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Abstra
t

Generi
 programming allows you to write a fun
tion on
e,

and use it many times at di�erent types. A lot of good

foundational work on generi
 programming has been done.

The goal of this paper is to propose a pra
ti
al way of sup-

porting generi
 programming within the Haskell language,

without radi
ally 
hanging the language or its type system.

The key idea is to present generi
 programming as a ri
her

language in whi
h to write default method de�nitions in a


lass de
laration.

On the way, we 
ame a
ross a separate issue, 
on
ern-

ing type-
lass overloading where higher kinds are involved.

We propose a simple type-
lass system extension to allow

the programmer to write ri
her 
ontexts than is 
urrently

possible.

This paper appears in the pro
eedings of the 2000 Haskell

Workshop, Montreal. To appear in Ele
troni
 Notes in The-

oreti
al Computer S
ien
e, Elsevier, 2001.

1 Introdu
tion

A generi
, or polytypi
, fun
tion is one that the programmer

writes on
e, but whi
h works over many di�erent data types.

The standard examples are parsing and printing, serialising,

taking equality, ordering, hashing, and so on. There is lots

of work on generi
 programming [2, 8, 1, 6℄.

In this paper we present the design and implementation

of an extension to Haskell that supports generi
 program-

ming. At �rst sight it might seem that Haskell's type 
lasses

are in 
ompetition with generi
 programming | after all,

both 
on
ern fun
tions that work over many data types.

But we have found that they 
an be 
ombined very gra
e-

fully, o�ering a smooth upward extension to Haskell.

On the way we des
ribe an orthogonal, but 
omplemen-

tary idea. Haskell allows one to de�ne higher-order kinded

data types for whi
h it is impossible to de�ne, for example,

an equality instan
e. This seems unfortunate: one part of

the language is more powerful than another. We des
ribe

a modest extension of Haskell's type-
lass system that re-

moves this diÆ
ulty.

More spe
i�
ally, our 
ontributions are these:

2 We present the language design for an extension to

Haskell that supports generi
 programming (Se
tions 2{

6). Generi
 fun
tions appear solely in 
lass de
larations.

2 We des
ribe an entirely separate extension that lets

one write 
ertain instan
e de
larations for higher-order

kinded data types that are simply inexpressible in

Haskell 98 (Se
tion 7).

2 We dis
uss the implementation of both parts.

The �rst part of this paper is a follow-up to [4℄; the new

a
hievements are detailed in Se
tion 8.

2 Setting the s
ene

In this se
tion we set the 
ontext for our proposal. We begin

by reviewing Haskell's type-
lass overloading me
hanism.

2.1 A brief review of type 
lass overloading

Haskell supports overloading, based on type 
lasses. For

example, the Prelude de�nes the 
lass Eq :


lass Eq t where

( ); (6 ) :: t ! t ! Bool :

This de�nes two overloaded top-level fun
tions, ( ) and (6 ),

whose types are

( ); (6 ) :: (Eq t)) t ! t ! Bool :

Before we 
an use ( ) on values of, say Int , we must explain

how to take equality over Int values:

instan
e Eq Int where

( ) = eqInt

(6 ) = neInt :

Here we suppose that eqInt :: Int ! Int ! Bool , and sim-

ilarly neInt are provided from somewhere. The instan
e

de
larations says \the ( ) fun
tion at type Int is imple-

mented by eqInt".

How 
an we take equality of pairs of values? Presumably

by 
omparing their 
omponents; but that requires equality

over the 
omponent types:

instan
e (Eq a;Eq b)) Eq (a; b) where

(x
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; y
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) (x
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6 y
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):

It is a bit annoying to keep having to write 
ode for the (6 )

method, be
ause it is simply the negation of the 
ode for the

( ) method, so Haskell allows you to write a default method

in the 
lass de
laration:


lass Eq t where

( ); (6 ) :: t ! t ! Bool

x

1

6 x

2

= not (x

1

x

2

):

Now, if you give an instan
e de
laration for Eq that la
ks

a de�nition for (6 ), Haskell \�lls in" the missing method



de�nition with 
ode 
opied from the 
lass de
laration. So

we 
an write:

instan
e (Eq a;Eq b)) Eq (a; b) where

(x

1

; y

1

) (x

2

; y

2

) = (x

1

x

2

) ^ (y

1

y

2

)

and get just the same e�e
t as before. You 
an even spe
ify

a default method for both methods:


lass Eq t where

( ); (6 ) :: t ! t ! Bool

x

1

x

2

= not (x

1

6 x

2

)

x

1

6 x

2

= not (x

1

x

2

):

In an instan
e de
laration, you 
an now either give a de�ni-

tion for ( ), or a de�nition for (6 ), or both. If you spe
ify

neither, then you will get an in�nite loop, unfortunately!

If you give an instan
e de
laration without spe
ifying


ode for method op, and the 
lass has no default method

for op, then invoking the method will halt the program with

an error message. It is not a 
ompile-time error; sometimes

a method just doesn't make sense for a parti
ular instan
e

type.

2.2 Overloading is not generi
 programming

Haskell as it stands does not support generi
, or polytypi
,

programming. In parti
ular, suppose you de�ne a new data

type:

dataWibble = Wag Int jWug Bool :

It is \obvious" how to take equality over Wibble, and sup-

port for generi
 programming would allow us to spe
ify this

\obvious" pre
isely. In Haskell, however, you have to give an

expli
it instan
e de
laration, 
ontaining the 
ode for equal-

ity:

instan
e Eq Wibble where

(Wag i

1

) (Wag i

2

) = i

1

i

2

(Wug b

1

) (Wug b
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) = b

1

b

2

w
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w

2

= False:

Cranking out this sort of boilerplate 
ode is so tiresome that

Haskell provides spe
ial support | the so-
alled \deriving"

me
hanism | for a handful of built-in 
lasses. In parti
ular,

for Eq you say

dataWibble = Wag Int jWug Bool deriving (Eq):

The \deriving (Eq)" part tells Haskell to generate the \ob-

vious" 
ode for equality. What \obvious" means is spe
i�ed

informally in an Appendix of the language de�nition [15℄.

This is all rather ad ho
, and in parti
ular it only works

for a �xed set of built-in 
lasses (Eq, Ord , Enum, Bounded ,

Read , Show , and Ix ).

2.3 Generalising default methods

What we seek, then, is an automati
 me
hanism that \�lls

in" a suitable implementation for the methods of an instan
e

de
laration. But wait a minute! That's what a default

method does! Indeed so but, as we have already remarked,

default methods as they stand are too weak. If we write

merely:

instan
e Eq Wibble

we would, as remarked earlier, just get an in�nite loop. We

have to provide some real 
ode somewhere! What we want

is a ri
her language in whi
h to write default methods. That

is what we turn our attention to now.

3 Generi
 de�nitions

From a language-design point of view, our story is this: pro-

viding a ri
her language for default method de�nitions in

a 
lass de
laration gives an elegant way to extend Haskell

with the power of generi
 programming. We will justify this

statement more fully in Se
tion 9, but �rst we must present

our design.

3.1 Two examples

We adopt with minor 
hanges the proposal in [4℄. Two ex-

amples will serve to give the idea. First, here is the Eq 
lass

augmented with generi
 equality:


lass Eq t where

( ); (6 ) :: t ! t ! Bool

-- generi
 default method

( )f1gUnit Unit = True

( )fa + bg(Inl x

1

) (Inl x

2

) = x

1

x

2

( )fa + bg(Inr y

1

) (Inr y

2

) = y
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y

2

( )fa + bg = False

( )fa � bg(x

1

:�: y

1

) (x

2

:�: y

2

) = x

1

x

2

^ y

1

y

2

-- vanilla, non-generi
 default method

(6 ) x

1

x

2

= not (x

1

x

2

):

This new 
lass de
laration 
ontains an ordinary, default de
-

laration for (6 ), just as before. The new feature is a generi


de�nition for equality, distinguished by the 
urly bra
es on

the left hand side, whi
h en
lose a type argument. We will

study su
h generi
 de�nitions in more detail in Se
tion 4.2.

