Derivable Type Classes

Ralf Hinze

Institut fiir Informatik III
Universitat Bonn

Romerstrafle 164, 53117 Bonn, Germany
email: ralf@informatik.uni-bonn.de

Abstract

Generic programming allows you to write a function once,
and use it many times at different types. A lot of good
foundational work on generic programming has been done.
The goal of this paper is to propose a practical way of sup-
porting generic programming within the Haskell language,
without radically changing the language or its type system.
The key idea is to present generic programming as a richer
language in which to write default method definitions in a
class declaration.

On the way, we came across a separate issue, concern-
ing type-class overloading where higher kinds are involved.
We propose a simple type-class system extension to allow
the programmer to write richer contexts than is currently
possible.

This paper appears in the proceedings of the 2000 Haskell
Workshop, Montreal. To appear in Electronic Notes in The-
oretical Computer Science, Elsevier, 2001.

1 Introduction

A generic, or polytypic, function is one that the programmer
writes once, but which works over many different data types.
The standard examples are parsing and printing, serialising,
taking equality, ordering, hashing, and so on. There is lots
of work on generic programming [2, 8, 1, 6].

In this paper we present the design and implementation
of an extension to Haskell that supports generic program-
ming. At first sight it might seem that Haskell’s type classes
are in competition with generic programming — after all,
both concern functions that work over many data types.
But we have found that they can be combined very grace-
fully, offering a smooth upward extension to Haskell.

On the way we describe an orthogonal, but complemen-
tary idea. Haskell allows one to define higher-order kinded
data types for which it is impossible to define, for example,
an equality instance. This seems unfortunate: one part of
the language is more powerful than another. We describe
a modest extension of Haskell’s type-class system that re-
moves this difficulty.

More specifically, our contributions are these:

O We present the language design for an extension to
Haskell that supports generic programming (Sections 2—
6). Generic functions appear solely in class declarations.

O We describe an entirely separate extension that lets
one write certain instance declarations for higher-order
kinded data types that are simply inexpressible in
Haskell 98 (Section 7).

O We discuss the implementation of both parts.

Simon Peyton Jones

Microsoft Research Ltd
St George House, 1 Guildhall St
Cambridge CB2 3NH, England

email: simonpj@microsoft.com

The first part of this paper is a follow-up to [4]; the new
achievements are detailed in Section 8.

2 Setting the scene

In this section we set the context for our proposal. We begin
by reviewing Haskell’s type-class overloading mechanism.
2.1 A brief review of type class overloading

Haskell supports overloading, based on type classes. For
example, the Prelude defines the class Fq:

class Fq t where
(==),(#£) = t =t — Bool.

This defines two overloaded top-level functions, (==) and (),
whose types are

() ()

Before we can use (=) on values of, say Int, we must explain
how to take equality over Int values:

(Eqt) =t —t— Bool.

instance Fq Int where
(=2) eqInt
() nelnt.

Here we suppose that eqlnt :: Int — Int — Bool, and sim-
ilarly nelnt are provided from somewhere. The instance
declarations says “the (==) function at type Int is imple-
mented by eqlnt”.

How can we take equality of pairs of values? Presumably
by comparing their components; but that requires equality
over the component types:

instance (Eq a, Eq b) = Eq (a, b) where
(z1,91) == (22, 92) = (31 2= 22) A (31 == 92)
(1-17 yl) 7é (1'2, y2) = (171 §é IQ) Vv (yl ;/é y2)_

It is a bit annoying to keep having to write code for the ()
method, because it is simply the negation of the code for the
(==) method, so Haskell allows you to write a default method
in the class declaration:

class Fq t where
(=), (4) t — t — Bool
T1# 72 = not (71 == 12).

Now, if you give an instance declaration for Eq that lacks
a definition for (#), Haskell “fills in” the missing method

definition with code copied from the class declaration. So
we can write:

instance (Eq a, Eq b) = Eq (a, b) where
(21, 91) = (22, 92) = (21 == 2) A (41 == 12)

and get just the same effect as before. You can even specify
a default method for both methods:

class Eq t where
(=2), (%) t — t — Bool

T1 == 32 = not (11 # T2)
1 #£ 12 = not (71 == 12).

In an instance declaration, you can now either give a defini-
tion for (==), or a definition for (), or both. If you specify
neither, then you will get an infinite loop, unfortunately!

If you give an instance declaration without specifying
code for method op, and the class has no default method
for op, then invoking the method will halt the program with
an error message. It is not a compile-time error; sometimes
a method just doesn’t make sense for a particular instance

type.

2.2 Overloading is not generic programming

Haskell as it stands does not support generic, or polytypic,
programming. In particular, suppose you define a new data
type:

data Wibble = Wag Int | Wug Bool.

It is “obvious” how to take equality over Wibble, and sup-
port for generic programming would allow us to specify this
“obvious” precisely. In Haskell, however, you have to give an
explicit instance declaration, containing the code for equal-
ity:
instance Eq Wibble where

(W(lg ’il) == (Wag iz) = il == ig

(Wug b1) == (Wug b2) b1 == bz

wy == Wy False.

Cranking out this sort of boilerplate code is so tiresome that
Haskell provides special support — the so-called “deriving”
mechanism — for a handful of built-in classes. In particular,
for Eq you say

data Wibble = Wag Int | Wug Bool deriving (Eq).

