-types. Notice
that the type of the function f points to is stored in the second (τ) field of
f’s type τf, not in the third (η) field. Thus in the assignment rule (AsstS),

186 Jeffrey S. Foster et al.

A � e : τ ;C �X �∈ fv(A)
A � e : ∀ �X .τ\C;C

(Quant)

A � e : ∀ �X .τ\C′;C �Y fresh
A � e : τ [�X �→ �Y];C ∧ C′[�X �→ �Y]

(Inst)

Figure5. Rules for quantification

the Ti variables contain both the functions and memory locations that the ei

point to.
– Function application (AppS) conditionally equates the formal and actual
parameters of a function type and evaluates to the return type. Note the use
of *e1 in the hypothesis of this rule, which is needed since the function type
has been lifted to an l-type. Intuitively, this rule expands the application
(fun f x = e) e2 into the sequence x = e2; e.

4.3 Adding Polymorphism

This section describes how the monomorphic analyses are extended to poly-
morphic analyses. While ultimately we find polymorphism unprofitable for our
points-to analyses, this section documents a number of practical insights for the
implementation of polymorphism in analysis systems considerably more elabo-
rate than the Hindley/Milner system.

The rules in Figs. 3 and 4 track the constraints generated in the analysis of
each expression. The monomorphic analyses have one global constraint system.
In the polymorphic analyses, each function body has a distinct constraint system.

We introduce polymorphic constrained types of the form ∀ �X .τ\C. The type
∀ �X .τ\C represents any type of the form τ [�X �→ �se] under constraints C[�X �→ �se],
for any choice of �se. Figure 5 shows the additional rules for quantification. The
notation fv(A) stands for the free variables of environment A. Rule (Quant)
states that we may quantify a type over any variables not free in the type en-
vironment. (Inst) allows us to instantiate a quantified type with fresh variables,
adding the constraints from the quantified type to the system. These rules are
standard [24].

We restrict quantification to non-ref types to avoid well-known problems
with mixing updateable references and polymorphism [32]. In practical terms,
this means that after analyzing a function definition, we can quantify over its
parameters and its return value. The rule (Inst) says that we may instantiate a
quantified type with fresh variables, adding the constraints from the quantified
type to the environment.

If used näıvely, rule (Quant) amounts to analyzing a program in which all
function calls have been inlined. In order to make the polymorphic analyses
tractable, we perform a number of simplifications to reduce the sizes of quantified
types. See [17] for a discussion of the simplifications we use.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 187

As an example of the potential benefit of polymorphic points-to analysis,
consider the following atypical C program:

int *id(int *x) { return x; }

int main() {
int a, b, *c, *d;
c = id(&a); d = id(&b);

}

In the notation in this paper id is defined as fun id x = x. In monomorphic
Andersen’s analysis all inputs to id flow to all outputs. Thus we discover that c
and d both point to a and b. Polymorphic Andersen’s analysis assigns id type

∀X ,Rid. lam(lid,X ,Rid)\
ref (lx,X ,X) ⊆ proj (ref , 2,Rid)

Solving these constraints and simplifying (see [17]) yields

∀X . lam(lid,X ,X)\∅

In other words, id is the identity function. Because this type is instantiated for
each call of id, the points-to sets are computed exactly: c points to a and d
points to b.

There are several important observations about the type system. First, func-
tion pointers do not have polymorphic types. Consider the following example:

int *f(...) { ... }
int foo(int *(*g)()) { x = g(...); y = g(...); z = f(...); }
int main() { foo(f); }

Within the body of foo, the type of g appears in the environment (with a
monomorphic type), so variables in the type of g cannot be quantified. Hence
both calls to g use the same instance of f’s type. The call directly through f can
use a polymorphic type for f, and hence is to a fresh instance.

Second, we do not allow the types of mutually recursive functions to be
polymorphic within the recursive definition. Thus we analyze sets of mutually
recursive functions monomorphically and then generalize the types afterwards.

Finally, we require that function definitions be analyzed before function uses.
We formally state this requirement using the following definition:

Definition 1. The function dependence graph (FDG) of a program is a graph
G = (V, E) with vertices V and edges E. V is the set of all functions in the pro-
gram, and there is an edge in E from f to g iff function f contains an occurrence
of the name of g.

A function’s successors in the FDG for a program must be analyzed before the
function itself. Note that the FDG is trivial to compute from the program text.

