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Abstract. A statistical generative model for the speech process is described that
embeds a substantially richer structure than the HMM currently in predominant use for
automatic speech recognition. This switching dynamic-system model generalizes and
integrates the HMM and the piece-wise stationary nonlinear dynamic system (state-
space) model. Depending on the level and the nature of the switching in the model
design, various key properties of the speech dynamics can be naturally represented in
the model. Such properties include the temporal structure of the speech acoustics, its
causal articulatory movements, and the control of such movements by the multidimen-
sional targets correlated with the phonological (symbolic) units of speech in terms of
overlapping articulatory features.

One main challenge of using this multi-level switching dynamic-system model for
successful speech recognition is the computationally intractable inference (decoding) on
the posterior probabilities of the hidden states. This leads to computationally intractable
optimal parameter learning (training). Several versions of Bayesian networks have been
devised with detailed dependency implementation speci�ed to represent the switching
dynamic-system model of speech. We discuss the variational technique developed for
general Bayesian networks as a suboptimal solution to the decoding and learning prob-
lems. Some common operations of estimating phonological states' switching times have
been shared between the variational technique and the human auditory function that
uses neural transient responses to detect temporal landmarks associated with phono-
logical features. This suggests that the variation-style learning may actually take place
in human speech perception under an encoding-decoding theory of speech communi-
cation which highlights the critical roles of modeling articulatory dynamics for speech
recognition and which forms a main motivation for the switching dynamic system model
described in this chapter.
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1. Introduction. Speech recognition technology has been advanced
signi�cantly in recent years (cf. [26, 24]), attributed to the use of powerful
statistical paradigms, availability of increasing quantities of speech data
corpus, and to the development of powerful algorithms for model learning
from the data. However, the methodology underlying the current tech-
nology has been founded on weak scienti�c principles. Not only does the
current methodology require prohibitively large amounts of training data
and lack robustness under mismatch conditions, its performance also falls
at least one order of magnitude short of that of human speech recognition
on many comparable tasks (cf. [28, 38]). For example, the best recognizers
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today still produce errors in more than one quarter of the words in natu-
ral conversational speech in spite of many hours of speech material used as
training data. The current methodology has been primarily founded on the
principle of statistical \ignorance" modeling. This fundamental philosophy
is unlikely to bridge the performance gap between human and machine
speech recognition. A potentially promising approach is to build into the
statistical speech model most crucial mechanisms in human speech commu-
nication for use in machine speech recognition. Since speech recognition or
perception in human is one integrative component in the entire closed-loop
speech communication chain, the mechanisms to be modeled need to be
suÆciently broad | including mechanisms in both speech production and
auditory perception as well as in their interactions.

Some recent work on speech recognition have been pursued along this
direction [6, 17, 13, 16, 41, 42]. The approaches proposed and described in
[1, 5, 44] have incorporated the mechanisms in the human auditory process
in speech recognizer design. The approaches reported in [17, 20, 18, 39,
3, 49] have advocated use of the articulatory feature-based phonological
units which control human speech production and are typical of human
lexical representation, breaking away from the prevailing use of the phone-
sized, \beads-on-a-string" linear phonological units in the current speech
recognition technology. The approaches outlined in [31, 12, 11, 14, 13]
have emphasized the functional signi�cance of abstract, \task" dynamics
in speech production and recognition. Work reported and surveyed in [10,
15, 33, 42] have also focused on the dynamic aspects in the speech process,
but the dynamic object being modeled is in the space of speech acoustics,
rather than in the space of the production-aÆliated variables.

Although dynamic modeling has been a central focus of much recent
work in speech recognition, the dynamic object being modeled either in the
space of \task" variables or of acoustic variables does not and may not be
potentially able to directly take into account the many important proper-
ties in true articulatory dynamics. Some earlier proposals and empirical
methods for modeling pseudo-articulatory dynamics or abstract hidden dy-
namics for the purpose of speech recognition can be found in [2, 4, 21, 40],
where the dynamics of a set of pseudo-articulators is realized either by
FIR �ltering from sequentially placed, phoneme-speci�c target positions or
by applying trajectory-smoothness constraints. In such earlier work, due
to the simplicity nature in the use of the pseudo-articulators, one most
important property of the human speech production | compensatory ar-
ticulation which requires modeling correlations among a set of articulators
| was not able to take into account. This has drastically diminished the
power of such models for potentially successful use in speech recognition.

