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ABSTRACT 
While context-free grammars (CFGs) remain as one of the most 
important formalisms for interpreting natural language, word n- 
gram models are surprisingly powerful for domain-independent 
applications. We propose to unify these two formalisms for both 
speech recognition and spoken language understanding (SLU). 
With portability as the major problem, we incorporated domain- 
specific CFGs into a domain-independent n-gram model that can 
improve generalizability of the CFG and specificity of the n- 
gram. In our experiments, the unified model can significantly 
reduce the test set perplexity from 378 to 90 in comparison with a 
domain-independent word trigram. The unified model converges 
well when the domain-specific data becomes available. The 
perplexity can be further reduced from 90 to 65 with a limited 
amount of domain-specific data. While we have demonstrated 
excellent portability, the full potential of our approach lies in its 
unified recognition and understanding that we are investigating. 

1. INTRODUCTION 
For the given speech signal X, spoken language understanding 
task is to find out the corresponding action A*, that satisfies the 
following equation: 
A’ = arg maxA P(A IX) 

where A stands for actions from dialog manager, S stands for 
semantic objects which are generated from a semantic parser [ 1,  
21, and w = w,w2 ... w,! is the word sequence from a speech 
recognizer [3]. Equation ( 1 )  indicates that we need to have a 
unified decoder from speech to understanding. 

The goal of the language model (LM) P(W) is to provide 
adequate information for predicting the likely word sequence. 
This can not only constrain the search space but also dramatically 
improve the accuracy of speech recognition. The CFG is not only 
powerful enough to describe most of the structure in spoken 
language but also restrictive enough to have efficient parsers. 
P(W) can be regarded as 1 or 0 depending upon whether the 
word sequence is accepted or rejected by the grammar. While the 
CFG provides us with a deeper structure, it is still inappropriate 
for robust spoken language processing since the grammar is 
almost always incomplete. A CFG-based system is only good 
when you know what sentences to speak, which diminishes the 
value and usability of the system. The advantage of CFG’s 

(1) garg maxAw, P(AIS) P(SIW) P(WIX) 

* Alphabetically reversed order 
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structured analysis is thus nullified by the poor coverage in most 
real applications. For application developers, it is also often 
highly labor-intensive to create CFGs. 

On the other hand, grammaticality is irrelevant for the n-gram 
model. Because it can be trained with a large amount of data, the 
n-word dependency can often accommodate both syntactic and 
semantic shallow structure seamlessly. The prerequisite of this 
approach is that we must have a sufficient amount of training 
data. The problem for n-gram models is that we need a lot of data 
and the model may not be specific enough. 

Nasr et al. [4] have considered a new unified language model 
that is composed of several local models and a general model 
linking the local models together. The local model used in their 
system is based on the stochastic FSA which is estimated from 
the training corpora. This approach still faces the portability 
problem, as it is hard to get domain-specific data to estimate 
these stochastic FSAs. Others [5-71 also considered a similar 
model using CFGs but once again, there is no clear way to 
leverage domain-independent LMs for domain-specific 
applications under the same probabilistic framework. In addition, 
none of these systems considered tightly integrating speech 
recognition (X to W), parsing (W to S), and dialog management 
(S to A) as illustrated in Equation ( 1 ) .  

2. A UNIFIED LANGUAGE MODEL 
Our unified language model is trying to take advantage of both 
rule-based and data-driven approaches. We want to come up with 
the method that is the best in terms of not only performance but 
also portability. Let’s consider the following training sentences: 

Meeting at three wirh Zhou Li. 
Meeting at four PM with Derek. 
If we use a word trigram, we will estimate P(Zhou1three 

with) and P(Derek1PM with) etc. There is no way we can capture 
the needed long-span semantic information in the training data. A 
unified model will have a set of CFGs that can capture the 
semantic structure of the domain. For the example listed here, we 
may have CFGs for (name) and (time) respectively. We can 
then use our NL engine to parse the training data we used for 
training our trigram to spot all the potential semantic structures 
in the training data. The training sentences now look like: 