For now, we simply observe that a generi
 de�nition works

by indu
tion over the stru
ture of the type (written in 
urly

bra
es) at whi
h the 
lass is instantiated.

Now we 
an give an instan
e de
laration like this:

instan
e Eq Wibble

without giving 
ode for either method. Both methods will

be \�lled in" from the 
lass de
laration. The ordinary,

non-generi
 default method, (6 ), is �lled in verbatim. The

generi
 default method, ( ), is spe
ialised in a way we will

des
ribe, to give essentially the 
ode in Se
tion 2.2. That

is, the e�e
t of the instan
e de
laration is exa
tly as if we

had written

instan
e Eq Wibble where

(Wag i
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) (Wag i

2

) = i

1

i

2

(Wug b
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) (Wug b
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):

Here is another example. The 
lass Binary has methods

showBin and readBin that respe
tively 
onvert a value to a

list of bits and vi
e versa:

data Bit = 0 j 1

type Bin = [Bit ℄


lass Binary t where

showBin :: t ! Bin

readBin :: Bin ! (t ;Bin):

A real implementation might have a more sophisti
ated rep-

resentation for Bin but that is a separate matter. We 
an

2



give generi
 de�nitions for showBin and readBin like this:

showBinf1gUnit = [ ℄

showBinfa + bg(Inl x ) = 0 : showBin x

showBinfa + bg(Inr y) = 1 : showBin y

showBinfa � bg(x :�: y) = showBin x ++ showBin y

readBinf1gbs = (Unit ; bs)

readBinfa + bg[ ℄ = error "readBin"

readBinfa + bg(0 : bs) = let (x ; bs

0

) = readBin bs

in (Inl x ; bs

0

)

readBinfa + bg(1 : bs) = let (y ; bs

0

) = readBin bs

in (Inr y ; bs

0

)

readBinfa � bgbs = let (x ; bs

1

) = readBin bs

(y ; bs

2

) = readBin bs

1

in ((x :�: y); bs

2

):

Noti
e that readBin produ
es a value of the unknown type t ,

whereas showBin and ( ) both 
onsume su
h values. Again,

we 
an makeWibble an instan
e of Binary by saying simply

instan
e Binary Wibble:

3.2 Instan
es and deriving

Though all of this sounds simple enough, it has interesting

and important 
onsequen
es:

2 Though an instan
e de
laration for a 
lass with generi


methods is now rather brief, it must still be given. It is

not the 
ase, for example, that all types be
ome instan
es

of Eq when one gives a generi
 default method in the


lass de
laration for Eq .

2 It is not ne
essary for the instan
e de
laration to appear

in the same module as the data type de
laration, or the


lass de
laration. By 
ontrast, in Haskell 98 a deriving


lause must be atta
hed to the data type de
laration.

This separation is useful, be
ause the 
lass might not

even be de�ned in the s
ope where the type is de
lared.

2 The 
ompiler only �lls in a method de�nition if the pro-

grammer omits it. For example, if we said

instan
e Eq Wibble where

(Wag ) (Wag ) = True

w

2

w

2

= False;

then this programmer-supplied 
ode is, of 
ourse, used.

This is one way in whi
h our proposal di�ers from others.

In most generi
-programming systems, a generi
 fun
tion

works generi
ally over all types. In our design, the pro-

grammer 
an override the generi
 de�nition on a type-

by-type basis.

This ability is absolutely 
ru
ial to support abstra
t data

types. For example, a set may be represented as a bal-

an
ed tree in more than one way, and equality must take

a

ount of this fa
t. Simply using a generi
 equality

fun
tion would take equality of representations, whi
h

is simply wrong in this 
ase. In a similar way, we 
an

also use ordinary instan
e de
larations to spe
ify what a

generi
 operation should do on primitive types, su
h as

Char , Int , Double. In parti
ular, if you want to de�ne a

method for types involving fun
tion-spa
es, you simply

supply an instan
e de
laration for \!".

2 A deriving 
lause 
an now be seen as shorthand (albeit

now not so mu
h shorter) for an instan
e de
laration.

There is a di�eren
e, though. Consider

data Tree a = Node a [Tree a ℄ deriving (Eq):

In our design, the deriving 
lause is shorthand for

instan
e (Eq a)) Eq (Tree a)

Note that in an instan
e de
laration we must expli
itly

spe
ify the 
ontext (Eq a), whi
h is inferred automati-


ally by the deriving me
hanism. We dis
uss this issue

in more detail in Se
tion 4.4.

3.3 Generi
 representation types

The arguments in bra
es on the left hand side of a generi


de�nition are types. The idea is, of 
ourse, that these generi


de�nitions 
an be spe
ialised for any parti
ular type. Sup-

pose, for example, we have a data type List , and we make

List an instan
e of Binary :

data List a = Cons a (List a) j Nil

instan
e (Binary a)) Binary (List a):

How is the 
ompiler to �ll in the missing method de�nitions?

First, we de�ne the generi
 representation type for List ,

whi
h we will 
all List

Æ

:

type List

Æ

a = (a � List a) + 1:

We will have more to say about representation types in Se
-

tion 6.2, but for now we 
an just think of List

Æ

as a type

that is more-or-less isomorphi
 to List , but one that uses

only a small, �xed set of type 
onstru
tors, namely unit,

sums, and produ
ts. Noti
e also that List

Æ

is not a re
ur-

sive type; it mentions List on the right hand side, not List

Æ

.

So our generi
 representation types give a representation for

just the \top level" of a re
ursive type.

The unit, sum, and produ
t types are de�ned like this:

data 1 = Unit

data a + b = Inl a j Inr b

data a � b = a :�: b:

Of 
ourse, 1 is not a legal Haskell type 
onstru
tor, and

nor are in�x (+) and (�). We give them spe
ial syntax

to distinguish them from their \normal" 
ounterparts, (),

Either a b, and (a; b), and extend the syntax of types to

a

ommodate them.

In our example, a List is a sum (+) of two types: a

produ
t (�) of the element type a and a List , and the unit

type (1). To make the isomorphism expli
it, let us write

fun
tions that 
onvert to and fro

1

:

to-List :: 8a :List

Æ

a ! List a

to-List (Inl (x :�: xs)) = Cons x xs

to-List (Inr Unit) = Nil

from-List :: 8a :List a ! List

Æ

a

from-List (Cons x xs) = Inl (x :�: xs)

from-List Nil = Inr Unit :

3.4 The generi
 instan
es

The idea is that by regarding a List as a List

Æ

, the generi



ode explains what to do. The generi
 method for showBin,

for example, says what to do if the argument is a sum, what

to do if it is a produ
t, and what to do if it is a unit type.

1

In this paper we will make quanti�
ation expli
it, even though

Haskell 98 does not o�er expli
it quanti�
ation. So, in this example,

we write an expli
it 8 in the type signature for to-List . Some of our

types be
ome quite 
ompli
ated, so it helps to be absolutely 
ertain

where quanti�
ation is taking pla
e.

3



It's useful to imagine re-expressing these default methods

as three ordinary instan
e de
larations:

instan
e Binary 1 where

showBin Unit = [ ℄

readBin bs = (Unit ; bs)

instan
e (Binary a;Binary b)) Binary (a + b) where

showBin (Inl x ) = 0 : showBin x

showBin (Inr y) = 1 : showBin y

readBin [ ℄ = error "readBin"

readBin (0 : bs) = let (x ; bs

0

) = readBin bs

in (Inl x ; bs

0

)

readBin (1 : bs) = let (y ; bs

0

) = readBin bs

in (Inr y ; bs

0

)

instan
e (Binary a;Binary b)) Binary (a � b) where

showBin (x :�: y) = showBin x ++ showBin y

readBin bs = let (x ; bs

1

) = readBin bs

(y ; bs

2

) = readBin bs

1

in ((x :�: y); bs

2

):

We des
ribe these instan
e de
larations for generi
 repre-

sentation types as generi
 instan
e de
larations. They are

not written expli
itly by the programmer, but instead are

derived by the 
ompiler from a 
lass de
laration that has

generi
 default methods. We dis
uss generi
 instan
e de
la-

rations further in Se
tion 4.3.