To incorporate crucial properties in human articulatory dynamics |
including compensatory articulation, target behavior, and relatively con-
strained dynamics (due to biomechanical properties of the articulatory
organs) | in a statistical model of speech, it appears necessary to use
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true, multidimensional articulators, rather than the pseudo-articulators at-
tempted in the past. Given that much of the acoustic variation observed in
speech that makes speech recognition diÆcult can be attributed to articu-
latory phenomena, and given that articulation is one key component in the
closed-loop human speech communication chain, it is reasonable to expect
that incorporating a faithful and explicit articulatory dynamic model in
the statistical structure of automatic speech recognizer will contribute to
bridging the performance gap between human and machine speech recogni-
tion. Based on this motivation, a general framework for speech recognition
using a statistical description of the speech articulation and acoustic pro-
cesses is developed and outlined in this chapter. Central to this framework
is a switching dynamic system model used to characterize the speech ar-
ticulation (with its control) and the related acoustic processes, and the
Bayesian network representation of this model. Before presenting some
details of this model, we �rst introduce an encoding-decoding theory of
human speech perception which formalizes key roles of modeling speech
articulation.

2. Roles of articulation in encoding-decoding theory of speech

perception. At a global and functional level, human speech communica-
tion can be viewed as an encoding-decoding process, where the decoding
process or perception is an active process consisting of auditory reception
followed by phonetic/linguistic interpretation. As an encoder implemented
by the speech production system, the speaker uses knowledge of meanings
of words (or phrases), of grammar in a language, and of the sound rep-
resentations for the intended linguistic message. Such knowledge can be
made analogous to the keys used in engineering communication systems.
The phonetic plan, derived from the semantic, syntactic, and phonologi-
cal processes, is then executed through the motor-articulatory system to
produce speech waveforms.

As a decoder which aims to accomplish speech perception, the listener
uses a key, or the internal \generative" model, which is compatible with
the key used by the speaker to interpret the speech signal received and
transformed by the peripheral auditory system. This enables the listener
to reconstruct, via (probabilistic) analysis-by-synthesis strategies, the lin-
guistic message intended by the speaker. Since the nature of the key used
in the phonetic-linguistic information decoding or speech perception lies in
the strategies used in the production or encoding process, speech produc-
tion and perception are intimately linked in the closed-loop speech chain.
The implication of such a link for speech recognition technology is the need
to develop functional and computational models of human speech produc-
tion for use as an \internal model" in the decoding process by machines.
Fig. 1 is a schematic diagram showing speaker-listener interactions in hu-
man speech communication and showing the several components in the
encoding-decoding theory.
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The encoding-decoding theory of speech perception outlined above
highlights crucial roles of speech articulation for speech perception. In
summary, the theory consists of three basic, integrated elements: 1) ap-
proximate motor-encoding | the symbolic phonological process interfaced
with dynamic phonetic process in speech production; 2) robust auditory
reception | speech signal transformation prior to the cognitive process;
and 3) cognitive decoding | optimal (by statistical criteria) matching of
the auditory transformed signal with the \internal" model derived from a
set of motor encoders distinct for separate speech classes. In this theory,
the \internal" model in the brain of the listener is hypothesized to have
been \approximately" established during the childhood speech acquisition
process (or during the process of learning foreign languages in adulthood).

The speech production process as the approximate motor encoder in
the above encoding-decoding theory consists of the control strategy of
speech articulation, the actual realized speech articulation, and the acous-
tic signal as the output of the speech articulation system. On the other
hand, the auditory process plays two other key roles. First, it transforms
the acoustic signal of speech to make it robust against environmental varia-
tions. This provides the modi�ed information to the decoder to make its job
easier than otherwise. Second, many transient and dynamic properties in
the auditory system's responses to speech help create temporal landmarks
in the stream of speech to guide the decoding process. As will be shown
in this chapter, the optimal decoding using the switching dynamic system
model as the encoder incurs exponentially growing computation. Use of
the temporal landmarks generated from the auditory system's responses
overcomes such computational diÆculties, hence providing an elegant sub-
optimal solution to the otherwise formidable computational problem in the
decoding.

