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ABSTRACT

While context-free grammars (CFGs) remain as one of the most
important formalisms for interpreting natural anguage, word n-
gram models are surprisingly powerful for domain-independent
applications. We propose to unify these two formalisms for both
speech recognition and spoken language understanding (SLU).
With portability as the major problem, we incorporated domain-
specific CFGs into a domain-independent n-gram model that can
improve generalizability of the CFG and specificity of the n-
gram. In our experiments, the unified model can significantly
reduce the test set perplexity from 378 to 90 in comparison with a
domain-independent word trigram. The unified model converges
well when the domain-specific data becomes available. The
perplexity can be further reduced from 90 to 65 with a limited
amount of domain-specific data. While we have demonstrated
excellent portability, the full potential of our approach lies in its
unified recognition and understanding that we are investigating.

1. INTRODUCTION

For the given speech signal X, spoken language understanding
task is to find out the corresponding action A”, that satisfies the
following equation:
A’ =arg max, P(A|X)

=arg max,sw P(A[S) P(S|W)P(W|X)
where A stands for actions from dialog manager, S stands for
semantic objects which are generated from a semantic parser [1,
2), and W=ww,..w

n

M)

is the word sequence from a speech

recognizer [3]. Equation (1) indicates that we need to have a
unified decoder from speech to understanding.

The goal of the language model (LM) P(W) is to provide
adequate information for predicting the likely word sequence.
This can not only constrain the search space but also dramatically
improve the accuracy of speech recognition. The CFG is not only
powerful enough to describe most of the structure in spoken
language but also restrictive enough to have efficient parsers.
P(W) can be regarded as 1 or O depending upon whether the
word sequence is accepted or rejected by the grammar. While the
CFG provides us with a deeper structure, it is still inappropriate
for robust spoken language processing since the grammar is
almost always incomplete. A CFG-based system is only good
when you know what sentences to speak, which diminishes the
value and usability of the system. The advantage of CFG’s
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structured analysis is thus nullified by the poor coverage in most
real applications. For application developers, it is also often
highly labor-intensive to create CFGs.

On the other hand, grammaticality is irrelevant for the n-gram
model. Because it can be trained with a large amount of data, the
n-word dependency can often accommodate both syntactic and
semantic shallow structure seamlessly. The prerequisite of this
approach is that we must have a sufficient amount of training
data. The problem for n-gram models is that we need a lot of data
and the model may not be specific enough.

Nasr et al. [4] have considered a new unified language model
that is composed of several local models and a general model
linking the local models together. The local model used in their
system is based on the stochastic FSA which is estimated from
the training corpora. This approach still faces the portability
problem, as it is hard to get domain-specific data to estimate
these stochastic FSAs. Others [5-7] also considered a similar
model using CFGs but once again, there is no clear way to
leverage domain-independent 1.Ms for domain-specific
applications under the same probabilistic framework. In addition,
none of these systems considered tightly integrating speech
recognition (X to W), parsing (W to S), and dialog management
(S to A) as illustrated in Equation (1).

2. A UNIFIED LANGUAGE MODEL

Our unified language model is trying to take advantage of both
rule-based and data-driven approaches. We want to come up with
the method that is the best in terms of not only performance but
also portability. Let’s consider the following training sentences:

Meeting at three with Zhou Li.

Meeting at four PM with Derek.

If we use a word trigram, we will estimate P(Zhoulthree
with) and P(Derek|PM with) etc. There is no way we can capture
the needed long-span semantic information in the training data. A
unified model will have a set of CFGs that can capture the
semantic structure of the domain. For the example listed here, we
may have CFGs for {name} and {time} respectively. We can
then use our NL engine to parse the training data we used for
training our trigram to spot all the potential semantic structures
in the training data. The training sentences now look like:

Meeting {at three:TIME] with {Zhou Li:NAME}

Meeting {at four PM:TIME} with {Derek: NAME}

With analyzed training data, we can estimate our n-gram
probabilities as usual. We will have probabilities such as
P({name}|{time} with) instead of P(Zhou|three with), which is
more meaningful and accurate. Inside each CFG, we can also
derive P("Zhou Li"|{name}) and P("four PM”|{time}) from the
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existing n-gram (n-gram probability inheritance) so that they are
normalized. If we add a new name to the existing {name} CFG,
we can use the existing n-gram probabilities to renormalize our
CFGs for the new name. The new approach can be regarded as a
standard n-gram in which the vocabulary consists of words and
structured classes. The structured class can be very simple such
as {date}, {time}, and {name} or can be very complicated such
as a CFG that contains deep structured information. Probability
of a word or class will depend on the previous words or CFG
classes.