3.5 Filling in the missing methods

We are now ready to say more pre
isely how the 
ompiler

�lls in the missing methods. In this se
tion we sket
h the

idea using an example, while Se
tion 6 deals with the general


ase.

When the programmer writes

instan
e (Binary a)) Binary (List a)

the 
ompiler will �ll in the method de
larations as follows:

showBin xs = showBin (from-List xs)

readBin bs = 
ase readBin bs of

(xs ; bs

0

)! (to-List xs ; bs

0

):

Let us fo
us on the de�nition for showBin. It works in two

stages:

1. First, from-List :: 8a :List a ! List

Æ

a 
onverts the

input list of type List a into a value of type List

Æ

a.

2. Se
ond, we 
all the overloaded showBin fun
tion to


omplete the job, using the methods of the generi
 in-

stan
e de
larations.

At �rst this looks utterly bizarre. We are de�ning showBin

in terms of showBin. But look at the de�nition one would

write by hand:

instan
e (Binary a)) Binary (List a) where

showBin Nil = 0 : [ ℄

showBin (Cons x xs) = 1 : showBin x ++ showBin xs :

The �rst 
all is to showBin at the list element type; the

se
ond is a re
ursive 
all to the same showBin at the list

type.

Something similar happens with the generi
 de�nition.

Here showBin is 
alled on an argument of type List

Æ

a.

This is a sum type, so the sum instan
e of Binary ki
ks in

(Se
tion 3.4). It in turn will 
all showBin, on
e at type 1,

and on
e at type a � List a. The former has an instan
e

de
laration, while the latter uses the produ
t instan
e and

makes 
alls to showBin at type a and List a. But the former

is just like the showBin x in the hand-written instan
e, while

the latter is like the showBin xs. So everything works out.

Let us return brie
y to the �rst step above. In the 
ase of

showBin it was fairly simple to 
onvert the argument to its

generi
 representation type. On the other hand readBin was

a bit more 
ompli
ated be
ause it returned a pair, only one


omponent of whi
h had to be 
onverted. How, in general,

does the 
ompiler perform this 
onversion? We devote the

whole of Se
tion 5 to this topi
. First, though, we elaborate

on the programmer-visible aspe
ts of our design.

4 Dis
ussion and elaboration

We have now sket
hed the bones of our design. In this se
-

tion we elaborate on some of the details.

4.1 Constru
tor names and re
ord labels

Annoyingly, unit, sum, and produ
t are not quite enough.

Consider, for example, the standard Haskell 
lass Show . To

be able to give generi
 de�nitions for showsPre
 , the names

of the 
onstru
tors, and their �xities, must be made a

es-

sible.

To this end we provide an additional generi
 representa-

tion type, of the form 
 of a where 
 is a value variable of

type ConDes
r and a is a type variable. The type ConDes
r

is a new primitive type that 
omprises all 
onstru
tor names.

To manipulate 
onstru
tor names the following operations

among others 
an be used | for an exhaustive list see [4℄.

data ConDes
r -- abstra
t

data Fixity = No�x j In�x Int j In�xl Int j In�xr Int


onName :: ConDes
r ! String -- primitive


onArity :: ConDes
r ! Int -- primitive


onFixity :: ConDes
r ! Fixity -- primitive

instan
e Show ConDes
r where

show = 
onName

Using 
onName and 
onArity we 
an implement a simple

variant of Haskell's Show 
lass | for the full-
edged version

see [4℄.


lass Show t where

show :: t ! String

showsPre
 :: Int ! t ! String

show x = showsPre
 0 x

showsPre
fa + bgd (Inl x ) = showsPre
 d x

showsPre
fa + bgd (Inr y) = showsPre
 d y

showsPre
f
 of a gd (Con 
 x )

= if 
onArity 
 0 then show 


else showParen (d > 10)

(show 
 ++ " " ++ showsPre
 10 x )

showsPre
fa � bgd (x :�: y)

= showsPre
 d x ++ " "++ showsPre
 d y

The representation type 
 of a is de�ned by the following

pseudo-Haskell de
laration:

newtype 
 of a = Con 
 a:

Uniquely for Haskell, 
 is a value that is 
arried by a type.

It is best to think of the above de
laration as de�ning a

family of types: for ea
h 
 there is a type 
onstru
tor \
 of"

of kind ? ! ? with a value 
onstru
tor \Con 
" of type

a ! (
 of a). Now, why does the type 
 of a in
orporate

4



information about 
? One might suspe
t that it is suÆ
ient

to supply this information on the value level. Doing so would

work for show , but would fail for read :


lass Read t where

read :: String ! [(t ; String)℄

readf
 of a gs = [(Con 
 x ; s

3

)

j (s

1

; s

2

) lex s; s

1


onName 
;

(x ; s

3

) read s

2

℄:

The important point is that read produ
es (not 
onsumes)

the value, and yet it requires a

ess to the 
onstru
tor name.

Haskell allows the programmer to assign labels to the


omponents of a 
onstru
tor, and these, too, are needed by

read and show . For the purpose of presentation, however,

we 
hoose to ignore �eld names. In fa
t, they 
an be handled


ompletely analogously to 
onstru
tor names.

4.2 Generi
 
lass de
larations

In general, a 
lass de
laration 
onsists of a signature, whi
h

spe
i�es the types of the 
lass methods, and an implementa-

tion part, whi
h gives default de�nitions for the 
lass meth-

ods. The type signature has the general form:


lass 
tx ) C a where

op

1

:: Op

1

a

: : :

op

n

:: Op

n

a:

The implementation part 
onsists of generi
 and non-generi


default de�nitions. A non-generi
 de�nition is an ordinary

Haskell de�nition

op = : : : :

A generi
 de�nition 
an be re
ognised by the type patterns

on the left hand side, en
losed in 
urly bra
es. It has the

s
hemati
 form

opf1g = : : :

opfa + bg = : : :

opfa � bg = : : :

opf
 of a g = : : : :

The type patterns are mandatory, so that the equations 
an

be 
orre
tly grouped. For example, 
onsider the generi


de�nition of ( ) given earlier:

( )f1gUnit Unit = True

( )fa + bg(Inl x

1

) (Inl x

2

) = x

1

x

2

( )fa + bg(Inr y

1

) (Inr y

2

) = y

1

y

2

( )fa + bg = False

( )fa � bg(x

1

:�: y

1

) (x

2

:�: y

2

) = x

1

x

2

^ y

1

y

2

:

Without the type patterns there is no way to de
ide whether

the se
ond but last equation belongs to the (+) or to the (�)


ase.

Apart from the type patterns, a generi
 de�nition has

exa
tly the form of a normal Haskell de�nition.

We note the following points:

2 A 
lass de
laration may spe
ify an arbitrary mixture of

generi
 and non-generi
 default-method de
larations. In

the 
ase of Eq above, ( ) is de�ned by indu
tion over

the argument type, while (6 ) is non-generi
. The generi


and non-generi
 methods may be mutually re
ursive.

2 Class de
larations are the only pla
e that generi
 de�ni-

tions appear in our design. There are no \free-standing"

generi
 de�nitions, just as there are no free-standing

overloaded de�nitions in Haskell. (One might disagree

with this 
hoi
e, but it does not limit expressiveness, be-


ause one 
an always invent a 
lass to en
apsulate a new

overloaded or generi
 fun
tion.)

2 At the moment, generi
 default de
larations may only

be given for type 
lasses, that is, for 
lasses whose type

parameter ranges over types of kind ?. For example, we


annot spe
ify a generi
 default method for the Fun
tor


lass:


lass Fun
tor f where

fmap :: (a ! b)! (f a ! f b):

This is the �rst extension we plan to add in the future.

2 For a multi-parameter type 
lass there would be multiple

type arguments. We do not 
onsider this 
ompli
ation

in this paper.

4.3 Generi
 instan
e de
larations

In Se
tion 3.4 we said that the generi
 de�nitions in a 
lass

de
laration are re-expressed by the 
ompiler as a set of in-

stan
e de
larations, one for ea
h generi
 representation type.