188 Jeffrey S. Foster et al.

1. Make a fresh global constraint system Glob
2. Construct the function dependence graph G
3. For each non-root strongly-connected component S of G in final depth-first order
3a. Make a fresh constraint system C
3b. Analyze each f ∈ S monomorphically in C
3c. Quantify each f ∈ S in C, applying simplifications
3d. Compute C′ = C simplified and merge C′ into Glob
4. Analyze the root SCC in Glob

Figure6. Algorithm 1: Bottom-up pass

Figure 6 shows the algorithm for analyzing a program polymorphically. Each
strongly-connected component of the FDG is visited in final depth-first order.
We analyze each mutually-recursive component monomorphically and then apply
quantification. We merge the simplified system C′ into the top-level constraint
system Glob, replacing Glob by Glob ∧ C′. Notice that we do not require a call
graph for the analysis, but only the FDG, which is statically computable.

4.4 Reconstructing Local Information

After applying the bottom-up pass of Fig. 6, the analysis has correctly computed
the points-to graph for the global variables and the local variables of the out-
ermost function, usually called main. (There is no need to quantify the type of
main, since its type can only be used monomorphically.) At this point we have
lost alias information for local variables, for two reasons. First, applying simpli-
fications during the analysis may eliminate the points-to variables corresponding
to local variables completely. Second, whenever we apply (Inst) to instantiate the
type of a function f, we deliberately lose information about the types of f’s local
variables by replacing their points-to type variables with fresh type variables.

The points-to set of a local variable depends on the context(s) in which f
is used. To reconstruct points-to information for locals, we keep track of the
instantiated types of functions and use these to flow context information back
into the original, unsimplified constraint system.

Figure 7 gives the algorithm for reconstructing the points-to information for
the local variables of function f on a particular path or set of paths P in the
FDG. Note that Algorithm 2 requires f ∈ P . The constraints given are for
Andersen’s analysis. For Steensgaard’s analysis we replace ⊆ constraints by the
appropriate ≤ constraints. (Note that for Steensgaard’s analysis there may be
more precise ways of computing summary information. See [15].) In Algorithm 2,
the constraint systems along the FDG path are merged into a fresh constraint
system, and then the types of the actual parameters from each instance are
linked to the types of the formal parameters of the original type. We also link
the return values of the original type to the return values of the instances.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 189

1. Let C = Glob ∧
∧
g∈P

Cg be a fresh system

2. For each function g ∈ P

2a. Let lam(lg,G1,R1), . . . , lam(lg, Gn,Rn) be the instances of g’s function type.

2b. Let lam(lg,G,R) be g’s original function type
2c. Add constraints Gi ⊆ G and R ⊆ Ri for i ∈ [1..n].
3. Compute the points-to sets for f’s locals in C.

Figure7. Algorithm 2: Top-down pass for function f on FDG path or set of
FDG paths P

This algorithm computes the points-to sets for the local variables of f along
FDG path P . Because this algorithm is parameterized by the FDG path, it lets
the analysis client choose the precision of the desired information. An interactive
software engineering tool may be interested in a particular use of a function
(corresponding to a single path from f to the root), while a compiler, which
must produce code that works for all instances, would most likely be interested
in all paths from f to the root of the FDG.

In our experiments (Sect. 5), to compute information for function f we
choose P to be all of f’s ancestors in the FDG. This corresponds exactly to
a points-to analysis in which f and its ancestors are monomorphic and all other
functions are polymorphic. Clearly there are cases in which this choice will lead
to a loss of precision. However, the other natural alternative, to compute alias
information for each of f’s instances separately, would yield an exponential algo-
rithm. By treating f monomorphically, in an FDG of size n Algorithm 2 requires
copying O(n2) (unsimplified) constraint systems.

5 Experiments

We have implemented our analyses using BANE [1]. BANE manages the details
of constraint representation and solving, quantification, instantiation, and sim-
plification. Our analysis tool generates constraints and decides when and what
to quantify, instantiate, and simplify.

Our analysis handles almost all features of C, following [29]. The only excep-
tions are that we do not correctly model expressions that rely on compiler-specific
choices about the layout of data in memory, e.g., variable-length argument lists
or absolute addressing.

Our experiments cover the four possible combinations of polymorphism (poly-
morphic or monomorphic) and analysis precision (inclusion-based or equality-
based). Table 1 lists the suite of C programs on which we performed the anal-
yses.2 The size of each program is listed in terms of preprocessed source lines

2 We modified the tar-1.11.2 benchmark to use the built-in malloc rather than a
user-defined malloc in order to model heap usage more accurately.