In addition to accounting for much of the existing human speech per-
ception data, the computational nature of this theory, with some details
described in the remaining of this chapter with special focus on statisti-
cal modeling of the dynamic speech articulation and acoustic processes,
enables it to be used as the basic underpinning of computer speech recog-
nition systems.

3. Switching State Space Model for Multi-Level Speech Dy-

namics. In this section, we outline each component of the multi-level
speech dynamic model. The model serves as a computational device for
the approximate encoder in the encoding-decoding theory of speech per-
ception outlined above. We provide motivations for the construction of each
model component from principles of speech science, present a mathematical
description of each model component, and justify assumptions made to the
mathematical description. The components in the overall model consists of
phonology, articulatory targets, articulatory dynamics, and acoustic model.
We start with the phonology component.
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3.1. Phonological construct. Phonology is concerned with sound
patterns of speech and the nature of discrete or symbolic units that form
such patterns. Traditional theories of phonology di�er in the choice and
interpretation of the phonological units. Early distinctive feature based
theory [8] and subsequent autosegmental, feature-geometry theory [9] as-
sumed a rather direct link between phonological features and their phonetic
correlates in the articulatory or acoustic domain. Phonological rules for
modifying features represented changes not only in the linguistic structure
of the speech utterance, but also in the phonetic realization of this struc-
ture. This weakness has been recognized by more recent theories, e.g.,
articulatory phonology [7], which emphasize the importance of accounting
for phonetic levels of variation as distinct from those at the phonological
levels.

In the framework described here, it will be assumed that the linguistic
function of phonological units is only to maintain linguistic contrasts and
is separate from phonetic implementation. It is further assumed that the
phonological unit sequence can be described mathematically by a discrete-
time, discrete-state homogeneous Markov chain. This Markov chain is
characterized by its state transition matrix A = [aij ] where aij = P (sk =
jjsk�1 = i).

How to construct sequences of symbolic phonological units for any ar-
bitrary speech utterance and how to built them into an appropriate Markov
state (i.e., phonological state) structure will not be dealt with here. We
merely mention that for e�ective use of the current framework in speech
recognition, the symbolic units must be of multiple dimensions that overlap
with each other temporally, overcoming beads-on-a-string limitations. We
refer the readers to some earlier work for ways of constructing such over-
lapping units, either by rules or by automatic learning, which have proved
e�ective in the HMM-like speech recognition framework [20, 18, 17, 51].

3.2. Articulatory control and targets. After a phonological model
is constructed, the processes for converting abstract phonological units into
their phonetic realization need to be speci�ed. This is a central issue
in speech production. It concerns the nature of invariance and variabil-
ity in the processes interfacing phonology and phonetics, and speci�cally,
whether the invariance is more naturally expressed in the articulatory or
acoustic/auditory domains. Early proposals assumed a direct link between
abstract phonological units and physical measurements. The \quantal the-
ory" [48] proposed that phonological features possessed invariant acoustic
correlates that could be measured directly from the speech signal. The
\motor theory" [27] proposed instead that articulatory properties are as-
sociated with phonological symbols. No conclusive evidence supporting
either hypothesis has been found without controversy, however.

In the current framework, a commonly held view in the phonetics
literature is adopted that discrete phonological units are associated with a
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temporal segmental sequence of phonetic targets or goals [30, 25, 35, 36, 37].
The function of the articulatory motor control system is to achieve such
targets or goals by manipulating the articulatory organs according to some
control principles subject to the articulatory inertia and possibly minimal-
energy constraints.