The “deriving (Fq)” part tells Haskell to generate the “ob-
vious” code for equality. What “obvious” means is specified
informally in an Appendix of the language definition [15].
This is all rather ad hoc, and in particular ¢ only works
for a fized set of built-in classes (Eq, Ord, Enum, Bounded,
Read, Show, and Iz).

2.3 Generalising default methods

What we seek, then, is an automatic mechanism that “fills
in” a suitable implementation for the methods of an instance
declaration. But wait a minute! That’s what a default
method does! Indeed so but, as we have already remarked,
default methods as they stand are too weak. If we write
merely:

instance Eq Wibble

we would, as remarked earlier, just get an infinite loop. We
have to provide some real code somewhere! What we want
is a richer language in which to write default methods. That
is what we turn our attention to now.

3 Generic definitions

From a language-design point of view, our story is this: pro-
viding a richer language for default method definitions in
a class declaration gives an elegant way to extend Haskell
with the power of generic programming. We will justify this
statement more fully in Section 9, but first we must present
our design.

3.1 Two examples

We adopt with minor changes the proposal in [4]. Two ex-
amples will serve to give the idea. First, here is the Eq class
augmented with generic equality:

class Eq t where
(=), (#)

-- generic default method

t — t — Bool

(==){1} Unit Unit = True

(==){a + b}(Inl 1) (Inl z2) =n =1
(={a+b}(Inry) (Inr y2) = y1 =12
(=){a+b}__ = False

(=) axbHa) (22 % 92) = B =22 A Y1 == Yo

-- vanilla, non-generic default method
(5£) 11 22 = not (11 == 12).

This new class declaration contains an ordinary, default dec-
laration for (), just as before. The new feature is a generic
definition for equality, distinguished by the curly braces on
the left hand side, which enclose a type argument. We will
study such generic definitions in more detail in Section 4.2.
For now, we simply observe that a generic definition works
by induction over the structure of the type (written in curly
braces) at which the class is instantiated.
Now we can give an instance declaration like this:

instance Eq Wibble

without giving code for either method. Both methods will
be “filled in” from the class declaration. The ordinary,
non-generic default method, (#), is filled in verbatim. The
generic default method, (=), is specialised in a way we will
describe, to give essentially the code in Section 2.2. That
is, the effect of the instance declaration is exactly as if we
had written

instance Eq Wibble where
(Wag il) == (Wag iz) = i1 == 1:2
(Wug bl) == (Wug bz) = b1 == bg

w1 == W2
w 75 wa
Here is another example. The class Binary has methods

showBin and readBin that respectively convert a value to a
list of bits and vice versa:

data Bit = 0|1

type Bin = [Bit]

class Binary t where
showBin t — Bin
readBin Bin — (t, Bin).

A real implementation might have a more sophisticated rep-
resentation for Bin but that is a separate matter. We can

give generic definitions for showBin and readBin like this:

showBin{1} Unit [

showBin{a + b}(Inl) = 0:showBin z

showBin{a + b}(Inr y) = 1:showBin y

showBin{a * b}(z *: y) = showBin z H showBin y

readBin{1}bs = (Unit, bs)

readBin{a + b}[] = error "readBin"

readBin{a + b}(0: bs) = let (z,bs’) = readBin bs
in (Inl z, bs")

readBin{a + b}(1:bs) = let (y,bs') = readBin bs
in (Inr y, bs")

readBin{a % b}bs = let (z, bs1) = readBin bs

(y, bs2) = readBin bsy

in ((z x y), bs2).

Notice that readBin produces a value of the unknown type ¢,
whereas showBin and (==) both consume such values. Again,
we can make Wibble an instance of Binary by saying simply

instance Binary Wibble.

3.2 Instances and deriving

Though all of this sounds simple enough, it has interesting
and important consequences:

O Though an instance declaration for a class with generic
methods is now rather brief, it must still be given. It is
not the case, for example, that all types become instances
of Eq when one gives a generic default method in the
class declaration for Ejq.

O It is not necessary for the instance declaration to appear
in the same module as the data type declaration, or the
class declaration. By contrast, in Haskell 98 a deriving
clause must be attached to the data type declaration.
This separation is useful, because the class might not
even be defined in the scope where the type is declared.

O The compiler only fills in a method definition if the pro-
grammer omits it. For example, if we said

instance Eq Wibble where
(Wag) == (Wag) = True
w2 == W = False,

then this programmer-supplied code is, of course, used.
This is one way in which our proposal differs from others.
In most generic-programming systems, a generic function
works generically over all types. In our design, the pro-
grammer can override the gemeric definition on a type-
by-type basis.

This ability is absolutely crucial to support abstract data
types. For example, a set may be represented as a bal-
anced tree in more than one way, and equality must take
account of this fact. Simply using a generic equality
function would take equality of representations, which
is simply wrong in this case. In a similar way, we can
also use ordinary instance declarations to specify what a
generic operation should do on primitive types, such as
Char, Int, Double. In particular, if you want to define a
method for types involving function-spaces, you simply
supply an instance declaration for “—”.

O A deriving clause can now be seen as shorthand (albeit
now not so much shorter) for an instance declaration.
There is a difference, though. Consider

data Tree a = Node a [Tree o] deriving (Eq).

In our design, the deriving clause is shorthand for
instance (Eq a) = Eq (Tree a)

Note that in an instance declaration we must explicitly
specify the context (Eq a), which is inferred automati-
cally by the deriving mechanism. We discuss this issue
in more detail in Section 4.4.