One might ask: why not get the programmer to write these

instan
e de
larations dire
tly?

Our answer is stylisti
 rather than te
hni
al. We want

to present generi
 programming in Haskell as a ri
her lan-

guage in whi
h to write default method de
larations, and

s
attering them over several instan
e de
larations does not


onvey that message. The question about whether a generi
-

default de
laration was available to use would be
ome more

di�use, be
ause some parts, but not others, might be avail-

able. Writing the de
laration all at on
e, in the 
lass de
-

laration, seems to be the simplest and most dire
t thing to

do, even though it does involve a little new syntax.

Another stylisti
 reason for our de
ision is that it is

rather easy to 
onfuse the generi
 instan
e de
laration for,

say, produ
ts a �b with \ordinary" instan
e de
larations for

the 
orresponding \ordinary" produ
t type (a; b). For ex-

ample, in the 
ase of Show , the ordinary instan
e de
laration

for produ
ts might look like this:

instan
e (Show a; Show b)) Show (a; b) where

showsPre
 d (x ; y)

= "("++ showsPre
 0 x ++ ","++ showsPre
 0 y ++ ")":

Be
ause tuples are typi
ally shown using dist�x notation, we


hoose to over-ride the generi
 de�nition. Nevertheless, the


lass de
laration for Show will have given rise to the generi


instan
e de
laration

instan
e (Show a; Show b)) Show (a � b) where

showsPre
 d (x :�: y)

= showsPre
 d x ++ " " ++ showsPre
 d y :

Re
all that produ
ts a � b are used to represent the argu-

ments of a 
onstru
tor. Consequently, the generi
 instan
e

de
laration spe
i�es the layout of 
onstru
tor arguments:

they are shown 
onse
utively separated by spa
es.

4.4 Inferring instan
e 
ontexts

When a 
lass has generi
 methods, one 
an give an instan
e

de
laration without providing the 
ode for any of the meth-

ods. But one still has to provide the 
ontext for the instan
e

de
laration. For example, one 
ould not write

instan
e Eq (List a)
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be
ause the type
he
ker would 
omplain about a missing

(Eq a) 
onstraint. Instead one must write

instan
e Eq a ) Eq (List a):

In 
ontrast, the existing deriving me
hanism infers the ne
-

essary instan
e 
ontext. The obvious question is: 
ould the


ompiler infer the instan
e 
ontext in our new s
heme? For

example, we might write

instan
e (: : :)) Eq (List a)

indi
ating that the 
ompiler should �ll in the missing 
ontext

\(: : :)". Indeed, we might want to allow su
h an abbrevia-

tion in any type signature, allowing one to write, say,

f :: (: : :)) a ! a:

The ability to write su
h partial type signatures, with the

ellipsis �lled in by type inferen
e, has been dis
ussed on

the Haskell mailing list, and looks perfe
tly feasible from

a te
hni
al standpoint. For instan
e de
larations matters

are still feasible, (albeit a little tri
kier, involving a �xpoint

iteration) for �rst-order kinded types, but we believe that it

is infeasible for higher-order kinded types (see Se
tion 7.3).

In any 
ase, this issue is entirely separate from our main

theme, so we do not dis
uss it further.

5 Mapping fun
tions

We have now presented the design as seen by the program-

mer. Before we 
an des
ribe the implementation, however,

we need to pause to introdu
e bidire
tional maps, whi
h are

an essential foundation to the implementation.

Re
all from Se
tion 3.5 our general plan for �lling in the

generi
 method of an instan
e de
laration. Suppose we have

the following 
lass de
laration:


lass C a where

op :: Op a:

We will deal only with single-parameter type 
lasses, but see

Se
tion 9. We also assume, for notational 
larity, that the

type of method op is given simply by Op a. We 
an always

introdu
e a type synonym to make this so

2

. Now suppose

that the programmer writes the instan
e de
laration

instan
e 
tx ) C (T �a):

where 
tx is a 
ontext, and �a is a sequen
e of type variables.

How is the 
ompiler to �ll in the de�nition of method op?

Following Se
tion 3.5 it 
an �ll in thus:

instan
e 
tx ) C (T �a) where

op = adapt -Op (op :: Op (T

Æ

�a)):

That is, we 
all op at type T

Æ

�a, to produ
e a value of

type Op (T

Æ

�a), and then 
onvert the value to Op (T �a).

The fun
tion adapt -Op does this impedan
e-mat
hing by


onverting a fun
tion that works on values of type T

Æ

�a to

one that works on T �a .

adapt -Op :: 8�a :Op (T

Æ

�a)! Op (T �a)

2

Te
hni
ally, Haskell type synonyms are not powerful enough to

do su
h an abbreviation for a method like properFra
tion:


lass RealFra
 a where

properFra
tion :: (Integral b)) a ! (b; a):

sin
e its type has a 
ontext at the beginning. But we will pretend

that su
h an abbreviation is possible.

Clearly, how adapt -Op works depends on the form of Op,

the type of the method. Here are some examples:

type In a = a ! String

adapt -In :: 8�a : In (T

Æ

�a)! In (T �a)

adapt -In = �f ! f � from-T

type Out a = String ! a

adapt -Out :: 8�a :Out (T

Æ

�a)! Out (T �a)

adapt -Out = �f ! to-T � f

type Both a = a ! a

adapt -Both :: 8�a :Both (T

Æ

�a)! Both (T �a)

adapt -Both = �f ! to-T � f � from-T :

These adapt fun
tions use the fun
tions to-T and from-T ,

that 
onvert between T �a and T

Æ

�a; they were introdu
ed in

Se
tion 3.3. Noti
e that both to-T and from-T are needed;

one by itself will not do. Furthermore, while we de�ne the


lass, and hen
e the Op types, on
e, we may write instan
es

of that 
lass at many di�erent types, T . So we want to

abstra
t out the to-T and from-T fun
tions from the adapt

fun
tions (note that a

Æ

is a type variable below):

adapt -Both

0

:: 8a a

Æ

: (a

Æ

! a)! (a ! a

Æ

)

! (Both a

Æ

! Both a)

adapt -Both

0

to from = �f ! to � f � from

adapt -Both = adapt -Both

0

to-T from-T

It turns out to be 
onvenient to pa
kage up the to-T and

from-T fun
tions into an embedding-proje
tion pair :

data EP a a

Æ

= EPfto :: a

Æ

! a; from :: a ! a

Æ

g:

Here EP a a

Æ

is just a pair of fun
tions, one to 
onvert in

one dire
tion and one to 
onvert ba
k. Now we 
an write

adapt -Both

00

:: 8a a

Æ

:EP a a

Æ

! (Both a

Æ

! Both a)

adapt -Both

00

ep-a = �f ! to ep-a � f � from ep-a


onv -T :: 8�a :EP (T �a) (T

Æ

�a)


onv -T = EPfto = to-T ; from = from-T g

adapt -Both = adapt -Both

00


onv -T :

The last step is to make the adapt fun
tion itself return an

embedding-proje
tion pair, rather than just the \to" fun
-

tion; and at this stage we adopt the name bimap | for

\bidire
tional mapping":

bimap-Both :: 8a a

Æ

:EP a a

Æ

! EP (Both a) (Both a

Æ

)

bimap-Both ep-a

= EPfto = �f ! from ep-a � f � to ep-a;

from = �f ! to ep-a � f � from ep-a g

adapt -Both = to (bimap-Both 
onv -T ):

It is not at all obvious why we 
onstru
t mappings in both

dire
tions, only to dis
ard one of them when we use it, but

it turns out to be essential when 
onstru
ting bimap for

arbitrary types, as we will see in the next se
tion.