Compensatory articulation has been widely documented in the pho-
netics literature where trade-o�s between di�erent articulators and non-
uniqueness in the articulatory-acoustic mapping allow for the possibilities
that many di�erent articulatory target con�gurations may be able to real-
ize the same underlying goal, and that speakers typically choose a range
of possible targets depending on external environments and their interac-
tions with listeners [25]. In order to account for compensatory articulation,
a complex phonetic control strategy need be adopted. The key modeling
assumptions adopted regarding such a strategy is as follows. First, Each
phonological unit is correlated or interfaced to a number of phonetic pa-
rameters. These measurable parameters may be acoustic, articulatory or
auditory in nature, and they can be computed from some physical models
for the articulatory and auditory systems. Further, the region determined
by the phonetic correlates for each phonological unit can be mapped onto
an articulatory parameter space. Hence the target distribution in the ar-
ticulatory space can be determined simply by stating what the phonetic
correlates (formants, articulatory positions, auditory responses, etc.) are
for each of the phonological units (many examples are provided in [50]),
and by running simulations in suitably-detailed articulatory and auditory
models.

A convenient mathematical representation for the distribution of the
articulatory target vector t is a multivariate Gaussian distribution, denoted
by

t � N (t;m(s);�(s)):

Since the target distribution is conditioned on a speci�c phonological unit
(such as a bundle of overlapped features represented by an HMM state s)
and since the target does not switch until the phonological unit changes,
the statistics for the temporal sequence of the target process follows that
of a segmental HMM.

3.3. Articulatory dynamics. At the present state of knowledge, it
is diÆcult to speculate how the conversion of higher-level motor control
into articulator movement takes place. Ideally, modeling of articulatory
dynamics and control would require detailed neuromuscular and biome-
chanical models of the vocal tract, as well as an explicit model of the
control objectives and strategies. This is clearly too complicated to imple-
ment. A reasonable, simplifying assumption would be that the combined
(non-linear) control system and articulatory mechanism behave, at a func-
tional level, as a linear dynamic system that attempts to track the control
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input equivalently represented by the articulatory target in the articula-
tory parameter space. Articulatory dynamics can then be approximated
as the response of a dynamic vocal tract model driven by a random target
sequence (as a segmental HMM). (The output of the vocal tract model
then produces a time-varying tract shape which modulates the acoustic
properties of the speech signal as observed data.)

This simplifying assumption then reduces the generic nonlinear state
equation:

z(k + 1) = gs[z(k); ts;w(k)]

into a mathematically tractable linear one:

z(k + 1) = �sz(k) + (I ��s)ts +w(k);(3.1)

where z 2 Rn is the articulatory-parameter vector, I is the identity matrix,
w is the IID and Gaussian system noise, ts is the HMM-state dependent,
target vector (expressed in the articulatory domain), and �s is the HMM-
state dependent system matrix. The dependence of the ts and �s param-
eters of the above dynamic system on the phonological state is justi�ed
by the fact that the functional behavior of an articulator depends on the
particular goal it is trying to implement, and on the other articulators with
which it is cooperating in order to produce compensatory articulation.

3.4. Acoustic model. While a truly consistent framework we are
striving for based on explicit knowledge of speech production and percep-
tion ideally should include detailed high-order state-space models of the
physical mechanisms involved, this becomes unfeasible due to excessive
computational requirements. The simplifying assumption adopted is that
the articulatory and acoustic state of the vocal tract can be adequately
described by low-order vectors of variables representing respectively the
relative positions of the major articulators, and the corresponding time-
averaged spectral parameters derived from the acoustic signal (or other
parameters computed from auditory models). Given further that an ap-
propriate time scale is chosen, it will also be assumed that the relationship
between articulatory and acoustic representations can be modeled by a
static memoryless transformation, converting a vector of articulatory pa-
rameters into a vector of acoustic (or auditory) measurements.

This noisy static memoryless transformation can be mathematically
represented by the following observation equation in the state-space model:

o(k) = h[z(k)] + v(k):(3.2)

where o 2 Rn is the observation vector, v is the IID observation noise
vector uncorrelated with the state noisew, and h[:] is the static memoryless
transformation from the articulatory vector to its corresponding acoustic
observation vector.
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There are many ways of choosing the static nonlinear function for h[z].
Let us take an example of multi-layer perceptron (MLP) with three layers
(input, hidden and output). Let wjl be the MLP weights from input to
hidden units and Wij be the MLP weights from hidden to output units,
where l is the input node index, j the hidden node index and i the output
node index. Then the output signal at node i can be expressed as a (non-
linear) function h(:) of all the input nodes (making up the input vector)
according to

hi(x) =

JX
j=1

Wij � s(
LX
l=1

wjl � xl); 1 � i � I;(3.3)

where I , J and L are the numbers of nodes at the output, hidden and input
layers, respectively. s(:) is the hidden unit's nonlinear activation function,
taken as the standard sigmoid function of

s(x) =
1

1 + exp(�x)
:(3.4)