Meeting {at three:TIME) with {Zhou Li:NAME) 
Meeting {at four PM:TIME) with {Derek: NAME] 
With analyzed training data, we can estimate our n-gram 

probabilities as usual. We will have probabilities such as 
P( (name)l( time) with) instead of P(Zhou1three with), which is 
more meaningful and accurate. Inside each CFG, we can also 
derive P(”Zhou Li”l( name)) and P(”four PM”l(time)) from the 
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existing n-gram (n-gram probability inheritance) so that they are 
normalized. If we add a new name to the existing {name) CFG, 
we can use the existing n-gram probabilities to renormalize our 
CFGs for the new name. The new approach can be regarded as a 
standard n-gram in which the vocabulary consists of words and 
structured classes. The structured class can be very simple such 
as [date), {time), and {name) or can be very complicated such 
as a CFG that contains deep structured information. Probability 
of a word or class will depend on the previous words or CFG 
classes. 

Inside each CFG, we can use the standard probabilistic CFG. 
However, without real data to estimate these probabilities, there 
is no easy way to derive the probability for each production rule. 
In addition, the context-free nature of probabilistic CFGs may 
not offer any real advantage over n-gram models which have 
strong local context constraints. We therefore investigated how 
the CFGs can inherit probability from a (possibly general) word 
n-gram LM. 

3. PROBABILITY INHERITANCE 
Formally, an input utterance w = wlw2 ... w, can be segmented 

into a sequence T = tlf ?... tm where each f, is either a word in W 
or a CFG non-terminal that covers a sequence of words U in W. 

The likelihood of W under the segmentation T is therefore 

P ( W , T ) = f i P ( t ,  II,.,’f,.*)fiP(T, It,) (2) 
,=I , = I  

In addition to trigram probabilities, we need to include 
P(U,, I t , ) ,  the likelihood of generating a word sequence 

U,, =[u,,,u,, 2...u,,x] from the CFG non-terminal t , .  In  the case 

when t, itself is a word (q, = [ r , ] ) ,  P(F,, If,)= I .  Otherwise, 

P(U,, I t , )  can be obtained by predicating each word in the 
sequence on its word history: 

1 Ib, I 
P(li;, If,) = n m,, I Df,1 > ... > P(< 1s >I U, 1 ( 3 )  [ ,=I 

Here </s> represents the special end-of-sentence word. Three 
different methods are used to calculate the likelihood of a word 
given history inside a CFG non-terminal. 

3.1 Uniform Distribution 
A history h =U,,~U,,~...U~ ,/-, corresponds to a set Q(h) , where 

each element in the set is a CFG state generating the initial 1 - 1 
words in the history from the non-terminal r, . A CFG state 
constrains the possible words that can follow the history. The 
union of the word sets for all of the CFG states in Q(h) ,  WQ(h)  

defines all legal words (including the symbol “</s>” for exiting 
the non-terminal r, if t, 5 U , , ~ U , ,  2...u ,,/-,) that can follow the 

history according to the CFG constraints. The likelihood of 
observing uf,/ following the history can be estimated by: 

(4) 

3.2 Inherited Word N-grams 
The uniform model does not capture the empirical word 
distribution undemeath a CFG non-terminal. A better alternative 
is to inherit existing domain-independent n-gram probabilities. 
These probabilities need to be appropriately normalized in the 
same probability space. Thus we have: 

3.3 CFG-Specific Inheritance 
Another way to improve the modeling of word sequence covered 
by a specific CFG non-terminal is to use a specific n-gram LM 
C(w, I W ~ - ~ , W , _ ~ )  for each non-terminal t .  The normalization is 
performed in the same way as in Equation (5). 

Multiple segmentations may be available for W due to the 
ambiguity of natural language. The likelihood of W is therefore 
the sum over all segmentations S(W): 

P ( W ) =  P(W,T) (6) 

4. A UNIFIED DECODER 
It is desirable to extend this framework further to unify both CSR 
and SLU instead of the current two-pass SLU systems. As 
illustrated in Equation ( I ) ,  the full potential of our new approach 
is that we can unify a number of components (speech recognizer, 
parser, and dialog manager) under the same probabilistic 
framework for optimal performance, which integrates the 
traditional rule-based NL approach and the most powerful data- 
based NL model (n-gram) seamlessly for both speech recognition 
and understanding. 

If we can identify these CFGs in the decoder, the need for a 
separate NL parser and speech recognizer may diminish. The 
advantage of our unified approach is that we can spot semantic 
concepts directly from the speech signal. 