3.3 Generic representation types

The arguments in braces on the left hand side of a generic
definition are types. The idea is, of course, that these generic
definitions can be specialised for any particular type. Sup-
pose, for example, we have a data type List, and we make
List an instance of Binary:

data List a = Cons a (List a) | Nil
instance (Binary a) = Binary (List a).

How is the compiler to fill in the missing method definitions?
First, we define the generic representation type for List,
which we will call List®:

type List® a = (a = List a) + 1.

We will have more to say about representation types in Sec-
tion 6.2, but for now we can just think of List® as a type
that is more-or-less isomorphic to List, but one that uses
only a small, fixed set of type constructors, namely unit,
sums, and products. Notice also that List® is not a recur-
sive type; it mentions List on the right hand side, not List°.
So our generic representation types give a representation for
just the “top level” of a recursive type.
The unit, sum, and product types are defined like this:

data 1 = Unit
dataa+b = Inlal|Inrd
dataaxb = a:x b.

Of course, 1 is not a legal Haskell type constructor, and
nor are infix (4+) and (x). We give them special syntax
to distinguish them from their “normal” counterparts, (),
Either a b, and (a,b), and extend the syntax of types to
accommodate them.

In our example, a List is a sum (+) of two types: a
product () of the element type a and a List, and the unit
type (1). To make the isomorphism explicit, let us write
functions that convert to and fro':

to-List Va.List® a — List a
to-List (Inl (z *: zs)) = Cons z zs
to-List (Inr Unit) = Nil

from-List 2 VYa. List a — List® a
from-List (Cons © zs) = Inl (z *: zs)
from-List Nil = Inr Unit.

3.4 The generic instances

The idea is that by regarding a List as a List®, the generic
code ezxplains what to do. The generic method for showBin,
for example, says what to do if the argument is a sum, what
to do if it is a product, and what to do if it is a unit type.

In this paper we will make quantification explicit, even though
Haskell 98 does not offer explicit quantification. So, in this example,
we write an explicit V in the type signature for to-List. Some of our
types become quite complicated, so it helps to be absolutely certain
where quantification is taking place.

It’s useful to imagine re-expressing these default methods
as three ordinary instance declarations:

instance Binary 1 where
showBin Unit =[]

readBin bs = (Unit, bs)
instance (Binary a, Binary b) = Binary (a + b) where
showBin (Inl z) = 0: showBin =
showBin (Inr y) = 1:showBin y
readBin [] = error "readBin"
readBin (0: bs) = let (z,bs’) = readBin bs
in (Inl z, bs")
readBin (1: bs) = let (y, bs') = readBin bs

in (Inr y, bs")
instance (Binary a, Binary b) = Binary (a * b) where
showBin (z x: y) = showBin z + showBin y

readBin bs = let (z,bs1) = readBin bs
(y, bs2) = readBin bsy
in ((z x y), bs2).

We describe these instance declarations for generic repre-
sentation types as generic instance declarations. They are
not written explicitly by the programmer, but instead are
derived by the compiler from a class declaration that has
generic default methods. We discuss generic instance decla-
rations further in Section 4.3.

3.5 Filling in the missing methods

We are now ready to say more precisely how the compiler
fills in the missing methods. In this section we sketch the
idea using an example, while Section 6 deals with the general
case.

When the programmer writes

instance (Binary a) = Binary (List a)
the compiler will fill in the method declarations as follows:

showBin s = showBin (from-List 1s)
readBin bs = case readBin bs of
(zs, bs') — (to-List zs, bs').

Let us focus on the definition for showBin. It works in two
stages:

1. First, from-List :: Va.List a — List® a converts the
input list of type List a into a value of type List® a.

2. Second, we call the overloaded showBin function to
complete the job, using the methods of the generic in-
stance declarations.

At first this looks utterly bizarre. We are defining showBin
in terms of showBin. But look at the definition one would
write by hand:

instance (Binary a) = Binary (List a) where
showBin Nil = 0:]
showBin (Cons t zs) = 1:showBin r H showBin ts.

The first call is to showBin at the list element type; the
second is a recursive call to the same showBin at the list
type.

Something similar happens with the generic definition.
Here showBin is called on an argument of type List® a.
This is a sum type, so the sum instance of Binary kicks in
(Section 3.4). It in turn will call showBin, once at type 1,
and once at type a * List a. The former has an instance

declaration, while the latter uses the product instance and
makes calls to showBin at type a and List a. But the former
is just like the showBin z in the hand-written instance, while
the latter is like the showBin zs. So everything works out.

Let us return briefly to the first step above. In the case of
showBin it was fairly simple to convert the argument to its
generic representation type. On the other hand readBin was
a bit more complicated because it returned a pair, only one
component of which had to be converted. How, in general,
does the compiler perform this conversion? We devote the
whole of Section 5 to this topic. First, though, we elaborate
on the programmer-visible aspects of our design.

4 Discussion and elaboration

We have now sketched the bones of our design. In this sec-
tion we elaborate on some of the details.

4.1 Constructor names and record labels

Annoyingly, unit, sum, and product are not quite enough.
Consider, for example, the standard Haskell class Show. To
be able to give generic definitions for showsPrec, the names
of the constructors, and their fixities, must be made acces-
sible.