190 Jeffrey S. Foster et al.

Table1. Benchmark programs

Name AST Nodes Preproc Lines Name AST Nodes Preproc Lines

allroots 700 426 less-177 15179 11988
diff.diffh 935 293 li 16828 5761
anagram 1078 344 flex-2.4.7 29960 9345
genetic 1412 323 pmake 31148 18138

ks 2284 574 make-3.72.1 36892 15213
ul 2395 441 tar-1.11.2 38795 17592
ft 3027 1180 inform-5.5 38874 12957

compress 3333 651 sgmls-1.1 44533 30941
ratfor 5269 1532 screen-3.5.2 49292 23919

compiler 5326 1888 cvs-1.3 51223 31130
assembler 6516 2980 espresso 56938 21537

ML-typecheck 6752 2410 gawk-3.0.3 71140 28326
eqntott 8117 2266 povray-2.2 87391 59689

simulator 10946 4216

and number of AST nodes. The AST node count is restricted to those nodes the
analysis traverses, e.g., this count ignores declarations.

As with most C programs, our benchmark suite makes extensive use of stan-
dard libraries. After analyzing each program we also analyze a special file of
hand-coded stubs modeling the points-to effects of all library functions used
by our benchmark suite. These stubs are not included in the measurements of
points-to set sizes, and we only process the stubs corresponding to library func-
tions that are actually used by the program. The stubs are modeled in the same
way that regular functions are modeled. Thus they are treated monomorphically
in the monomorphic analyses, and polymorphically in the polymorphic analyses.

To model heap locations, we generate a fresh global variable for each syntactic
occurrence of a malloc-like function in a program. In certain cases it may be
beneficial to distinguish heap locations by call path, though we did not perform
this experiment. We model structures as atomic, i.e., every field of a structure
shares the same location. Recent results [33] suggest some efficient alternative
approaches.

For the polymorphic analyses, when we apply Algorithm 2 (Fig. 7) to com-
pute the analysis results for function f, we choose P to be the set of all paths
from f to the root of the FDG.

5.1 Precision

Figures 8 and 9 graph for each benchmark the average size of the points-to sets
at the dereference sites in the program. A higher average size indicates lower
precision. Missing data points indicate that the analysis exceeded the memory
capacity of the machine (2GB).

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 191

allroots

0
0.5

1
1.5

2
2.5

Mono
Ste

Poly
Ste

Mono
And

Poly
And

diff.diffh

0
2
4
6
8

10
12

Mono
Ste

Poly
Ste

Mono
And

Poly
And

anagram

0
2
4
6
8

Mono
Ste

Poly
Ste

Mono
And

Poly
And

genetic

0

2

4

6

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ks

0
10
20
30
40

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ul

0
0.5

1
1.5

2
2.5

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ft

0

1

2

3

4

Mono
Ste

Poly
Ste

Mono
And

Poly
And

compress

0
0.5

1
1.5

2
2.5

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ratfor

0
10
20
30
40
50
60

Mono
Ste

Poly
Ste

Mono
And

Poly
And

compiler

0.9
0.95

1
1.05
1.1

1.15
1.2

Mono
Ste

Poly
Ste

Mono
And

Poly
And

assembler

0
20
40
60
80

100
120

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ML-typecheck

0
20
40
60
80

100

Mono
Ste

Poly
Ste

Mono
And

Poly
And

eqntott

0
5

10
15
20
25
30

Mono
Ste

Poly
Ste

Mono
And

Poly
And

simulator

0

50

100

150

200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

less-177

0

50

100

150

200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

li

0

200

400

600

800

Mono
Ste

Poly
Ste

Mono
And

Poly
And

flex-2.4.7

0

500

1000

1500

2000

Mono
Ste

Poly
Ste

Mono
And

Poly
And

pmake

0
100
200
300
400
500
600

Mono
Ste

Poly
Ste

Mono
And

Poly
And

Figure8. Average points-to sizes at dereference sites. The black bars give the
results when strings are modeled; the white bars give the results when strings
are not modeled

192 Jeffrey S. Foster et al.

make-3.72.1

0
200
400
600
800

1000

Mono
Ste

Poly
Ste

Mono
And

Poly
And

tar-1.11.2

0

200

400

600

800

Mono
Ste

Poly
Ste

Mono
And

Poly
And

inform-5.5

0

500

1000

1500

2000

Mono
Ste

Poly
Ste

Mono
And

sgmls-1.1

0
200
400
600
800

1000
1200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

screen-3.5.2

0
200
400
600
800

1000
1200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

cvs-1.3

0
200
400
600
800

1000

Mono
Ste

Poly
Ste

Mono
And

espresso

0
100
200
300
400
500

Mono
Ste

Poly
Ste

Mono
And

Poly
And

gawk-3.0.3

0
200
400
600
800

1000

Mono
Ste

Mono
And

Poly
And

povray-2.2

0
100
200
300
400
500
600

Mono
Ste

Poly
Ste

Mono
And

Poly
And

Figure9. Continuation of Fig. 8. Average points-to sizes at dereference sites.
The black bars give the results when strings are modeled; the white bars give
the results when strings are not modeled

We also measure the precision of the analyses both when each string is mod-
eled as a distinct location and when strings are completely ignored (modeled
as 0). Note the different scales on different graphs. For the purposes of this ex-
periment, functions are not counted in points-to sets, and multi-level dereferences
are counted separately (e.g., in **x there are two dereferences). Array indexing
on known arrays (expressions of type array) is not counted as dereferencing.