Our current Whisper decoder [3] can only support either 
CFGs or word n-grams. These two grammars are mutually 
exclusive. We are in the process of changing the decoder so that 
we can embed CFGs in the n-gram search framework to take 
advantage of our unified language model. 

T t S ( W )  

5. MIPAD 
We are developing a multimodal interactive pad (MiPad) that 
offers a conversational, multi-modal interface to Personal 
Information Manager (PIM) functionality, including calendar, 
task list and e-mail. The ultimate goal is an interaction model that 
spans across a number of different platforms and users. The 
initial target device is in the palmtop form factor, and is intended 
for use by mobile professionals. We have chosen this as the 
platform because it is clearly a useful tool and has several 
opportunities for improvements. With existing palmtop PDAs, i t  
is very difficult to enter large amount of text, to fill a form, and to 
issue commands that contain multiple parameters. Multimodal 
interaction with speech and pen can help address these problems, 
which can significantly improve the usability with the Tup and 
Talk interface. 
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MiPad uses the Whisper speech recognizer [3] with a 60,000 
word vocabulary. The system, can be adapted to the user for 
improved performance. The current understanding system is 
based on our robust parser [8]  and event-driven dialog manager 
[93. 

Language Model 

Baseline Trigram 

TFIDF Trigram 

CFG-derived Trigram 

Interpolated Trigram 

Unified Language Model 

6. EXPERIMENTAL RESULTS 

Perplexity 

378 

27 I 

207 

I12 

90 

In the preliminary study, we only focused our experiments on 
portability of our domain-independent language model. We 
investigated how to build a domain specific language model 
without using domain specific data. 

6.1 Baseline System 
We built a general purpose trigram LM with vocabulary of 2,000 
words. The model was trained with the same data as that used for 
the Microsoft Dictation trigram. We used text corpora from 
newspapers, TV program transcripts, and memos. The training 
data has more than 2 billion words. The test set consists of 2,000 
sentences related to MiPad’s PIM applications such as 
scheduling a meeting, finding information from the contact list, 
and email. We collected these sentences in-house for the 
development of MiPad. Some of the training sets which we used 
in our experiments are so small that some words in the 
vocabulary never occur in the training set. Therefore, we always 
interpolated all LMs with a uniform word distribution with a 
small interpolation coefficient (0.05) to provide the necessary 
smoothing. 

The perplexity of our baseline Microsoft dictation language 
model on our MiPad test data ia378’. There is a clear mismatch 
between the dictation language model and conversational MiPad 
test data. 

6.2 A TFIDF Model 
The general purpose trigram was trained with a large variety of 
data. A majority of the data is likely to be irrelevant to our 
domain. Thus a topic-dependent language model such as that 
suggested in [ 101 can be used to select relevant text materials to 
build a more domain-specific LM. 

We used an lnformation Retrieval (IR) technique to extract 
more relevant data from the training set. We ran the CFG in the 
generative mode to generate “Sentences” and used them as a 
query for IR [lo]. For each sentence in the training data, its 
similarity to the query is calculated using the cosine similarity 
measure of the respective TFlDF vectors. Only those sentences 
that are similar to the query were used for training the trigram. 
The perplexity of the trigram trained on the filtered data 
(henceforth TFlDF model) is 271. 

6.3 A CFG-Derived Word Trigram 
We cannot use CFGs directly to evaluate the perplexity since a 
large number of sentences are not covered by our CFGs. Instead, 

’ Using the standard DARPA NAB word trigram LM which has a larger 
vocabulary, the perplexity on this MiPad test set is more than 1000 
while the typical Wall Street Joumal text perplexity is about 1 0 0 .  This 
strongly indicates that there is a mismatch between these two domains. 

we used our CFGs to generate sentences and used these 
sentences to estimate a word trigram. 

The perplexity of the CFG-derived trigram LM is 207, which 
indicates that the coverage of the CFG alone is indeed limited. 

6.4 An Interpolated Trigram 
We interpolated the TFlDF trigram LM and the CFG word 
trigram LM. Since we did not assume any domain specific data, 
0.5 was used as the interpolation weight for the component LMs. 
The perplexity of the resulting LM is reduced to 112, which is a 
significant perplexity reduction over both the component LMs. 
Clearly the TFIDF data and the CFG-derived data contain highly 
complementary information. 