To this end we provide an additional generic representa-
tion type, of the form ¢ of a where ¢ is a value variable of
type ConDescr and a is a type variable. The type ConDescr
is a new primitive type that comprises all constructor names.
To manipulate constructor names the following operations
among others can be used — for an exhaustive list see [4].

data ConDescr -- abstract
data Fizity = Nofiz | Infiz Int | Infizl Int | Infizr Int

conName ConDescr — String -- primitive
conArity ConDescr — Int -- primitive
conFizity ConDescr — Fizity -- primitive

instance Show ConDescr where
show = conName

Using conName and conArity we can implement a simple
variant of Haskell’'s Show class — for the full-fledged version
see [4].

class Show t where
show =t — String
showsPrec Int — t — String

show z = showsPrec 0 z

showsPrec{a + b}d (Inl) = showsPrec d
showsPrec{a + b}d (Inr y) = showsPrec d y
showsPrec{c of a}d (Con c z)

= if conArity ¢ == 0 then show ¢

else showParen (d > 10)
(show ¢ + "" H showsPrec 10)

showsPrec{a x b}d (z = y)

= showsPrec d © + """ H# showsPrec d y

The representation type ¢ of a is defined by the following
pseudo-Haskell declaration:

newtype cof a = Con ¢ a.

Uniquely for Haskell, ¢ is a value that is carried by a type.
It is best to think of the above declaration as defining a
family of types: for each c there is a type constructor “c of”
of kind x — x with a value constructor “Con c¢” of type
a — (c of a). Now, why does the type ¢ of a incorporate

information about ¢? One might suspect that it is sufficient
to supply this information on the value level. Doing so would
work for show, but would fail for read:

class Read t where
read it String — [(¢, String)]
read{cof a}s = [(Con c z, s3)
| (s1,82) « lex s, 81 == conName c,
(z, 83) « read s2].

The important point is that read produces (not consumes)
the value, and yet it requires access to the constructor name.

Haskell allows the programmer to assign labels to the
components of a constructor, and these, too, are needed by
read and show. For the purpose of presentation, however,
we choose to ignore field names. In fact, they can be handled
completely analogously to constructor names.

4.2 Generic class declarations

In general, a class declaration consists of a signature, which
specifies the types of the class methods, and an implementa-
tion part, which gives default definitions for the class meth-
ods. The type signature has the general form:

class ctz = C a where

op, = Op;a

op, = Op, a.
The implementation part consists of generic and non-generic
default definitions. A non-generic definition is an ordinary
Haskell definition

op =

A generic definition can be recognised by the type patterns

on the left hand side, enclosed in curly braces. It has the
schematic form

op{1}
op{a+0b}
op{axb}
op{cof a}

The type patterns are mandatory, so that the equations can
be correctly grouped. For example, consider the generic
definition of (==) given earlier:

(::){1}U7Lit Unit = True

(=){a + b}(Inl 1) (Inl z2) = 1 == 1o
(={a+b}(Inry) (Inr y2) = y1 ==y
(=){a+b}__ = False

(::){a * b}(l'l KON y1) (932 Tkl yg) = 21 == > A\ Y1 == Y2.

Without the type patterns there is no way to decide whether
the second but last equation belongs to the (4) or to the (x)
case.

Apart from the type patterns, a generic definition has
exactly the form of a normal Haskell definition.

We note the following points:

O A class declaration may specify an arbitrary mixture of
generic and non-generic default-method declarations. In
the case of Eq above, (==) is defined by induction over
the argument type, while (#) is non-generic. The generic
and non-generic methods may be mutually recursive.

O Class declarations are the only place that generic defini-
tions appear in our design. There are no “free-standing”
generic definitions, just as there are no free-standing

overloaded definitions in Haskell. (One might disagree
with this choice, but it does not limit expressiveness, be-
cause one can always invent a class to encapsulate a new
overloaded or generic function.)

O At the moment, generic default declarations may only
be given for type classes, that is, for classes whose type
parameter ranges over types of kind x. For example, we
cannot specify a generic default method for the Functor

class:
class Functor f where

fmap = (a > b) = (fa—f0).
This is the first extension we plan to add in the future.

O For a multi-parameter type class there would be multiple
type arguments. We do not consider this complication
in this paper.

4.3 Generic instance declarations

In Section 3.4 we said that the generic definitions in a class
declaration are re-expressed by the compiler as a set of in-
stance declarations, one for each generic representation type.
One might ask: why not get the programmer to write these
instance declarations directly?

Our answer is stylistic rather than technical. We want
to present generic programming in Haskell as a richer lan-
guage in which to write default method declarations, and
scattering them over several instance declarations does not
convey that message. The question about whether a generic-
default declaration was available to use would become more
diffuse, because some parts, but not others, might be avail-
able. Writing the declaration all at once, in the class dec-
laration, seems to be the simplest and most direct thing to
do, even though it does involve a little new syntax.

Another stylistic reason for our decision is that it is
rather easy to confuse the generic instance declaration for,
say, products a * b with “ordinary” instance declarations for
the corresponding “ordinary” product type (a,b). For ex-
ample, in the case of Show, the ordinary instance declaration
for products might look like this:

instance (Show a, Show b) = Show (a, b) where
showsPrec d (z,y)
="(" H showsPrec 0 x +"," H showsPrec 0 y + ")".

Because tuples are typically shown using distfix notation, we
choose to over-ride the generic definition. Nevertheless, the
class declaration for Show will have given rise to the generic
instance declaration

instance (Show a, Show b) = Show (a * b) where
showsPrec d (z :*: y)
= showsPrec d © + "," H showsPrec d y.

Recall that products a * b are used to represent the argu-
ments of a constructor. Consequently, the generic instance
declaration specifies the layout of constructor arguments:
they are shown consecutively separated by spaces.