Table 2 gives the numeric values graphed in Figs. 8 and 9 and more detailed
information about the distribution of points-to sets. Due to lack of space, we
only give the data for the experiments that model strings as distinct locations.
See [17] for the data when strings are modeled as 0. For each analysis style, we
list the running time, the average points-to set sizes at dereference sites, and
the number of dereference sites with points-to sets of size 1, 2, and 3 or more,
plus the total number of non-empty dereference sites. (Most programs have some
empty dereference sites because of dead code.) We also list the size of the largest
points-to set.

Recall from the introduction that for a given dereference site, it is a theorem
that the points-to sets computed by the four analyses are in the inclusion rela-
tions shown in Fig. 1. More precisely, there is an edge from analysis x in Fig. 1

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 193

Table2. Data for string modeling experiments graphed in Fig. 8. The running
times are the average of three for the monomorphic experiments, while the poly-
morphic experiments were only performed once.

Name Monomorphic Steensgaard’s Polymorphic Steensgaard’s
Time Av. Num. deref sites Up Tm Dn Tm Av. Num. deref sites
(s) 1 2 3+ tot max (s) (s) 1 2 3+ tot max

allroots 0.17 2.00 0 42 0 42 2 0.27 0.29 2.00 0 42 0 42 2
diff.diffh 0.23 11.25 12 1 23 36 17 0.29 0.55 2.36 14 13 9 36 5
anagram 0.25 6.74 11 1 30 42 9 0.37 1.00 5.45 12 0 30 42 8
genetic 0.36 4.95 22 8 46 76 15 0.45 1.18 1.43 62 10 4 76 10

ks 0.43 33.83 3 13 99 115 39 0.53 1.38 8.86 3 13 99 115 10
ul 0.49 2.22 55 129 54 238 4 0.59 2.97 2.16 55 137 46 238 4
ft 0.65 3.39 29 8 133 170 4 1.05 4.58 3.35 37 0 133 170 4

compress 0.73 2.13 181 44 36 261 8 0.94 5.32 1.44 181 44 36 261 3
ratfor 1.65 53.41 36 4 125 165 80 2.71 30.90 18.65 36 7 122 165 62

compiler 1.15 1.17 65 13 0 78 2 2.47 5.76 1.17 65 13 0 78 2
assembler 2.54 108.03 79 31 273 383 213 5.22 58.96 2.98 223 36 124 383 120

ML-typecheck 2.92 88.41 28 0 285 313 97 3.92 60.87 70.33 28 27 258 313 85
eqntott 2.70 27.82 68 110 436 614 42 3.45 54.17 6.17 76 133 405 614 11

simulator 3.78 150.11 24 13 259 296 223 5.70 118.20 33.71 105 5 186 296 89
less-177 5.66 185.55 69 13 490 572 219 18.28 321.89 114.13 80 14 478 572 173

li 18.67 643.88 8 0 933 941 657 33.33 695.71 629.01 8 0 933 941 644
flex-2.4.7 64.33 1431.68 13 0 1613 1626 1445 22.09 818.25 43.83 15 2 1609 1626 1226

pmake 20.98 556.19 40 2 2501 2543 570 373.97 4416.16 151.69 100 9 2434 2543 218
make-3.72.1 40.05 863.25 90 222 3170 3482 975 265.43 1045.70 556.94 311 158 3013 3482 666

tar-1.11.2 26.10 597.13 87 70 2031 2188 656 23.16 776.65 356.20 183 114 1888 2185 434
inform-5.5 47.81 1618.62 21 0 1268 1289 1648 2601.61 67608.52 408.47 28 0 1261 1289 601
sgmls-1.1 69.70 987.71 96 11 2382 2489 1046 126.08 3961.22 749.20 123 15 2351 2489 867

screen-3.5.2 64.79 1093.00 27 9 4915 4951 1110 65.37 1991.28 656.86 112 36 4803 4951 768
cvs-1.3 47.42 894.44 97 680 2276 3053 1242 124.80 2949.33 100.18 1159 141 1753 3053 367

espresso 34.40 391.59 101 530 5479 6110 456 104.65 3368.75 86.78 1238 595 4277 6110 171
gawk-3.0.3 78.30 927.57 139 50 4930 5119 966 — — — — — — — —
povray-2.2 64.72 515.85 761 407 8044 9212 618 111.38 6606.45 299.41 1027 659 7526 9212 434