6.5 A Unified Model 

Since many in-domain words are subsumed by CFG non- 
terminals, their probability of being a standalone word is 
underestimated. This is not very harmful if the CFG has good 
coverage. However, as we stated in the very beginning, high CFG 
coverage is not realistic for spoken language. To compensate for 
it, we interpolated the wordnon-terminal LM described above 
with the word ngram model described in Section 6.4. 

We investigated different methods of assigning the likelihood 
to a word sequence inside a CFG non-terminal, as discussed in 
Section 3. The best perplexity is 90, which is obtained from 
using inherited trigrams inside the CFG. The inherited trigram is 
CFG non-terminal specific as described in Section 3.3. The 
perplexity results are shown in Table 1. 
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6.6 Comparison with Domain Specific Models 
We can train a domain specific trigram that should have much 
better performance in comparison with the domain-independent 
trigram. The key problem is we need to collect a large amount of 
training data, which is impractical for most application 
developers. For MiPad, we have collected 3,000 sentences and 
reserved 2,000 for testing. We used the other 1,000 utterances for 
training. The perplexity of the model is a reference for 
comparison with the model obtained without domain specific 
data. 

Table 2 Comparison of language models on the MiPad 
test data when domain-specific data becomes available 

Language Model Perplexity 

Word Trigram 

Interpolated Trigram 

Unified Language Model 

Given the small amount of training data, we believed that the 
LM was likely to be under-trained. To improve the robustness, 
we interpolated the domain-specific trigram LM with CFG- 
derived trigram LM (Section 6.3). As shown in Table 2, the 
perplexity is significantly reduced to 65 with the unified model 
when limited amount of training data becomes available. In 
contrast, the interpolated word trigram has a much higher 
perplexity. This illustrates that our unified model can truly make 
more effective use of CFGs and domain-specific data than 
interpolated word trigram models. 

7. DISCUSSION AND SUMMARY 
Since we can have CFGs inherit n-gram probabilities, we can 
fully unify both CFGs and n-grams in the same probabilistic 
framework. When training data becomes available, the unified 
model is adaptable and it will converge to the best domain- 
specific structured n-gram language model. We can either adapt 
the system using new rules or data. When we port our system to a 
new domain, we can create some CFGs that may have limited 
coverage (as always), but the system can broaden the coverage of 
our CFGs automatically based on the n-gram language model. 
We can thus relatively easily port our SLU applications from one 
domain to another. 

The full potential of the proposed approach lies in its unified 
recognition and understanding. As indicated in Equation ( I ) ,  we 
believe that early use of semantic knowledge is very important to 
improve the robustness of the SLU system. We are in the process 
of systematically evaluating both the recognition and 
understanding performance in comparison to the conventional 
detached systems (speech recognition first and then SLU), which 
requires rewriting both the speech recognizer and SLU engine. 

In our current approach, we have not used any deep linguistic 
concepts and our CFGs can be written and used by application 
developers who have domain-specific knowledge. This is 
important, as most application developers do not have any 
linguistic expertise. Furthermore, our architecture also provides a 

new framework to incorporate linguistics-driven NLP ideas in 
the future. 

Our preliminary experiments indicate that the unified model 
could significantly improve the SLU system’s portability, which 
has been a major problem for widespread application of spoken 
language technologies. The unified language model reduced the 
test set perplexity from 378 to 90 in comparison with a domain- 
independent word trigram. Two key components are responsible 
for such a dramatic perplexity reduction. The first one is the use 
of domain specific knowledge in CFGs. By interpolating a 
trigram derived from such CFGs with the domain-independent 
trigram, we can reduce the perplexity from 378 to 112, while the 
CFG-derived trigram alone has a much higher perplexity of 207. 
The second one is unification of CFGs and n-gram models, which 
further reduced the perplexity from 11 2 to 90. 

When a limited amount of domain-specific data becomes 
available, the unified model offers further improved performance. 
The perplexity for the domain-specific word trigram was reduced 
from 186 to 91 when interpolated with the CFG-derived trigram. 
With the unified model, the perplexity was further reduced from 
91 to 65. 
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