5.1 Generating bidire
tional mapping fun
tions

In the last se
tion we generated bimap-Both for a parti
ular

method type Both a. We also observed that appropriate


ode depends on the stru
ture of the type of the method,

so the million-dollar question is: how do we generate the

bidire
tional maps for arbitrary method types? We do it

simply by indu
tion over the type of the method, thus:

bimap-Op :: 8a a

Æ

:EP a a

Æ

! EP (Op a) (Op a

Æ

)

bimap-Op ep-a = bimapfOp a g[a := ep-a ℄:
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This de�nition is not proper Haskell; bimap should be

thought of as a meta-fun
tion, evaluated at 
ompile time,

that returns a Haskell expression. It takes as arguments: a

type (written in 
urly bra
es), and an environment % map-

ping type variables to expressions. The syntax [a := ep-a ℄

means an environment that binds a to ep-a.

We de�ne bimap by indu
tion on the stru
ture of type

expressions:

bimapfa g% = %(a)

bimapf(!)g% = bimap-Arrow

bimapfT g% = bimap-T

bimapft u g% = (bimapft g%) (bimapfu g%)

where

bimap-Arrow :: 8a a

Æ

b b

Æ

:EP a a

Æ

! EP b b

Æ

! EP (a ! b) (a

Æ

! b

Æ

)

bimap-Arrow ep-a ep-b

= EPfto = �f ! to ep-b � f � from ep-a;

from = �f ! from ep-b � f � to ep-a g:

The bimapfT g 
ase deals with type 
onstru
tors other than

(!), whi
h we dis
uss in Se
tion 5.2. Let us take an exam-

ple. Re
all our Both type:

type Both a = a ! a:

Setting % = [a := ep-a ℄ we have

bimap-Both ep-a

= bimapfa ! a g%

= (bimapf(!) a g%) (bimapfa g%)

= ((bimap (!) %) (bimapfa g%)) (bimapfa g%)

= bimap-Arrow ep-a ep-a

= EPfto = �f ! to ep-a � f � from ep-a g;

from = �f ! from ep-a � f � to ep-a:

5.2 Mapping over data types

What if there is a data type involved? For example in the

type of readBin, there is a pair in the result type:

type ReadBin a = Bin ! (a;Bin):

If we just try our 
urrent s
heme we get stu
k:

bimap-ReadBin ep

= bimapfBin ! (a;Bin)g%

= bimap-Arrow (bimapfBin g%) (bimapf(a;Bin)g%):

Now, sin
e Bin is not a parameterised type, there is nothing

to do,

bimap-Bin :: EP Bin Bin

bimap-Bin = id-EP

id -EP :: 8a :EP a a

id -EP = EPfto = �x ! x ; from = �x ! x g

whereas pairs are parameterised over two types, so we must

push the mapping fun
tions inside:

bimap-Pair :: 8a a

Æ

b b

Æ

:EP a a

Æ

! EP b b

Æ

! EP (a; b) (a

Æ

; b

Æ

)

bimap-Pair ep-a ep-b

= EPfto = �(x

Æ

; y

Æ

)! (to ep-a x

Æ

; to ep-b y

Æ

);

from = �(x ; y)! (from ep-a x ; from ep-b y)g:

In general, we 
an de�ne bimap-T by indu
tion on the stru
-

ture of data type de
larations. The mapping fun
tion for the

data type

data T a

1

: : : a

k

= K

1

t

11

: : : t

1m

1

j � � � j K

n

t

n1

: : : t

nm

n

is given by bimap-T displayed in Fig. 1. Now, what is the

type of this bidire
tional map? The answer is simple yet

mind-boggling: the type of bimap-T depends on the kind of

T . Assume that T has kind ? as, for instan
e, Bin. Then

the bidire
tional map simply has type EP T T (and, in fa
t,

bimap-T = id-EP). If T has kind ? ! ? as all the Op's

have, then bimap-T 's type is 
lose to that of an \ordinary"

mapping fun
tion:

bimap-T :: 8a a

Æ

:EP a a

Æ

! EP (T a) (T a

Æ

):

A more involved kind, say (?! ?)! (?! ?), gives rise to

a more 
ompli
ated type:

bimap-T :: 8f f

Æ

: (8b b

Æ

:EP b b

Æ

! EP (f b) (f

Æ

b

Æ

))

! (8a a

Æ

:EP a a

Æ

! EP (T f a) (T f

Æ

a

Æ

)):

Now bimap-T has a so-
alled rank-2 type signature [12℄.

Roughly speaking, bimap-T takes bidire
tional maps to bidi-

re
tional maps (this is why the arguments of bimap-T are


alled bimap-a

i

). In general, if T has kind �, then bimap-T

has type Bimapf�gT T where Bimap is de�ned by indu
-

tion on the stru
ture of kinds:

Bimapf?gt t

Æ

= EP t t

Æ

Bimapf�

1

! �

2

gt t

Æ

= 8a a

Æ

:Bimapf�

1

ga a

Æ

! Bimapf�

2

g(t a) (t

Æ

a

Æ

):

If � has order n, thenBimapf�g is a rank-n type. This poses

no problems, however, sin
e the Glasgow Haskell Compiler

internally uses a variant of the polymorphi
 �-
al
ulus [17℄.

We will say a bit more about higher-order kinded types

in Se
tion 7. For further information on kind-indexed types

su
h as Bimap the reader if referred to [7℄.

6 Implementing generi
 default methods

Now, at last, we are ready to ta
kle the implementation. We

des
ribe it as a Haskell sour
e-to-sour
e translation, per-

formed (at least notionally) prior to type 
he
king. Why?

The type 
he
ker already does a lot of what we require. Also

we probably have a better 
han
e that generi
 default meth-

ods will work smoothly with 
ompli
ations su
h as multi-

parameter type 
lasses [16℄, impli
it parameters [13℄, and

fun
tional dependen
ies [11℄.

The sour
e-to-sour
e translation goes as follows. For

ea
h data type de
laration, T , we generate the following:

2 For ea
h 
onstru
tor K a value 
on-K of type ConDes
r

that des
ribes the properties of the 
onstru
tor (Se
-

tion 6.1).

2 A type synonym, T

Æ

, for T 's generi
 representation type

(Se
tion 6.2).

2 An embedding-proje
tion pair 
onv -T ::

8�a :EP (T �a) (T

Æ

�a), that 
onverts between T

and its generi
 representation T

Æ

(Se
tion 6.3).

For ea
h 
lass de
laration, for 
lass C , we generate the fol-

lowing (see Se
tion 6.4):

2 An ema
iated 
lass de
laration for C , generated simply

by omitting the generi
ally-de�ned methods.

7



bimap-T bimap-a

1

: : : bimap-a

k

= EPfto = to-T ; from = from-T g

where

to-T (K

1

x

11

: : : x

1m

1

) = K

1

(to (bimapft

11

g%) x

11

) : : : (to (bimapft

1m

1

g%) x

1m

1

)

: : :

to-T (K

n

x

n1

: : : x

nm

n

) = K

n

(to (bimapft

n1

g%) x

n1

) : : : (to (bimapft

nm

n

g%) x

nm

n

)

from-T (K

1

x

11

: : : x

1m

1

) = K

1

(from (bimapft

11

g%) x

11

) : : : (from (bimapft

1m

1

g%) x

1m

1

)

: : :

from-T (K

n

x

n1

: : : x

nm

n

) = K

n

(from (bimapft

n1

g%) x

n1

) : : : (from (bimapft

nm

n

g%) x

nm

n

)

% = [a

1

:= bimap-a

1

; : : : ; a

k

:= bimap-a

k

℄

Figure 1: The bidire
tional mapping fun
tion for the data type T .

2 For ea
h generi
 method op :: Op a in the 
lass de
lara-

tion, a bidire
tional map bimap-Op :: 8a a

Æ

:EP a a

Æ

!

EP (Op a) (Op a

Æ

) (see Se
tion 5).

2 Instan
e de
larations for C 1, C (a + b), C (a � b) and

C (
 of a), all obtained by sele
ting the eponymous

equations from the original 
lass de
laration (see Se
-

tion 3.4).

For ea
h instan
e de
laration we generate (see Se
tion 6.5):

2 An extended instan
e de
laration, obtained by adding

de�nitions for the generi
 methods that are not spe
i�ed

expli
itly in the instan
e de
laration.