Name Monomorphic Andersen’s Polymorphic Andersen’s
Time Av. Num. deref sites Up Tm Dn Tm Av. Num. deref sites
(s) 1 2 3+ tot max (s) (s) 1 2 3+ tot max

allroots 0.18 1.57 18 24 0 42 2 0.14 0.22 1.57 18 24 0 42 2
diff.diffh 0.18 1.56 25 2 9 36 3 0.21 0.49 1.56 25 2 9 36 3
anagram 0.24 1.10 38 4 0 42 2 0.16 0.72 1.10 38 4 0 42 2
genetic 0.22 1.43 62 10 4 76 10 0.21 0.76 1.43 62 10 4 76 10

ks 0.37 3.58 9 22 84 115 5 0.33 0.98 3.58 9 22 84 115 5
ul 0.24 1.61 184 8 46 238 4 0.23 0.91 1.61 184 8 46 238 4
ft 0.42 2.12 75 0 95 170 3 0.56 2.25 2.12 75 0 95 170 3

compress 0.34 1.18 215 46 0 261 2 0.41 1.42 1.18 215 46 0 261 2
ratfor 0.63 6.27 56 9 100 165 47 1.22 5.99 6.27 56 9 100 165 47

compiler 0.57 1.17 65 13 0 78 2 0.96 5.07 1.17 65 13 0 78 2
assembler 1.07 2.87 225 36 122 383 120 3.02 80.46 2.87 225 36 122 383 120

ML-typecheck 0.99 45.87 101 30 182 313 78 1.79 14.81 45.87 101 30 182 313 78
eqntott 1.03 1.92 239 199 176 614 5 1.50 11.20 1.92 239 199 176 614 5

simulator 1.35 28.53 107 10 179 296 72 2.32 51.70 27.78 107 10 179 296 71
less-177 2.55 12.98 221 92 259 572 110 4.35 184.03 12.72 238 101 233 572 110

li 4.44 421.23 28 0 913 941 465 189.49 9929.88 421.23 28 0 913 941 465
flex-2.4.7 4.81 6.22 734 204 688 1626 1226 8.61 173.97 6.21 735 204 687 1626 1226

pmake 5.11 129.16 401 98 2044 2543 175 21.38 682.71 88.64 452 98 1993 2543 144
make-3.72.1 9.02 250.85 619 268 2595 3482 494 13.18 390.35 230.12 652 264 2566 3482 487

tar-1.11.2 6.89 69.07 330 741 1117 2188 200 7.74 327.48 66.11 336 742 1107 2185 194
inform-5.5 6.95 80.51 657 20 612 1289 227 — — — — — — — —
sgmls-1.1 8.14 224.11 687 321 1481 2489 506 40.52 1121.89 205.63 703 323 1463 2489 492

screen-3.5.2 7.45 206.48 339 39 4573 4951 241 1277.15 2028.85 195.83 342 44 4565 4951 232
cvs-1.3 10.82 71.27 1281 192 1580 3053 203 — — — — — — — —

espresso 12.89 101.21 1824 300 3986 6110 175 28.81 967.64 56.34 1973 304 3833 6110 152
gawk-3.0.3 12.40 157.28 1177 226 3716 5119 237 22.14 763.62 148.77 1184 228 3707 5119 225
povray-2.2 22.40 223.61 2474 588 6150 9212 402 169.51 5574.82 223.61 2474 588 6150 9212 402

to analysis y if for each expression e, the points-to set computed for e by anal-
ysis x contains the points-to set computed for e by analysis y. Two issues arise
when interpreting the average points-to set size metric. First, when two analy-
ses are related by inclusion the average size of points-to sets is a valid measure
of precision. Thus we can use our metric to compare any two analyses except
polymorphic Steensgaard’s analysis and monomorphic Andersen’s analysis.

194 Jeffrey S. Foster et al.

For these two analyses there is no direct inclusion relationship. For a given
expression e, if eS is the points-to set computed by polymorphic Steensgaard’s
analysis and eA is the points-to set computed by monomorphic Andersen’s anal-
ysis, it may be that eS �⊆ eA and eS �⊇ eA. Detailed examination of the points-to
sets computed by polymorphic Steensgaard’s analysis and monomorphic Ander-
sen’s analysis reveals that this does occur in practice, and thus the two analyses
are incomparable in our metric. The best we can do is observe that monomorphic
Andersen’s analysis is almost as precise as polymorphic Andersen’s analysis, and
polymorphic Steensgaard’s analysis is less precise than polymorphic Andersen’s
analysis.