4.4 Inferring instance contexts

When a class has generic methods, one can give an instance
declaration without providing the code for any of the meth-
ods. But one still has to provide the contert for the instance
declaration. For example, one could not write

instance Eq (List a)

because the typechecker would complain about a missing
(Eq a) constraint. Instead one must write

instance Eq a = Eq (List a).

In contrast, the existing deriving mechanism infers the nec-
essary instance context. The obvious question is: could the
compiler infer the instance context in our new scheme? For
example, we might write

instance (...) = Eq (List a)

indicating that the compiler should fill in the missing context
“(...)". Indeed, we might want to allow such an abbrevia-
tion in any type signature, allowing one to write, say,

fo(.)=>a—a.

The ability to write such partial type signatures, with the
ellipsis filled in by type inference, has been discussed on
the Haskell mailing list, and looks perfectly feasible from
a technical standpoint. For instance declarations matters
are still feasible, (albeit a little trickier, involving a fixpoint
iteration) for first-order kinded types, but we believe that it
is infeasible for higher-order kinded types (see Section 7.3).

In any case, this issue is entirely separate from our main
theme, so we do not discuss it further.

5 Mapping functions

We have now presented the design as seen by the program-
mer. Before we can describe the implementation, however,
we need to pause to introduce bidirectional maps, which are
an essential foundation to the implementation.

Recall from Section 3.5 our general plan for filling in the
generic method of an instance declaration. Suppose we have
the following class declaration:

class C' a where
op = Op a.

We will deal only with single-parameter type classes, but see
Section 9. We also assume, for notational clarity, that the
type of method op is given simply by Op a. We can always
introduce a type synonym to make this so?>. Now suppose
that the programmer writes the instance declaration

instance ctz = C (T a).

where ctz is a context, and @ is a sequence of type variables.
How is the compiler to fill in the definition of method op?
Following Section 3.5 it can fill in thus:

instance ctr = C (T @) where
op = adapt-Op (op:: Op (T° a)).

That is, we call op at type T° @, to produce a value of
type Op (T° @), and then convert the value to Op (T a).
The function adapt-Op does this impedance-matching by
converting a function that works on values of type T° a to
one that works on T a.

adapt-Op :: Va.Op (T° a) — Op (T a)

2Technica11y, Haskell type synonyms are not powerful enough to
do such an abbreviation for a method like properFraction:

class RealFrac a where
properFraction :: (Integral b) = a — (b, a).

since its type has a context at the beginning. But we will pretend
that such an abbreviation is possible.

Clearly, how adapt-Op works depends on the form of Op,
the type of the method. Here are some examples:

type Ina = a — String
adapt-In 2 Va.In(T°a) > In (T a)
adapt-In = M = f - from-T

type Out a = String — a

adapt-Out :: Va.Out (T° @) - Out (T a)
adapt-Out = Af — to-T - f

type Both a = a — a

adapt-Both :: Va.Both (T° a) — Both (T a)

adapt-Both = Af — to-T - f - from-T.

These adapt functions use the functions to-T and from-T,
that convert between T @ and T° @; they were introduced in
Section 3.3. Notice that both to-T and from-T are needed;
one by itself will not do. Furthermore, while we define the
class, and hence the Op types, once, we may write instances
of that class at many different types, 7. So we want to
abstract out the to-T and from-T functions from the adapt
functions (note that ¢° is a type variable below):
adapt-Both' i Vaa®.(a® = a) = (a = a°)

— (Both a° — Both a)

adapt-Both' to from A — to - f - from

adapt-Both = adapt-Both' to-T from-T

It turns out to be convenient to package up the to-T and
from-T functions into an embedding-projection pair:

data EP a o° = EP{to: a° — a,from:a — a°}.

Here EP a a° is just a pair of functions, one to convert in
one direction and one to convert back. Now we can write

adapt-Both" : Va a®.EP aa®

— (Both a° — Both a)
adapt-Both" ep-a = Af — to ep-a - f - from ep-a
conv-T : Va.EP (T a)(T° a)
conv-T = EP{to = to-T, from = from-T'}
adapt-Both adapt-Both" conv-T.

The last step is to make the adapt function itself return an
embedding-projection pair, rather than just the “to” func-
tion; and at this stage we adopt the name bimap — for
“bidirectional mapping”:

bimap-Both :: VYa a°.EP a a®° — EP (Both a) (Both a°)
bimap-Both ep-a
= EP{to = \f — from ep-a - [- to ep-a,
from = A\f — to ep-a - f - from ep-a}
adapt-Both = to (bimap-Both conv-T).

It is not at all obvious why we construct mappings in both
directions, only to discard one of them when we use it, but
it turns out to be essential when constructing bimap for
arbitrary types, as we will see in the next section.

5.1 Generating bidirectional mapping functions

In the last section we generated bimap-Both for a particular
method type Both a. We also observed that appropriate
code depends on the structure of the type of the method,
so the million-dollar question is: how do we generate the
bidirectional maps for arbitrary method types? We do it
simply by induction over the type of the method, thus:

bimap- Op 2 Va a®.EP a a® — EP (Op a) (Op a°)
bimap-Op ep-a = bimap{Op a}[a := ep-a]l.

This definition is not proper Haskell; bimap should be
thought of as a meta-function, evaluated at compile time,
that returns a Haskell expression. It takes as arguments: a
type (written in curly braces), and an environment ¢ map-
ping type variables to expressions. The syntax [a := ep-a]
means an environment that binds a to ep-a.