The derivative of this sigmoid function has the following concise form:

s0(x) = s(x)(1� s(x));(3.5)

making it convenient for use in many computations.
Typically, the analytical forms of nonlinear functions, such as the MLP,

make the associated nonlinear dynamic systems diÆcult to analyze and
make the estimation problems diÆcult to solve. Approximations are fre-
quently used to gain computational simpli�cations while sacri�cing accu-
racy for approximating the nonlinear functions.

One most commonly used technique for the approximation is truncated
(vector) Taylor series expansion. If all the Taylor series terms of order two
and higher are truncated, then we have the linear Taylor series approxima-
tion that is characterized by the Jacobian matrix J and the point of Taylor
series expansion x0:

h(z) � h(z0) + J(z0)(z� z0):(3.6)

Each element of the Jacobian matrix J is partial derivative of each vector
component of the nonlinear output with respect to each of the input vector
components. That is,

J(z0) =
@h

@z0
=

2
66664

@h1(z0)
@z1

@h1(z0)
@z2

� � � @h1(z0)
@zn

@h2(z0)
@z1

@h2(z0)
@z2

� � � @h2(z0)
@zn

...
...

@hm(z0)
@z1

@hm(z0)
@z2

� � � @hm(z0)
@zn

3
77775 :(3.7)
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As an example, for the MLP nonlinearity of Eqn.3.3, the (i; l)-th element
of the Jacobian matrix is

JX
j=1

Wij � sj(y) � (1� sj(y)) � wjl; 1 � i � I; 1 � l � L;(3.8)

where y =
PL

l0=1Wjl0zl0 .
Use of the radial basis function as the nonlinearity in the general non-

linear dynamic system model can be found in [22].

3.5. Switching state space model. Eqns.3.1 and 3.2 form a spe-
cial version of the switching state-space model appropriate for describing
multi-level speech dynamics. The top-level dynamics occurs at the discrete-
state phonology, represented by the state transitions of s with a relatively
long time scale. The next level is the target (t) dynamics; it has the same
time scale and provides systematic randomness at the segmental level. At
the level of articulatory dynamics, the time scale is signi�cantly shortened.
This is continuous-state dynamics driven by the target process as input,
which follows HMM statistics. The state equation 3.1 explicitly describes
this dynamics in z, with index of s (which takes discrete values) implicitly
representing the switching process. At the lowest level of acoustic dynam-
ics, there is no switching process. Since the observation equation 3.2 is
static, this simplifying speech model assumes that acoustic dynamics re-
sults solely from articulatory dynamics. Improvement of the model that
overcomes this simpli�cation is unlikely until better modeling techniques
are developed for representing multiple time scales in the dynamic aspects
of speech acoustics in relation to the speech articulation process.

4. Bayesian Network Representation of the Speech Model.

Developed mainly by machine-learning researchers, Bayesian network has
found many useful applications. A Bayesian network is a graphical model
that describes dependencies in the probability distributions de�ned over
a set of variables. A most interesting class of the Bayesian network, as
relevant to speech modeling, is dynamic Bayesian networks that are specif-
ically aimed at modeling time series statistics. For time series data such
as speech vector sequences, there are causal dependencies between random
variables in time. This drastically simpli�es the Bayesian net structure,
and permits development of highly eÆcient algorithms for the probability
inference (i.e., computation of conditional probabilities) and for learning
(i.e., model parameter estimation).

Both the HMM and the stationary (i.e., no switching) dynamic sys-
tem model are two simplest examples of a dynamic Bayesian network, for
which the eÆcient algorithms developed in statistics and in speech process-
ing [46, 33, 19] turned out to be identical to those based on the more general
principles of Bayesian-network theory applied to the special network struc-
tures associated with these models. However, for the more complex speech
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model such as the switching dynamic system model described above, no
exact solution for inference and learning is available without exponentially
growing computation with the size of the data. Approximate solutions
have been provided for some simple versions of the the switching dynamic
system model in literatures of statistics [47], speech processing [29], and of
neural computation and Bayesian net [23, 34]. The Bayesian net framework
allows us to take a fresh view on the complex computational issues for such
a model, and provides guidance and insights to the algorithm development
as well as model re�nement.