Second, it is possible for a polymorphic analysis to determine that a
monomorphically non-empty points-to set is in fact empty, and thus have a
larger average points-to set size than its monomorphic counterpart (since only
non-empty points-to sets are included in this average). However, we can elimi-
nate this possibility by counting the total number of nonempty dereference sites.
(A polymorphic analysis cannot have more nonempty dereference sites than its
monomorphic counterpart.) The data in Table 2 shows that for all benchmarks
except tar-1.11.2, the total number of non-empty dereference sites is the same
across all analyses, and the difference between the polymorphic and monomor-
phic analyses for tar-1.11.2 is miniscule. Therefore we know that averaging
the sizes of non-empty dereference sites is a valid measure of precision.

5.2 Speed

Table 2 also lists the running times for the analyses. The running times include
the time to compute the least model of the Px variables, i.e., to find the points-to
sets. For the polymorphic analyses, we separate the running times into the time
for the bottom-up pass and the time for the top-down pass.

For purposes of this experiment, whose goal is to compare the precision of
monomorphic and polymorphic points-to analysis, the running times are largely
irrelevant. Thus we have made little effort to make the analyses efficient, and
the running times should all be taken with a grain of salt.

5.3 Discussion

The data presented in Figs. 8 and 9 and Table 2 shows two striking and consistent
results:

1. Polymorphic Andersen’s analysis is hardly more precise than monomorphic
Andersen’s analysis.

2. Polymorphic Steensgaard’s analysis is much more precise than monomorphic
Steensgaard’s analysis.

The only exceptions to these trends are some of the smaller programs (all-
roots, ul, ft, compiler, li), for which polymorphic Steensgaard’s analysis is
not much more precise than monomorphic Steensgaard’s analysis, and one larger

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 195

program, espresso, for which Polymorphic Andersen’s analysis is noticeably
more precise than Monomorphic Andersen’s analysis. Additionally, notice that
for all programs except espresso, polymorphic Steensgaard’s analysis has a
higher average points-to set size than monomorphic Andersen’s analysis. (Recall
that this does not necessarily imply strictly increased precision.)

To understand these results, consider the following code skeleton:

void f() { ... h(a); ... }
void g() { ... h(b); ... }
void h(int *c) { ... }

In Steensgaard’s equality-based monomorphic analysis, the types of all argu-
ments for all calls sites of a function are equated. In the example, this results
in a = b = c, where a is a’s points-to type, b is b’s points-to type, and c is c’s
points-to type. In the polymorphic version of Steensgaard’s analysis, a and b
can be distinct. Our measurements show that separating function parameters is
important for points-to analysis.

In contrast, in Andersen’s monomorphic inclusion-based system, the points-
to types of arguments at call sites are potentially separated. In the example, we
have a ⊆ c and b ⊆ c. However, function results are all conflated (i.e., every call
site has the same result, the union of points-to results over all call sites). The fact
that polymorphic Andersen’s analysis is hardly more precise than monomorphic
Andersen’s analysis suggests that separating function parameters is by far the
most important form of polymorphism present in points-to analysis for C.

Thus, we conclude that polymorphism for points-to analysis is useful pri-
marily for separating inputs, which can be achieved very nearly as well by a
monomorphic inclusion-based analysis. This conclusion begs the question: Why
is there so little polymorphism in points-to results available in C? Directly mea-
suring the polymorphism available in output side effects of C functions is difficult,
although we hypothesize that C functions tend to side-effect global variables and
heap data (which our analyses model as global) rather than stack-allocated data.

We can measure the polymorphism of result types fairly directly. Table 3 lists
for each benchmark the number of call sites and percentage of calls that occur
in void contexts. These results emphasize that most C functions are called for
their side effects: for 25 out of 27 benchmarks, at least half of all calls are in
void contexts. Thus, there is a greatly reduced chance that polymorphism can
be beneficial for Andersen’s analysis.

It is worth pointing out that the client for a points-to analysis can also have
a significant, and often negative, impact on the polymorphism that actually can
be exploited. In the example above, when computing points-to sets for h’s local
variables we conflate information for all of c’s contexts. This summarization
effectively removes much of the fine detail about the behavior of h in different
calling contexts. However, many applications require points-to information that
is valid in every calling context. In addition, if we attempt to distinguish all call
paths, the analysis can quickly become intractable.

196 Jeffrey S. Foster et al.

Table3. Potential polymorphism. The measurements include library functions.