We define bimap by induction on the structure of type
expressions:

bimap{a}e = o(a)
bimap{(—)}o = bimap-Arrow
bimap{ T }o bimap-T

bimap{t u}e (bimap{t}o) (bimap{u}e)

where

2 Vaa® bb°.EP aa® — EP b b°
— EP (a — b) (a®° = b°)

bimap-Arrow

bimap-Arrow ep-a ep-b
= EP{to = \f — to ep-b - f - from ep-a,

from = A\f — from ep-b - f - to ep-a}.

The bimap{ T } case deals with type constructors other than
(=), which we discuss in Section 5.2. Let us take an exam-
ple. Recall our Both type:

type Both a = a — a.
Setting o = [a := ep-a] we have

bimap-Both ep-a
= bimap{a — a}o
= (bimap{(—) a}o) (bimap{a}oe)
= ((bimap (=) o) (bimap{a}o)) (bimap{a}oe)
= bimap-Arrow ep-a ep-a

EP{to = A\f — to ep-a - f - from ep-a},

from = Af — from ep-a - f - to ep-a.

5.2 Mapping over data types

What if there is a data type involved? For example in the
type of readBin, there is a pair in the result type:

type ReadBin a = Bin — (a, Bin).
If we just try our current scheme we get stuck:

bimap-ReadBin ep
= bimap{Bin — (a, Bin)}e
bimap-Arrow (bimap{ Bin}g) (bimap{(a, Bin) }o).

Now, since Bin is not a parameterised type, there is nothing
to do,

bimap-Bin :: EP Bin Bin

bimap-Bin = id-EP

1d-EP : Va.EPaa

id-EP = EP{to=Xz = z,from =Xz > z}

whereas pairs are parameterised over two types, so we must
push the mapping functions inside:

bimap-Pair :: Ya a® b b°.EP a a° — EP b b°
— EP (a,b) (a®,b°)
bimap-Pair ep-a ep-b
= EP{to = X(z°,y°) — (to ep-a z°,to ep-b y°),
from = X(z,y) = (from ep-a z, from ep-b y)}.

In general, we can define bimap-T by induction on the struc-
ture of data type declarations. The mapping function for the
data type

data Ta1 e A = Kl t11 tlml | | Kn tnl tnm"_
is given by bimap-T displayed in Fig. 1. Now, what is the
type of this bidirectional map? The answer is simple yet
mind-boggling: the type of bimap-T depends on the kind of
T. Assume that T has kind * as, for instance, Bin. Then
the bidirectional map simply has type EP T T (and, in fact,
bimap-T = id-EP). If T has kind * — * as all the Op’s
have, then bimap-T’s type is close to that of an “ordinary”
mapping function:

bimap-T :: Va a®.EP a a® — EP (T a) (T a°).

A more involved kind, say (x — %) — (* — %), gives rise to
a more complicated type:

bimap-T = Vf f°.(Vb b°.EP b b° — EP (f b) (f° b°))
— (Va a®° . EP a a°
— EP (T f a) (T f° a°)).

Now bimap-T has a so-called rank-2 type signature [12].
Roughly speaking, bimap-T takes bidirectional maps to bidi-
rectional maps (this is why the arguments of bimap-T are
called bimap-a;). In general, if T has kind &, then bimap-T
has type Bimap{x}T T where Bimap is defined by induc-
tion on the structure of kinds:

Bimap{*}t t° = EP t t°
Bimap{k1 — k2 }t t°
= Va a°. Bimap{k1 }a a° = Bimap{k2 }(t a) (t° a°).

If k has order n, then Bimap{«} is arank-n type. This poses
no problems, however, since the Glasgow Haskell Compiler
internally uses a variant of the polymorphic A-calculus [17].

We will say a bit more about higher-order kinded types
in Section 7. For further information on kind-indexed types
such as Bimap the reader if referred to [7].

6 Implementing generic default methods

Now, at last, we are ready to tackle the implementation. We
describe it as a Haskell source-to-source translation, per-
formed (at least notionally) prior to type checking. Why?
The type checker already does a lot of what we require. Also
we probably have a better chance that generic default meth-
ods will work smoothly with complications such as multi-
parameter type classes [16], implicit parameters [13], and
functional dependencies [11].

The source-to-source translation goes as follows. For
each data type declaration, T, we generate the following:

O For each constructor K a value con-K of type ConDescr
that describes the properties of the constructor (Sec-
tion 6.1).

O A type synonym, T°, for T’s generic representation type
(Section 6.2).

O An embedding-projection pair conv-T
Ya.EP (T a) (T° a), that converts between T
and its generic representation T° (Section 6.3).

For each class declaration, for class C, we generate the fol-
lowing (see Section 6.4):

O An emaciated class declaration for C, generated simply
by omitting the generically-defined methods.

bimap-T bimap-a;1 ..
where

. bimap-ar, = EP{to = to-T, from = from-T}

to-T (K1 T11 .. Tim,) = Ki (to (bimap{ti1 }o) z11) ... (to (bimap{tim; }0) Tim,)

to-T (Kn Tn1 -+ Tum,)
from-T (K1 211 ... Timy,)

K., (to (bimqp{tm }o) zn1) ... (to (bimap{tnmw }0) Tom.,)
K1 (from (bimap{ti1 }0) z11) ... (from (bimap{tim, }0) Tim,)

f;‘z.)m-T (Kn Tnl -+ - Tam,) = K, (from (bimap{tn1 }0) Zn1) ... (from (bimap{tum, }0) Tnm.,,)
0 = [a1 := bimap-a1,.. ., a = bimap-ax]

Figure 1: The bidirectional mapping function for the data type T'.