Inside each CFG, we can use the standard probabilistic CFG.
However, without real data to estimate these probabilities, there
is no easy way to derive the probability for each production rule.
In addition, the context-free nature of probabilistic CFGs may
not offer any real advantage over n-gram models which have
strong local context constraints. We therefore investigated how
the CFGs can inherit probability from a (possibly general) word
n-gram LM.

3. PROBABILITY INHERITANCE

Formally, an input utterance W =w,w,...w, can be segmented
into a sequence T =#t,...r, where each ¢, is either a word in W
or a CFG non-terminal that covers a sequence of words u, in Ww.

The likelihood of W under the segmentation T is therefore
PeW, D =[] Pe, 11,0 )] PG, 11) )
i=1 i=1

In addition to trigram probabilities, we need to include
P@, |1), the likelihood of generating a word sequence

u, =[u,u,,..u,] from the CFG non-terminal ¢,. In the case

when ¢ itself is a word (u, =[1]), P(q, |7,) =1. Otherwise,
P(u, |t,) can be obtained by predicating each word in the

sequence on its word history:
I
P(ul,] Iul,l""’ur,l—l) P(< /s >' '7,, ) (3)

I=1

P(u, [1)=

Here </s> represents the special end-of-sentence word. Three
different methods are used to calculate the likelihood of a word
given history inside a CFG non-terminal.

3.1 Uniform Distribution

A history h=u,u,,..u, , corresponds to a set Q(h), where
each element in the set is a CFG state generating the initial /-1
words in the history from the non-terminal r,. A CFG state

constrains the possible words that can follow the history. The
union of the word sets for all of the CFG states in Q(h), W,(h)

defines all legal words (including the symbol “</s>” for exiting
the non-terminal # if # = u,u,,..4,,) that can follow the

history according to the CFG constraints. The likelihood of
observing u,, following the history can be estimated by:

PG, |y =1/Wo). @
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3.2 Inherited Word N-grams

The uniform model does not capture the empirical word
distribution undemeath a CFG non-terminal. A better alternative
is to inherit existing domain-independent n-gram probabilities.
These probabilities need to be appropriately normalized in the
same probability space. Thus we have:

P, |, u,)
Pl 1) =t Pt 5)
zwwo(mP(wlurllvl’ur,l»l)

3.3 CFG-Specific Inheritance

Another way to improve the modeling of word sequence covered
by a specific CFG non-terminal is to use a specific n-gram LM
P.(w, |w,_,,w,_,) for each non-terminal r. The normalization is

performed in the same way as in Equation (5).

Multiple segmentations may be available for W due to the
ambiguity of natural language. The likelihood of W is therefore
the sum over all segmentations S(W):

P(W)= Y P(W,T) (6)

TeS(W)

4. A UNIFIED DECODER

It is desirable to extend this framework further to unify both CSR
and SLU instead of the current two-pass SLU systems. As
illustrated in Equation (1), the full potential of our new approach
is that we can unify a number of components (speech recognizer,
parser, and dialog manager) under the same probabilistic
framework for optimal performance, which integrates the
traditional rule-based NL approach and the most powerful data-
based NL model (n-gram) seamlessly for both speech recognition
and understanding.

If we can identify these CFGs in the decoder, the need for a
separate NL parser and speech recognizer may diminish. The
advantage of our unified approach is that we can spot semantic
concepts directly from the speech signal.

Our current Whisper decoder [3] can only support either
CFGs or word n-grams. These two grammars are mutually
exclusive. We are in the process of changing the decoder so that
we can embed CFGs in the n-gram search framework to take
advantage of our unified language model.