We now discuss how the particular multi-component speech model
described in Section 3 can be represented and implemented by Bayesian
networks. Fig. 2 shows one type of dependency structure (indicated by the
direction of arrows) of the model, where (discrete) time index runs from left
to right. The top-row random variables s(k) take discrete values over the
set of phonological states (overlapped feature bundles), and the remaining
random variables for the targets, articulators, and acoustic vectors are
continuously valued for each time index.

Each dependency in the above Bayesian net can be implemented by
specifying the associated conditional probability. In the speech model pre-
sented in Section 3, the horizontal (temporal) dependency for the phono-
logical (discrete) states is speci�ed by the Markov chain transition proba-
bilities:

P (sk = jjsk�1 = i) = aij :(4.1)

The vertical (level)1 dependency for the target random variables is speci�ed
by the following conditional density function:

p(t(k)jsk) = N (t(k);m(sk);�(sk)):(4.2)

Possible structures in the covariance matrix �(sk) in the above target
distribution can be explored using physical interpretations of the targets
as idealized articulation. For example, the velum component is largely
uncorrelated with other components; so is the glottal component. On the
other hand, tongue components are correlated with each other and with
the jaw component. For some linguistic units (/u/ for instance), some
tongue components are correlated with the lip components. Therefore, the
covariance matrix �(sk) has a block diagonal structure. If we represent
each component in the target vector in the Bayesian net, then each target
node in Figure 2 will contain a sub-network.

The joint horizontal and vertical dependency for the articulatory (con-
tinuous) state is speci�ed, based on state equation 3.1, by the conditional
density function:

pz[z(k + 1)jz(k); t(k); sk ] = pw[z(k + 1)��skz(k) � (1��sk )t(k)]:(4.3)

1Level of the speech production chain as the \encoder".
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The vertical dependency for the observation random variables is speci-
�ed, based on observation equation 3.2, by the conditional density function:

po[o(k)jz(k)] = pv[o(k)� h(z(k))]:(4.4)

Eqns.4.1, 4.2, 4.3, and 4.4 then completely specify the switching dynamic
model in Fig. 2 since they de�ne all possible dependencies in its Bayesian
network representation.

Note that in Eqn.4.4 the \forward" conditional probability for the ob-
servation vector (when the corresponding articulatory vector z(k) is known)
is Gaussian, as is the measurement noise vector's distribution. The mean
of the Gaussian is the prediction of the nonlinear function h(z(k)). How-
ever, the \inverse" or \inference" conditional probability p[z(k)jo(k)] will
not be Gaussian due to the nonlinearity of h(:) as well as the switching
process that controls the dynamics in z(k). This non-Gausianity is one
major source of diÆculty for the inference and learning problem associated
with the nonlinear switching dynamic system model.

One modi�cation and extension of the basic Bayesian-net model of
Fig. 2 is to explicitly represent parallel streams of the overlapping phono-
logical features and their associated articulatory dimensions. As discussed
in Section 3.1, the phonological construct of the model consists of multi-
dimensional symbols (feature bundles) overlapping in time. The Bayesian
net for this expanded model is shown in Fig.3, where the individual com-
ponents of the articulator vector from the parallel overlapping streams are
ultimately combined to generate the acoustic vectors.

Another modi�cation of the basic Bayesian-net model of Fig. 2 is
to incorporate the segmental constraint on the switching process for the
dynamics of the target random vector t(k). That is, while random, t(k)
remains �xed until the phonological state sk switches. The switching of
target t(k) is synchronous with that of the phonological state, and only at
the time of switching, t(k) is allowed to take a new value according to its
probability density f unction. This segmental constraint can be described
mathematically by the following conditional probability density function:

p[t(k)jsk; sk�1; t(k � 1)] =

�
Æ[t(k)� t(k � 1)] if sk = sk�1;

N (t(k);m(sk);�(sk)) otherwise:

This adds the new dependency of random vector of t(k) on sk�1 and t(k�
1), in addition to the existing sk as in Fig. 2. The modi�ed Bayesian net
incorporating this new dependency is shown in Fig. 4.