6.1 Constru
tors

For ea
h 
onstru
tor, K , in a data type de
laration, we pro-

du
e a value of type ConDes
r that gives information about

the 
onstru
tor (in fa
t, the type ConDes
r used in the 
om-

piler is slightly more elaborate):

data ConDes
r = ConDes
rfname :: String ;

arity :: Int ;

�xity :: Fixity g:

As an example, for the List data type we generate:


on-Cons; 
on-Nil :: ConDes
r


on-Cons = ConDes
r "Cons" 2 NoFixity


on-Nil = ConDes
r "Nil" 0 NoFixity :

6.2 Generi
 representation types

For ea
h data type, T , we produ
e a type synonym T

Æ

, for

its generi
 representation type. For example, for the data

type

data List a = Cons a (List a) j Nil

we generate the representation type

type List

Æ

a = 
on-Cons of (a � List a) + 
on-Nil of 1:

Our generi
 representation type 
onstru
tors are just unit,

sum, produ
t, and \
 of". In parti
ular, there is no re
ur-

sion operator. Thus, we observe that List

Æ

is just a non-

re
ursive type synonym: List (not List

Æ

) appears on the

right-hand side. So List

Æ

is not a re
ursive type; rather, it

expresses just the top \layer" of a list stru
ture, leaving the

original List to do the rest. But as we have seen, this is

enough: a re
ursive fun
tion just does one \layer" of re
ur-

sion at a time.

This is unusual 
ompared to other approa
hes. In PolyP

[8℄, for instan
e, there is an additional type pattern for type

re
ursion (at kind ? ! ?). A very signi�
ant advantage

here is that there is no problem with mutually-re
ursive data

types, nor with data types with many parameters, both of

whi
h make expli
it re
ursion operators extremely 
lumsy

and hard to use in pra
ti
e.

Our design makes do with just binary sum and prod-

u
t. Algebrai
 data types with many 
onstru
tors, ea
h of

whi
h has many �elds, are en
oded as nested uses of sum

and produ
t. The exa
t way in whi
h the nesting is done is

unimportant to our method. For example:

data Color = Red j Blue j Green

type Color

Æ

= 
on-Red of 1

+ (
on-Blue of 1 + 
on-Green of 1)

data Tree a b = Leaf a j Node (Tree a b) b (Tree a b)

type Tree

Æ

a b = 
on-Leaf of a

+ 
on-Node of (Tree a b � (b � Tree a b)):

One may wonder about the eÆ
ien
y of translating a user-

de�ned data type into a generi
 form before operating on

it, espe
ially if everything is en
oded with only binary sums

and produ
ts. However, suÆ
iently vigorous inlining means

that the generi
 data representations never exist at run-time

(see Se
tion 6.6). But, in fa
t, we might want to explore

spa
e-time trade-o�s, by getting mu
h more 
ompa
t 
ode

in ex
hange for some data translation. Our design allows

this trade-o� to be made on a 
ase-by-
ase basis.

Whether the en
oding into sums and produ
ts is done

in a linear or binary-sub-division fashion may or may not

a�e
t eÆ
ien
y, depending on how vigorous the inlining is.

6.3 Embedding-proje
tion pairs

For ea
h data type T , we also generate fun
tions to 
onvert

between T and T

Æ

. We saw the 
onversion fun
tions for

List in Se
tion 3.3. The pro
ess is entirely straightforward,

driven by the en
oding. For example:

from-Color :: Color ! Color

Æ

from-Color Red = Inl (Con 
on-Red Unit)

from-Color Blue = Inr (Inl (Con 
on-Blue Unit))

from-Color Green = Inr (Inr (Con 
on-Green Unit))

to-Color :: Color

Æ

! Color

to-Color (Inl (Con 
on-Red Unit)) = Red

to-Color (Inr (Inl (Con 
on-Blue Unit))) = Blue

to-Color (Inr (Inr (Con 
on-Green Unit))) = Green :

For bimap we have to pa
kage the two 
onversion fun
tions

into a single value:


onv -List :: 8a :EP (List a) (List

Æ

a)


onv -List = EPfto = to-List ; from = from-List g


onv -Color :: EP Color Color

Æ


onv -Color = EPfto = to-Color ; from = from-Color g:
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6.4 Translating 
lass de
larations

For ea
h generi
 method op :: Op a 
ontained in a 
lass

de
laration we generate a bidire
tional map

bimap-Op :: 8a a

Æ

:EP a a

Æ

! EP (Op a) (Op a

Æ

)

that allows us to 
onvert between types and representation

types (the de�nition of bimap-Op is given in Se
tion 5).

Furthermore, we produ
e instan
e de
larations

instan
e C 1

instan
e (C a;C b)) C (a + b)

instan
e (C a;C b)) C (a � b)

instan
e (C a)) C (
 of a)

whose bodies are �lled with the generi
 methods from the

original 
lass de
laration (see Se
tion 3.4). If an equation for

a type pattern is missing, the method of the 
orresponding

instan
e is unde�ned. There is, however, one important

ex
eption to this rule: if no equation is given for the type

pattern 
 of a as, for example, in the 
lasses Eq and Binary ,

we de�ne the generi
 methods of the C (
 of a) instan
e

by:

opf
 of a g = to (bimap-Op (
on-EP 
)) (op :: Op a)

where 
on-EP is given by the following pseudo-Haskell 
ode

(whi
h de�nes a family of fun
tions):


on-EP 
 :: 8a :EP a (
 of a)


on-EP 
 = EPfto = �x ! Con 
 x ;

from = �(Con 
 x )! x g:

Again, we employ the bidire
tional map to 
onvert between

two isomorphi
 types.

6.5 Translating instan
e de
larations

An instan
e de
laration for type T is extended by �lling in

implementations for the methods. More spe
i�
ally, if the

method op is not spe
i�ed and if it enjoys a generi
 default

de�nition, then the following equation is supplemented:

op = to (bimap-Op 
onv -T ) (op :: Op T

Æ

):

That's it.

6.6 Inlining

It does not sound very eÆ
ient to translate a value from

T �a to T

Æ

�a and then to operate on it, but we believe that

a bit of judi
ious inlining 
an yield more or less the 
ode one

would have written by hand. Let us 
onsider, for example,

showBin at type List . The showBinList method will look

something like this:

showBinList :: (Binary a)) List a ! Bin

showBinList xs = showBin (from-List xs)

type List

Æ

a = (a � List a) + 1

from-List :: List a ! List

Æ

a:

The 
all to showBin is at type List

Æ

a, so the overloading


an be resolved stati
ally. Assuming that the method bodies

(given in Se
tion 3.1) are inlined, we get:

showBinList xs

= 
ase from-List xs of

Inl z ! 0 : 
ase z of

(x :�: y)! showBin x ++ showBin y

Inr z ! 1 : 
ase z of Unit ! [ ℄:

But remember that from-List also has a simple, non-

re
ursive de�nition:

from-List (Cons x xs) = Inl (x :�: xs)

from-List Nil = Inr Unit :

If we inline this de�nition in showBinList and simplify using

standard transformations, we get

showBinList xs

= 
ase xs of

Cons x y ! 0 : showBin x ++ showBin y

Nil ! 1 : [ ℄;

whi
h is about as good as we 
an hope for.

7 Higher-order kinded types

Fun
tional programmers love abstra
tion. In Haskell we


an, for instan
e, abstra
t over the List data type in

data Rose a = Bran
h a (List (Rose a))

to obtain the more general type:

data GRose f a = GBran
h a (f (GRose f a)):

Here, the type variable \f " ranges over type 
onstru
tors,

rather than types. Formally, GRose has kind (? ! ?) !

? ! ?. There are numerous examples of su
h type de�ni-

tions in [14, 5℄. Alas, it is impossible to de�ne many instan
e

de
larations for GRose in Haskell at all. In this se
tion we

des
ribe the problem and a solution. This se
tion is quite

independent of the rest of the paper. Though we be
ame

aware of the issue when working on generi
 programming,

we propose an extension to Haskell that is 
ompletely or-

thogonal to generi
 programming.