Name Call Sites % Void Name Call Sites % Void

allroots 55 69 less-177 1091 56

diff.diffh 67 58 li 1243 37

anagram 59 75 flex-2.4.7 1205 79

genetic 79 75 pmake 1943 56

ks 101 84 make-3.72.1 1955 50

ul 103 74 tar-1.11.2 1586 54

ft 152 70 inform-5.5 2593 72

compress 138 73 sgmls-1.1 1614 62

ratfor 306 75 screen-3.5.2 2632 75

compiler 448 89 cvs-1.3 3036 55

assembler 519 66 espresso 2729 51

ML-typecheck 430 31 gawk-3.0.3 2358 51

eqntott 364 61 povray-2.2 3123 59

simulator 677 75

6 Conclusion

We have explored two dimensions of the design space for flow-insensitive points-
to analysis for C: polymorphic versus monomorphic and inclusion-based versus
equality-based. Our experiments show that while polymorphism is potentially
beneficial for equality-based points-to analysis, it does not have much benefit for
inclusion-based points-to analysis. Even though we feel that added engineering
effort can make the running times of the polymorphic analyses much faster, the
precision would still be the same.

Monomorphic Andersen’s analysis can be made fast [30] and often provides
far more precise results than monomorphic Steensgaard’s analysis. Polymorphic
Steensgaard’s analysis is in general much less precise than polymorphic Ander-
sen’s analysis, which is in turn little more precise than monomorphic Andersen’s
analysis. Additionally, as discussed in Sect. 4.3, implementing polymorphism is
a complicated and difficult task. Thus, we feel that monomorphic Andersen’s
analysis may be the best choice among the four analyses.

Acknowledgements

We thank the anonymous referees for their helpful comments. We would also like
to thank Manuvir Das for suggestions for the implementation.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 197

References

1. A. Aiken, M. Fähndrich, J. S. Foster, and Z. Su. A Toolkit for Constructing
Type- and Constraint-Based Program Analyses. In X. Leroy and A. Ohori, editors,
Proceedings of the second International Workshop on Types in Compilation, volume
1473 of Lecture Notes in Computer Science, pages 78–96, Kyoto, Japan, Mar. 1998.
Springer-Verlag. 179, 189

2. A. Aiken and E. L. Wimmers. Solving Systems of Set Constraints. In Proceedings,
Seventh Annual IEEE Symposium on Logic in Computer Science, pages 329–340,
Santa Cruz, California, June 1992. 179

3. A. Aiken and E. L. Wimmers. Type Inclusion Constraints and Type Inference.
In FPCA ’93 Conference on Functional Programming Languages and Computer
Architecture, pages 31–41, Copenhagen, Denmark, June 1993. 180

4. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, Department of Computer Science, University of Copen-
hagen, May 1994. 176, 177

5. M. Burke, P. Carini, J.-D. Choi, and M. Hind. Flow-Insensitive Interprocedural
Alias Analysis in the Presence of Pointers. In K. Pingali, U. Banerjee, D. Gelern-
ter, A. Nicolau, and D. Padua, editors, Proceedings of the Seventh Workshop on
Languages and Compilers for Parallel Computing, volume 892 of Lecture Notes in
Computer Science, pages 234–250. Springer-Verlag, 1994. 177

6. R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant Context Inference. In Pro-
ceedings of the 26th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 133–146, San Antonio, Texas, Jan. 1999. 177,
178

7. M. Das. Unification-based Pointer Analysis with Directional Assignments. In
Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language
Design and Implementation, Vancouver B.C., Canada, June 2000. To appear.
177, 179

8. S. Debray, R. Muth, and M. Weippert. Alias Analysis of Executable Code. In Pro-
ceedings of the 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 12–24, San Diego, California, Jan. 1998. 177

9. A. Deutsch. Interprocedural May-Alias Analysis for Pointers: Beyond k-limiting.
In Proceedings of the 1994 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 230–241, Orlando, Florida, June 1994. 177

10. N. Dor, M. Rodeh, and M. Sagiv. Detecting Memory Errors via Static Pointer
Analysis. In Proceedings of the ACM SIGPLAN/SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 27–34, Montreal, Canada, June
1998. 177

11. M. Emami, R. Ghiya, and L. J. Hendren. Context-Sensitive Interprocedural Points-
to Analysis in the Presence of Function Pointers. In Proceedings of the 1994
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 242–256, Orlando, Florida, June 1994. 177, 178, 180

12. M. Fähndrich. BANE: A Library for Scalable Constraint-Based Program Analysis.
PhD thesis, University of California, Berkeley, 1999. 180

13. M. Fähndrich and A. Aiken. Program Analysis using Mixed Term and Set Con-
straints. In P. V. Hentenryck, editor, Static Analysis, Fourth International Sym-
posium, volume 1302 of Lecture Notes in Computer Science, pages 114–126, Paris,
France, Sept. 1997. Springer-Verlag. 180