Given the Bayesian net representations of switching dynamic system
models for speech, rich tools for approximate inference and learning can be
exploited and further developed. Since the exact inference is impossible, at
least in theory, the success of applying such a model to speech recognition
crucially depends on the accuracy of the approximate algorithms.
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It is interesting to note that while the exact optimal inference for
the phonological states (speech recognition problem) has exponential com-
plexity in computation, once the approximate times of the switching in
the phonological states become known, computational complexity can be
substantially reduced. When applying the variational technique developed
for Bayesian net inference and learning to the speech model, we separate
the phonological states from the remaining of the network, and iteratively
estimate the posterior distributions of the discrete phonological and con-
tinuous articulatory states. Inference on the phonological states is essen-
tially a search for the state switching times with soft decisions. In the
encoding-decoding theory of speech perception outlined in Section 2, one
crucial role of auditory reception for human speech perception is to provide
temporal landmarks for the phonological features via the many transient
neural response properties in the auditory system [45, 48, 49]. This com-
mon operation performed by the auditory system and by one aspect of the
variational technique suggests that the variation-style learning algorithms
may actually take place in human speech perception.

5. Summary and Discussion. We outlined an encoding-decoding
theory of speech perception in this chapter, which highlights the impor-
tance and critical role of modeling articulatory dynamics in speech recog-
nition. This is an integrated motor-auditory theory where the motor or
production system provides the internal model for the listener's speech
decoding device, while the auditory system provides sharp temporal land-
marks for phonological features to constrain the decoder's search space and
to minimize possible loss of decoding accuracy.

Most of current speech systems are very fragile. For further progress
in the �eld, the author believes that it is necessary to bring in human-like
intelligence of speech perception into computer systems. The switching
dynamic system models discussed in this chapter o�er one powerful math-
ematical tool for implementing the encoding-decoding mechanism of human
speech communication. We have shown that the Bayesian network frame-
work allows us to take a fresh view on the complex computational issues in
inference (decoding) and in learning, and to provide guidance and insights
to the algorithm development.

It is hoped that the framework presented here will help integrate re-
sults from speech production and advanced machine learning within the
statistical paradigms for speech recognition. An important, long-term goal
will involve development of computer systems to the extent that they can
be evaluated eÆciently on realistic, large speech databases, collected in a
variety of speaking styles (conversational styles in particular) and for a
large population of speakers.

The ultimate goal of the research, whose components are described
in some detail in this chapter, is to develop high-performance systems
for integrated speech analysis, coding, synthesis, and recognition within
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a consistent statistical framework. Such a development is guided by the
encoding-decoding theory of human speech communication, and is based on
computational models of speech production and perception. The switching
dynamic system models of speech and their Bayesian net representations
presented are a signi�cant extension of the current highly simpli�ed statis-
tical models used in speech recognition. Further advances in this research
direction will require greater integration within a statistical framework of
existing research in modeling speech production, speech recognition, and
advanced machine learning.
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Fig. 1. Speaker-listener interactions in the encoding-decoding theory of speech
perception
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Fig. 2. Dynamic Bayesian net for a basic version of the switching dynamic system
model of speech. The random variables on Row 1 are discrete, hidden linguistic states
with the Markov-chain temporal structure. Those on Row 2 are continuous, hidden
articulatory targets as ideal articulation. Those on Row 3 are continuous, hidden states
representing physical articulation with the Markov temporal structure also. Those on
Row 4 are continuous, observed acoustic/auditory vectors.
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Fig. 3. Dynamic Bayesian net for an expanded version of the switching dynamic
system model of speech. Parallel streams of the overlapping phonological features and
their associated articulatory dimensions are explicitly represented. The articulators
from the parallel streams are ultimately combined to jointly determine the acoustic vec-
tors.
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Fig. 4. Dynamic Bayesian net for the switching dynamic system model of speech
incorporating the segmental constraint for the target random variables.