O For each generic method op :: Op a in the class declara-
tion, a bidirectional map bimap-Op ::Va a°. EP a a° —
EP (Op a) (Op a°) (see Section 5).

O Instance declarations for C 1, C (a + b), C (a * b) and
C (c of a), all obtained by selecting the eponymous
equations from the original class declaration (see Sec-
tion 3.4).

For each instance declaration we generate (see Section 6.5):

O An extended instance declaration, obtained by adding
definitions for the generic methods that are not specified
explicitly in the instance declaration.

6.1 Constructors

For each constructor, K, in a data type declaration, we pro-
duce a value of type ConDescr that gives information about
the constructor (in fact, the type ConDescr used in the com-
piler is slightly more elaborate):

data ConDescr = ConDescr{name :: String,
arity :: Int,
fizity :: Fizity }.

As an example, for the List data type we generate:

con-Cons, con-Nil :: ConDescr
con-Cons = ConDescr "Cons" 2 NoFizity
con-Nil = ConDescr "Nil" 0 NoFizity.

6.2 Generic representation types

For each data type, T, we produce a type synonym T°, for
its generic representation type. For example, for the data
type

data List a = Cons a (List a) | Nil

we generate the representation type
type List® a = con-Cons of (a * List a) + con-Nil of 1.

Our generic representation type constructors are just unit,
sum, product, and “c of”. In particular, there is no recur-
sion operator. Thus, we observe that List® is just a non-
recursive type synonym: List (not List®) appears on the
right-hand side. So List® is not a recursive type; rather, it
expresses just the top “layer” of a list structure, leaving the
original List to do the rest. But as we have seen, this is
enough: a recursive function just does one “layer” of recur-
sion at a time.

This is unusual compared to other approaches. In PolyP
[8], for instance, there is an additional type pattern for type
recursion (at kind x —). A very significant advantage
here is that there is no problem with mutually-recursive data

types, nor with data types with many parameters, both of
which make explicit recursion operators extremely clumsy
and hard to use in practice.

Our design makes do with just binary sum and prod-
uct. Algebraic data types with many constructors, each of
which has many fields, are encoded as nested uses of sum
and product. The exact way in which the nesting is done is
unimportant to our method. For example:

data Color = Red | Blue | Green

type Color® con-Red of 1

(con-Blue of 1+ con-Green of 1)
data Tree a b = Leaf a | Node (Tree a b) b (Tree a b)

type Tree® a b = con-Leaf of a
+ con-Node of (Tree a b* (b* Tree a b)).

+

One may wonder about the efficiency of translating a user-
defined data type into a generic form before operating on
it, especially if everything is encoded with only binary sums
and products. However, sufficiently vigorous inlining means
that the generic data representations never exist at run-time
(see Section 6.6). But, in fact, we might want to explore
space-time trade-offs, by getting much more compact code
in exchange for some data translation. Our design allows
this trade-off to be made on a case-by-case basis.

Whether the encoding into sums and products is done
in a linear or binary-sub-division fashion may or may not
affect efficiency, depending on how vigorous the inlining is.

6.3 Embedding-projection pairs

For each data type T, we also generate functions to convert
between T and T°. We saw the conversion functions for
List in Section 3.3. The process is entirely straightforward,
driven by the encoding. For example:

from-Color Color — Color®

from-Color Red = Inl (Con con-Red Unit)
from-Color Blue = Inr (Inl (Con con-Blue Unit))
from-Color Green = Inr (Inr (Con con-Green Unit))
to-Color :: Color® — Color

to-Color (Inl (Con con-Red Unit)) = Red
to-Color (Inr (Inl (Con con-Blue Unit))) = Blue

to-Color (Inr (Inr (Con con-Green Unit))) = Green.

For bimap we have to package the two conversion functions
into a single value:

conv-List :: Va.EP (List a) (List® a)

conv-List = EP{to = to-List, from = from-List}
conv-Color EP Color Color®

conv-Color = EP{to = to-Color, from = from-Color}.

6.4 Translating class declarations

For each generic method op :: Op a contained in a class
declaration we generate a bidirectional map
bimap-Op :: Ya a®.EP a a° — EP (Op a) (Op a°)
that allows us to convert between types and representation
types (the definition of bimap-Op is given in Section 5).
Furthermore, we produce instance declarations

instance C'1
instance (C a,C b) = C (a + b)
instance (C a,C b) = C (a * b)
instance (C a) = C (c of a)

whose bodies are filled with the generic methods from the
original class declaration (see Section 3.4). If an equation for
a type pattern is missing, the method of the corresponding
instance is undefined. There is, however, one important
exception to this rule: if no equation is given for the type
pattern ¢ of a as, for example, in the classes Eq and Binary,
we define the generic methods of the C (¢ of a) instance
by:

op{cof a} = to (bimap-Op (con-EP c)) (op:: Op a)

where con-EP is given by the following pseudo-Haskell code
(which defines a family of functions):

con-EP ¢ :: Va.EP a (cof a)
con-EP ¢ = EP{to =Xz — Con c z,
from = X(Con c z) — z}.

Again, we employ the bidirectional map to convert between
two isomorphic types.