7.1 What's the problem?

Consider �rst de�ning an instan
e for Binary (Rose a) by

hand | we ignore readBin here:

instan
e (Binary a)) Binary (Rose a) where

showBin (Bran
h x ts) = showBin x ++ showBin ts :

The �rst 
all to showBin on the right hand side requires that

Binary a should hold; the 
ontext, (Binary a), takes 
are

of that. The se
ond 
all is at type List (Rose a). Assuming

we have an instan
e elsewhere of the form

instan
e (Binary t)) Binary (List t)

the se
ond 
all requires Binary (Rose a), and there is an

instan
e de
laration for that too | it gives rise to a re
ursive


all to showBin.

But matters are not so simple when we want to write an

instan
e Binary (GRose f a). We might try

instan
e (???)) Binary (GRose f a) where

showBin (GBran
h x ts) = showBin x ++ showBin ts :

The 
ontext (???) must a

ount for the 
alls to showBin

on the right-hand side. The �rst one is �ne: it requires

Binary a as before. But the latter is bad news: it requires

Binary (f (GRose f a)), and we 
ertainly 
annot write

instan
e (Binary a;Binary (f (GRose f a)))

) Binary (GRose f a) where

showBin (GBran
h x ts) = showBin x ++ showBin ts :

This is not legal Haskell and, even if it were, the type
he
ker

would diverge. Indeed, no ordinary Haskell 
ontext will do.
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7.2 A solution

What we need is a way to simplify the predi
ate

f (GRose f a). The tri
k is to take the \
onstant" instan
e

de
laration that we assumed for Binary (List a) above, and

abstra
t over it:

instan
e (Binary a; 8b : (Binary b)) Binary (f b))

) Binary (GRose f a) where

showBin (GBran
h x ts) = showBin x ++ showBin ts:

Now, as well as (Binary a), the 
ontext also 
ontains

a polymorphi
 predi
ate. This predi
ate 
an be used to

redu
e the predi
ate Binary (f (GRose f a)) to just

Binary (GRose f a), and we have an instan
e de
laration

for that.

Viewed in operational terms, the predi
ate (Binary a)

in a 
ontext 
orresponds to passing a di
tionary for 
lass

Binary . A predi
ate 8b :Binary b ) Binary (f b) 
orre-

sponds to passing a di
tionary transformer to the fun
tion.

7.3 Deriving instan
e de
larations

Of 
ourse, sin
e Binary is a derivable 
lass by virtue of the

generi
 default de�nitions, we need not de�ne showBin at

all. We 
an simply write

instan
e (Binary a; 8b : (Binary b)) Binary (f b))

) Binary (GRose f a)

and get just the same e�e
t as before. In other words, the de-

riving me
hanism works happily for types of arbitrary kinds.

Here is a pla
e where a programmer-written 
ontext for

the instan
e de
laration is essential. We 
ould not use the

idea of Se
tion 4.4 to write:

instan
e (: : :)) Binary (GRose f a):

The problem is that there is no \most general instan
e de
-

laration". To illustrate the point 
onsider the following in-

stan
e de
laration for the abstra
t type Set :

instan
e (Binary a;Ord a)) Binary (Set a):

Note that we additionally require that a is an instan
e of

Ord . Now, given the instan
e de
laration for GRose above,

we 
annot infer Binary (GRose Set Int) sin
e Set does not

satisfy 8b : (Binary b)) Binary (Set b). If we require su
h

an instan
e, we must generalize the GRose instan
e:

instan
e (Binary a; 8b : (Binary b;Ord b)) Binary (f b))

) Binary (GRose f a):

By adding further 
lass 
onstraints to f 's 
ontext, we 
an

generalize the instan
e de
laration even more. Sadly, this

implies that there is no \most general" instan
e whi
h

deriving 
ould infer. Note that this problem does not 
rop

up for �rst-order kinded types.

7.4 Formalising the extension

Here is the grammar for generalized instan
e de
larations:

instan
e head ::= instan
e (
tx

1

; : : : ; 
tx

n

)) C t


ontext 
tx ::= 8�a : (
tx

1

; : : : ; 
tx

n

)) C t :

A 
ontext of the form 8�a : (
tx

1

; : : : ; 
tx

n

)) C t with n > 1

is 
alled a polymorphi
 predi
ate. Note that for n = 0 we

have \ordinary" Haskell 98 predi
ates.

7.5 Implementing generalized instan
e de
lara-

tions

How do we translate a method 
all op :: Op T? We must


reate a C -di
tionary for T if op is a method of 
lass C . In

the higher-order kinded situation, we may need to 
reate a

di
tionary transformer to pass to op. Fortunately, it turns

out that the now-standard ma
hinery to 
onstru
t the 
or-

re
t di
tionary to pass 
an easily be extended to 
onstru
t

di
tionary transformers too.

At a 
all site we have to solve the following problem: we

have a set of assumptions H and a single 
lause H , the di
tio-

nary (transformer) required, and we want to know whether

H is a logi
al 
onsequen
e of H . Additionally we return an

expression for the di
tionary (transformer) for H . We use

the following notation: H ` H 7! d means that d is a di
-

tionary (transformer) expression that shows how H 
an be

dedu
ed from H .

The assumptions H embody:

2 Any instan
e de
larations in s
ope. For example:

Eq Int 7! di
t-Eq-Int

8a :Eq a ) Eq (List a) 7! di
t-Eq-List .

2 Information about super
lasses. For example:

8a :Ord a ) Eq a 7! di
t -Eq-Ord :

This says that if we have Ord a we 
an dedu
e Eq a; in


on
rete terms we witness this fa
t by the sele
tor fun
-

tion di
t-Eq-Ord whi
h sele
ts the Eq di
tionary from

the Ord one.

2 Constraints from the type signature. For example, if we

are 
he
king types for the fun
tion

f ::

�

H ) T

f x = : : :

then we put the assumptions

�

H in our assumption set,

and try to dedu
e all the di
tionaries that are needed by


alls in the body of f .

We use the following inferen
e rules (A stands for As-

sumption, C for Conjun
tion,MP for Modus Ponens):

(H 7! d) 2 H

H ` H 7! d

(A)

H ` H

1

7! d

1

� � � H ` H

n

7! d

n

H ` (H

1

; : : : ;H

n

) 7! (d

1

; : : : ; d

n

)

(C)

H ` (8�a :

�

H ) Q) 7! f H `

�

H %� 7! d

H ` P 7! (f d)

(MP)

where % = [�a :=�x ℄ is a renaming substitution (the x

i

are fresh

variables) and � = mat
h(Q%;P) is the result of mat
hing

Q% against P (note that only the variables in Q% are bound).

So far, these rules are entirely standard, see, for instan
e,

[10℄. To these we add one new rule (DR stands for Dedu
-

tion Rule).

H ; (

�

H % 7! v) ` Q% 7! d

H ` (8�a :

�

H ) Q) 7! (�v ! d)

(DR)

where % = [�a := �
 ℄ is a Skolem substitution, that is, the




i

are Skolem 
onstants. Thus, to dedu
e the polymorphi


predi
ate 8�a :

�

H ) Q we add the body

�

H to the set of
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assumptions and try to dedu
e Q . The Skolem substitution

ensures that this derivation works for all �a.

The new rule is 
alled Dedu
tion Rule be
ause it re-

sembles the dedu
tion theorem of �rst-order logi
. It is also

reminis
ent of the usual typing rule for �-abstra
tion while

Modus Ponens 
orresponds to the typing rule for appli
a-

tion. In fa
t, these two rules 
apture di
tionary abstra
tion

and di
tionary appli
ation.

Here is an example of a dedu
tion using these rules.

Later lines are dedu
ed from earlier ones using the spe
i-

�ed rule (we abbreviate Binary by B and Ord by 0).