5. MIPAD

We are developing a multimodal interactive pad (MiPad) that
offers a conversational, multi-modal interface to Personal
Information Manager (PIM) functionality, including calendar,
task list and e-mail. The ultimate goal is an interaction model that
spans across a number of different platforms and users. The
initial target device is in the palmtop form factor, and is intended
for use by mobile professionals. We have chosen this as the
platform because it is clearly a useful tool and has several
opportunities for improvements. With existing palmtop PDAs, it
is very difficult to enter large amount of text, to fill a form, and to
issue commands that contain multiple parameters. Multimodal
interaction with speech and pen can help address these problems,
which can significantly improve the usability with the Tap and
Talk interface.
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MiPad uses the Whisper speech recognizer [3] with a 60,000
word vocabulary. The system.can be adapted to the user for
improved performance. The .current understanding system is
based on our robust parser [8) and event-driven dialog manager

9.
6. EXPERIMENTAL RESULTS

In the preliminary study, we.only focused our experiments on
portability of our domain-independent language model. We
investigated how to build a domain specific language model
without using domain specific-data.

6.1 Baseline System

We built a general purpose trigram LM with vocabulary of 2,000
words. The model was trained with the same data as that used for
the Microsoft Dictation trigram. We used text corpora from
newspapers, TV program transcripts, and memos. The training
data has more than 2 billion words. The test set consists of 2,000
sentences related to MiPad’s PIM applications such as
scheduling a meeting, finding information from the contact list,
and email. We collected these sentences in-house for the
development of MiPad. Some of the training sets which we used
in our experiments are so small that some words in the
vocabulary never occur in the training set. Therefore, we always
interpolated all LMs with a uniform word distribution with a
small interpolation coefficient (0.05) to provide the necessary
smoothing.

The perplexity of our baseline Microsoft dictation language
mode} on our MiPad test data is.378'. There is a clear mismatch
between the dictation language model and conversational MiPad
test data.

6.2 A TFIDF Model

The general purpose trigram was trained with a large variety of
data. A majority of the data is likely to be irrelevant to our
domain. Thus a topic-dependent language model such as that
suggested in [10] can be used to select relevant text materials to
build a more domain-specific LM.

We used an Information Rétrieval (IR) technique to extract
more relevant data from the training set. We ran the CFG in the
generative mode to generate “Sentences” and used them as a
query for IR [10]. For each sentence in the training data, its
similarity to the query is calculated using the cosine similarity
measure of the respective TFIDF vectors. Only those sentences
that are similar to the query were used for training the trigram.
The perplexity of the trigram trained on the filtered data
(henceforth TFIDF model) is 271.

6.3 A CFG-Derived Word Trigram

We cannot use CFGs directly to evaluate the perplexity since a
large number of sentences are not covered by our CFGs. Instead,

! Using the standard DARPA NAB word trigram LM which has a larger
vocabulary, the perplexity on this MiPad test set is more than 1000
while the typical Wall Street Journal text perplexity is about 100. This
strongly indicates that there is a mismatch between these two domains.

we used our CFGs to generate sentences and used these
sentences to estimate a word trigram.

The perplexity of the CFG-derived trigram LM is 207, which
indicates that the coverage of the CFG alone is indeed limited.

6.4 An Interpolated Trigram

We interpolated the TFIDF trigram LM and the CFG word
trigram LM. Since we did not assume any domain specific data,
0.5 was used as the interpolation weight for the component LMs.
The perplexity of the resulting LM is reduced to 112, which is a
significant perplexity reduction over both the component LMs.
Clearly the TFIDF data and the CFG-derived data contain highly
complementary information.

6.5 A Unified Model

We parsed the data obtained from the aforementioned IR
technique with our robust chart parser. A word/non-terminal
trigram LM was trained with the parsed data. Since the
occurrence of domain specific CFG non-terminals (like {date},
{time}, {appointments}) is much lower in the general data than
in the domain specific data, we used the CFG again in the
generative mode to obtain domain specific synthetic data that
contained words and non-terminals. Starting from the top level
CFG non-terminal, the procedure randomly decided whether to
keep the non-terminal in the synthetic sentence or to expand it to
sub-symbols according to the CFG rules for that non-terminal. A
trigram LM was constructed on the synthetic data and it was
interpolated with the unified model trained on the parsed TFIDF
data. The interpolation weight for each component LM is 0.5.