198 Jeffrey S. Foster et al.

14. M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial Online Cycle Elimina-
tion in Inclusion Constraint Graphs. In Proceedings of the 1998 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 85–96,
Montreal, Canada, June 1998. 178, 180

15. M. Fähndrich, J. Rehof, and M. Das. Scalable Context-Sensitive Flow Analysis
using Instantiation Constraints. In Proceedings of the 2000 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, Vancouver B.C.,
Canada, June 2000. To appear. 177, 178, 188

16. J. S. Foster, M. Fähndrich, and A. Aiken. Flow-Insensitive Points-to Analysis
with Term and Set Constraints. Technical Report UCB//CSD-97-964, University
of California, Berkeley, Aug. 1997. 176, 182

17. J. S. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus Monomorphic Flow-
insensitive Points-to Analysis for C. Technical report, University of California,
Berkeley, Apr. 2000. 186, 187, 192

18. N. Heintze and J. Jaffar. A Decision Procedure for a Class of Set Constraints. In
Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science, pages
42–51, Philadelphia, Pennsylvania, June 1990. 179

19. M. Hind and A. Pioli. Assessing the Effects of Flow-Sensitivity on Pointer Alias
Analyses. In G. Levi, editor, Static Analysis, Fifth International Symposium, vol-
ume 1503 of Lecture Notes in Computer Science, pages 57–81, Pisa, Italy, Sept.
1998. Springer-Verlag. 177

20. W. Landi and B. G. Ryder. A Safe Approximate Algorithm for Interprocedural
Pointer Aliasing. In Proceedings of the 1992 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 235–248, San Francisco,
California, June 1992. 177, 178

21. R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences, 17:348–375, 1978. 176, 178

22. C. Mossin. Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU,
Department of Computer Science, University of Copenhagen, 1996. 178

23. R. O’Callahan and D. Jackson. Lackwit: A Program Understanding Tool Based on
Type Inference. In Proceedings of the 19th International Conference on Software
Engineering, pages 338–348, Boston, Massachusetts, May 1997. 178

24. M. Odersky, M. Sulzmann, and M. Wehr. Type Inference with Constrained Types.
In B. Pierce, editor, Proceedings of the 4th International Workshop on Foundations
of Object-Oriented Languages, Jan. 1997. 186

25. D. Rémy. Typechecking records and variants in a natural extension of ML. In Pro-
ceedings of the 16th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 77–88, Austin, Texas, Jan. 1989. 182

26. E. Ruf. Context-Insensitive Alias Analysis Reconsidered. In Proceedings of the
1995 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 13–22, La Jolla, California, June 1995. 178

27. M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued
Logic. In Proceedings of the 26th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 105–118, San Antonio, Texas, Jan.
1999. 177

28. M. Shapiro and S. Horwitz. Fast and Accurate Flow-Insensitive Points-To Anal-
ysis. In Proceedings of the 24th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 1–14, Paris, France, Jan. 1997. 176,
177

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 199

29. B. Steensgaard. Points-to Analysis in Almost Linear Time. In Proceedings of the
23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 32–41, St. Petersburg Beach, Florida, Jan. 1996. 176, 177, 184,
185, 189

30. Z. Su, M. Fähndrich, and A. Aiken. Projection Merging: Reducing Redundan-
cies in Inclusion Constraint Graphs. In Proceedings of the 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston,
Massachusetts, Jan. 2000. To appear. 178, 180, 196

31. R. P. Wilson and M. S. Lam. Efficient Context-Sensitive Pointer Analysis for C
Programs. In Proceedings of the 1995 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1–12, La Jolla, California, June 1995.
177, 178

32. A. K. Wright. Simple Imperative Polymorphism. In Lisp and Symbolic Computa-
tion 8, volume 4, pages 343–356, 1995. 186

33. S. H. Yong, S. Horwitz, and T. Reps. Pointer Analysis for Programs with Structures
and Casting. In Proceedings of the 1999 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 91–103, Atlanta, Georgia, May
1999. 177, 190

34. S. Zhang, B. G. Ryder, and W. A. Landi. Program Decomposition for Pointer
Aliasing: A Step toward Practical Analyses. In Fourth Symposium on the Founda-
tions of Software Engineering, Oct. 1996. 177

35. S. Zhang, B. G. Ryder, and W. A. Landi. Experiments with Combined Analysis
for Pointer Aliasing. In Proceedings of the ACM SIGPLAN/SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, pages 11–18, Montreal,
Canada, June 1998. 178

	Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis for C
	Introduction
	Related Work
	Constraints
	The Analyses
	Andersen's Analysis
	Steensgaard's Analysis
	Adding Polymorphism
	Reconstructing Local Information

	Experiments
	Precision
	Speed
	Discussion

	Conclusion
	References