H = fOrd Int 7! d -O-I ;

Binary Int 7! d -B -I ;

(8a : (Binary a;Ord a)

) Binary (Set a)) 7! d -B -S g

(4) H ` 0 Int 7! d -O-I A

(3) H ` B Int 7! d -B -I A

(2) H ` (B Int ; 0 Int) 7! (d -B -I ; d -O-I ) C(3,4)

(1) H ` (8a : (B a; 0 a)) B (Set a)) 7! d -B -S A

(0) H ` B (Set Int) 7! d -B -S (d -B -I ; d -O-I ) MP(1,2)

Here is another example, this time of a higher-order 
ase:

H = fBinary Int 7! d -B -I ;

(8a : (Binary a)) Binary (List a)) 7! d -B -L;

(8f a : (Binary a; 8b : (Binary b)) Binary (f b))

) Binary (GRose f a)) 7! d -B -G g:

We abbreviate H ; (Binary 
 7! v) by H

0

.

(9) H

0

` (8b : (B b)) B (List b)) 7! d -B -L A

(8) H

0

` B 
 7! v A

(7) H

0

` (B 
; 8b : (B b)) B (List b))

7! (v ; d -B -L) C(8,9)

(6) H

0

` (8f a : (: : :)) B (GRose f a)) 7! d -B -G A

(5) H

0

` B (GRose List 
) 7! d -B -G (v ; d -B -L) MP(6,7)

(4) H ` (8b : (B b)) B (GRose List b))

7! (�v ! d -B -G (v ; d -B -L)) DR(5)

(3) H ` B Int 7! d -B -I A

(2) H ` (B Int ; 8b : (B b)) B (GRose List b))

7! (d -B -I ; �v ! d -B -G (v ; d -B -L)) C(3,4)

(1) H ` (8f a : (: : :)) B (GRose f a)) 7! d -B -G A

(0) H ` B (GRose (GRose List) Int)

7! d -B -G (d -B -I ; �v ! d -B -G (v ; d -B -L)) MP(1,2)

The new inferen
e rule ki
ks in at line (4) and introdu
es a

new assumption, B 
 7! v , that is used in line (8).

8 Related work

This paper improves on our earlier work [4℄ in several re-

spe
ts. First, generi
 de�nitions now appear solely in 
lass

de
larations as generi
 default methods. In the previous

design generi
 de�nitions and 
lasses were two 
ompeting

features. We feel that the new proposal �ts better with

\the spirit of Haskell". Se
ond, we have spelled out the

implementation in 
onsiderable detail. In parti
ular, the

notion of generi
 representation types and the 
onversion

between types and representation types has been made pre-


ise. Third, we have des
ribed a separate extension that

allows the programmer to de�ne instan
e de
larations for

higher-order kinded types. The need for this extension was

noted in [4℄ but no solution was given.

Though there is a 
onsiderable amount of work on generi


programming [18, 3, 9℄ this is the �rst paper we are aware

of | apart from PolyP [8℄ | that aims at adding generi


features to an existing fun
tional language. The PolyP ex-

tension o�ers a spe
ial 
onstru
t (essentially, a type 
ase)

for de�ning generi
 fun
tions. The resulting de�nitions are

similar to ours (modulo notation) ex
ept that the generi


programmer must additionally 
onsider 
ases for type 
om-

position and for type re
ursion. Furthermore, PolyP is re-

stri
ted to regular data types of kind ? ! ?, whereas our

proposal works for all types of all kinds. This is quite a sig-

ni�
ant advantage. In parti
ular, our proposal deals gra
e-

fully with mutually-re
ursive data types and with data types

with many parameters, both of whi
h make expli
it re
ur-

sion operators 
lumsy and hard to use in pra
ti
e.

The DrIFT tool [19℄ is a pre-pro
essor for Haskell that

allows the programmer to spe
ify rules that explain how

to implement a deriving 
lause for 
lasses other than the

standard 
lasses. The rules are spe
i�ed as Haskell fun
-

tions, mapping a type representation to Haskell program

text. DrIFT has the signi�
ant advantage of te
hni
al sim-

pli
ity. However, our system o�ers mu
h stronger stati


guarantees: if a generi
 default de
laration passes the type


he
ker, then so will any instan
e de
larations that use it. In

DrIFT, a rule may type
he
k �ne, while produ
ing Haskell

text that itself will not type
he
k. We also believe that

our 
loser integration with the language design (a
hieving

generi
 programming by enri
hing default-method de
lara-

tions) make the programmer's life easier.

9 Con
lusions and further work

This paper des
ribes two separate extensions to Haskell.

The �rst extension supports generi
 programming through

a new form of default method de
laration. The se
ond ex-

tension allows one to de�ne instan
e de
larations for higher-

order kinded types through the notion of polymorphi
 predi-


ates. Though these extensions are orthogonal to ea
h other,

the se
ond ensures that one gets the most out of the �rst

one (surely, one wants to derive instan
es for higher-order

kinded types).

We believe that our proposals �t ni
ely into the Haskell

language:

2 They �t with the \spirit of Haskell". At �rst sight,

generi
 programming and Haskell type 
lasses are in 
om-

petition, but we use generi
 programming to smoothly

extend the power of type 
lasses.

2 We are able to explain what \deriving" means in a sys-

temati
 way. The ad ho
 nature of deriving has long

been 
onsidered a wart, and programmers often want to

add new \derivable" 
lasses | that is, 
lasses for whi
h

you 
an say \deriving (C )". Now they 
an.

2 Generi
 de�nitions 
an be over-ridden at parti
ular types

by programmer-supplied instan
e de
larations. This sets

our approa
h apart from other generi
 programming

s
hemes. Not only is this useful for primitive types, but

generi
 methods are often inappli
able for abstra
t types

| 
onsider equality on sets represented as unordered

lists, for example.

2 There is no run-time passing or 
ase-analysis of types,

beyond Haskell's existing di
tionary passing. Of 
ourse,

di
tionary-passing is a sort of type passing, but it already

exists in Haskell, and it would be extremely tiresome to

introdu
e another, overlapping me
hanism.

Nor are there any new requirements to inspe
t the run-

time representation of a value, a feature of some propos-

als. Our proposal is a 100% 
ompile-time transforma-

tion.
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2 Like Haskell's type 
lasses, stati
 spe
ialisation is possi-

ble to eliminate run-time overhead (see Se
tion 6.6).

2 Our s
heme deals su

essfully with 
onstru
tor names

and labels. We have to admit, though, that this is one

of the tri
kier 
orners of the design.

2 We 
unningly re-use Haskell's type-
lass me
hanism to

instantiate the generi
 methods for parti
ular types, by

expressing the generi
 methods as generi
 instan
e de
-

larations (Se
tion 4.3). This approa
h means that we

do not need to explain or implement exa
tly how this


ode instantiation takes pla
e (e.g. how mu
h is done at


ompile time). Instead we just piggy-ba
k on an exist-

ing pie
e of implementation te
hnology. (This is really a

point about the implementation, not about the design.)

There seem to be two main short
omings. Firstly, the

details of implementing the generi
 default methods (repre-

sentation types, bidire
tional mapping fun
tions, and so on)

are undeniably subtle, whi
h is often a bad sign. Se
ondly,

the te
hnology to deal with 
onstru
tor and �eld labels does

not �t in as elegantly as we would wish.

We are 
urrently implementing the proposal and we hope

to make the new features available in the next release of the

Glasgow Haskell Compiler.

There are several dire
tions we plan to explore in the

future:

2 Currently, generi
 default de
larations may be given only

for type 
lasses. However, the theory [6℄ also deals with


onstru
tor 
lasses whose type parameter range over

types of �rst-order kind. Consequently, we plan to lift

this restri
tion.

2 In Haskell 98 instan
e heads must have the general form

C (T �a) where �a is a sequen
e of distin
t variables.

The Glasgow Haskell Compiler, however, allows for non-

general instan
e heads su
h as C (List Char ). We are


on�dent that the implementation s
heme for generi


methods 
an be extended to deal with this extra 
ompli-


ation.

2 Multi-parameter type 
lasses are on the wish list of many

Haskell programmers. So it would be a shame if the

generi
 extension failed to support them. Now, multi-

parameter 
lasses 
orrespond to generi
 de�nitions with

multiple type arguments, whi
h are theoreti
ally well un-

derstood. So we are 
on�dent that we 
an also deal with

this generalization.
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