Table 1 Comparison of language models on the MiPad
test data when no domain-specific data is available

Language Model Perplexity
Baseline Trigram 378
TFIDF Trigram 271
CFG-derived Trigram 207
Interpolated Trigram 112
Unified Language Model 90

Since many in-domain words are subsumed by CFG non-
terminals, their probability of being a standalone word is
underestimated. This is not very harmful if the CFG has good
coverage. However, as we stated in the very beginning, high CFG
coverage is not realistic for spoken language. To compensate for
it, we interpolated the word/non-terminal LM described above
with the word ngram model described in Section 6.4.

We investigated different methods of assigning the likelihood
to a word sequence inside a CFG non-terminal, as discussed in
Section 3. The best perplexity is 90, which is obtained from
using inherited trigrams inside the CFG. The inherited trigram is
CFG non-terminal specific as described in Section 3.3. The
perplexity results are shown in Table 1.
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6.6 Comparison with Domain Specific Models

We can train a domain specific trigram that should have much
better performance in comparison with the domain-independent
trigram. The key problem is we need to collect a large amount of
training data, which is impractical for most application
developers. For MiPad, we have collected 3,000 sentences and
reserved 2,000 for testing. We used the other 1,000 utterances for
training. The perplexity of the model is a reference for
comparison with the model obtained without domain specific
data.

Table 2 Comparison of language models on the MiPad
test data when domain-specific data becomes available

Language Model Perplexity
Word Trigram 186
Interpolated Trigram 91
Unified Language Model 65

Given the small amount of training data, we believed that the
LM was likely to be under-trained. To improve the robustness,
we interpolated the domain-specific trigram LM with CFG-
derived trigram LM (Section 6.3). As shown in Table 2, the
perplexity is significantly reduced to 65 with the unified model
when limited amount of training data becomes available. In
contrast, the interpolated word trigram has a much higher
perplexity. This illustrates that our unified model can truly make
more effective use of CFGs and domain-specific data than
interpolated word trigram models.

7. DISCUSSION AND SUMMARY

Since we can have CFGs inherit n-gram probabilities, we can
fully unify both CFGs and n-grams in the same probabilistic
framework. When training data becomes available, the unified
model is adaptable and it will converge to the best domain-
specific structured n-gram language model. We can either adapt
the system using new rules or data. When we port our system to a
new domain, we can create some CFGs that may have limited
coverage (as always), but the system can broaden the coverage of
our CFGs automatically based on the n-gram language model.
We can thus relatively easily port our SLU applications from one
domain to another.

The full potential of the proposed approach lies in its unified
recognition and understanding. As indicated in Equation (1), we
believe that early use of semantic knowledge is very important to
improve the robustness of the SLU system. We are in the process
of systematically evaluating both the recognition and
understanding performance in comparison to the conventional
detached systems (speech recognition first and then SLU), which
requires rewriting both the speech recognizer and SLU engine.

In our current approach, we have not used any deep linguistic
concepts and our CFGs can be written and used by application
developers who have domain-specific knowledge. This is
important, as most application developers do not have any
linguistic expertise. Furthermore, our architecture also provides a
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new framework to incorporate linguistics-driven NLP ideas in
the future.

Our preliminary experiments indicate that the unified model
could significantly improve the SLU system’s portability, which
has been a major problem for widespread application of spoken
language technologies. The unified language model reduced the
test set perplexity from 378 to 90 in comparison with a domain-
independent word trigram. Two key components are responsible
for such a dramatic perplexity reduction. The first one is the use
of domain specific knowledge in CFGs. By interpolating a
trigram derived from such CFGs with the domain-independent
trigram, we can reduce the perplexity from 378 to 112, while the
CFG-derived trigram alone has a much higher perplexity of 207.
The second one is unification of CFGs and n-gram models, which
further reduced the perplexity from 112 to 90.

When a limited amount of domain-specific data becomes
available, the unified model offers further improved performance.
The perplexity for the domain-specific word trigram was reduced
from 186 to 91 when interpolated with the CFG-derived trigram.
With the unified model, the perplexity was further reduced from
91 to 65.
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