6.5 Translating instance declarations

An instance declaration for type T is extended by filling in
implementations for the methods. More specifically, if the
method op is not specified and if it enjoys a generic default
definition, then the following equation is supplemented:

op = to (bimap-Op conv-T) (op :: Op T°).

That’s it.

6.6 Inlining

It does not sound very efficient to translate a value from
T a to T° a and then to operate on it, but we believe that
a bit of judicious inlining can yield more or less the code one
would have written by hand. Let us consider, for example,
showBin at type List. The showBinList method will look
something like this:

showBinList (Binary a) = List a — Bin
showBinList zs = showBin (from-List zs)
type List® a = (ax List a) +1

from-List List a — List® a.

The call to showBin is at type List® a, so the overloading
can be resolved statically. Assuming that the method bodies
(given in Section 3.1) are inlined, we get:

showBinList xs
= case from-List zs of
Inl z — 0: case z of
(z = y) = showBin = + showBin y
Inr z — 1: case z of Unit — [].

But remember that from-List also has a simple, non-
recursive definition:

from-List (Cons © zs) = Inl (z *: 15)
from-List Nil = Inr Unit.

If we inline this definition in showBinList and simplify using
standard transformations, we get

showBinList zs
= case 15 of
Cons z y — 0: showBin z H showBin y
Nil —» 1:]],

which is about as good as we can hope for.

7 Higher-order kinded types

Functional programmers love abstraction. In Haskell we
can, for instance, abstract over the List data type in

data Rose a = Branch a (List (Rose a))
to obtain the more general type:

data GRose f a = GBranch a (f (GRose f a)).

Here, the type variable “f” ranges over type constructors,
rather than types. Formally, GRose has kind (x — x) —
* — %. There are numerous examples of such type defini-
tions in [14, 5]. Alas, it is impossible to define many instance
declarations for GRose in Haskell at all. In this section we
describe the problem and a solution. This section is quite
independent of the rest of the paper. Though we became
aware of the issue when working on generic programming,
we propose an extension to Haskell that is completely or-
thogonal to generic programming.

7.1 What’s the problem?

Consider first defining an instance for Binary (Rose a) by
hand — we ignore readBin here:

instance (Binary a) = Binary (Rose a) where
showBin (Branch z ts) = showBin t H showBin ts.

The first call to showBin on the right hand side requires that
Binary o should hold; the context, (Binary a), takes care
of that. The second call is at type List (Rose a). Assuming
we have an instance elsewhere of the form

instance (Binary t) = Binary (List t)

the second call requires Binary (Rose a), and there is an
instance declaration for that too — it gives rise to a recursive
call to showBin.

But matters are not so simple when we want to write an
instance Binary (GRose f a). We might try

instance (???) = Binary (GRose f a) where
showBin (GBranch z ts) = showBin z H showBin ts.

The context (??7) must account for the calls to showBin
on the right-hand side. The first one is fine: it requires
Binary a as before. But the latter is bad news: it requires
Binary (f (GRose f a)), and we certainly cannot write

instance (Binary a, Binary (f (GRose f a)))
= Binary (GRose f a) where
showBin (GBranch z ts) = showBin z H showBin ts.

This is not legal Haskell and, even if it were, the typechecker
would diverge. Indeed, no ordinary Haskell context will do.

7.2 A solution

What we need is a way to simplify the predicate
f (GRose f a). The trick is to take the “constant” instance
declaration that we assumed for Binary (List a) above, and
abstract over it:

instance (Binary a,Vb.(Binary b) = Binary (f b))
= Binary (GRose f a) where
showBin (GBranch z ts) = showBin z H showBin ts.

Now, as well as (Binary a), the context also contains
a polymorphic predicate. This predicate can be used to
reduce the predicate Binary (f (GRose f a)) to just
Binary (GRose f a), and we have an instance declaration
for that.

Viewed in operational terms, the predicate (Binary a)
in a context corresponds to passing a dictionary for class
Binary. A predicate Vb. Binary b = Binary (f b) corre-
sponds to passing a dictionary transformer to the function.

7.3 Deriving instance declarations

Of course, since Binary is a derivable class by virtue of the
generic default definitions, we need not define showBin at
all. We can simply write

instance (Binary a,Vb.(Binary b) = Binary (f b))
= Binary (GRose f a)

and get just the same effect as before. In other words, the de-
riving mechanism works happily for types of arbitrary kinds.

Here is a place where a programmer-written context for
the instance declaration is essential. We could not use the
idea of Section 4.4 to write:

instance (...) = Binary (GRose f a).

The problem is that there is no “most general instance dec-
laration”. To illustrate the point consider the following in-
stance declaration for the abstract type Set:

instance (Binary a, Ord a) = Binary (Set a).

Note that we additionally require that a is an instance of
Ord. Now, given the instance declaration for GRose above,
we cannot infer Binary (GRose Set Int) since Set does not
satisfy Vb . (Binary b) = Binary (Set b). If we require such
an instance, we must generalize the GRose instance:

instance (Binary a,Vb . (Binary b, Ord b) = Binary (f b))
= Binary (GRose f a).

By adding further class constraints to f’s context, we can
generalize the instance declaration even more. Sadly, this
implies that there is no “most general” instance which
deriving could infer. Note that this problem does not crop
up for first-order kinded types.

7.4 Formalising the extension

Here is the grammar for generalized instance declarations:

instance head ::= instance (ctz1,...,ctz,) = Ct
context ctr == Va.(ctri,...,ctz,)=> C t.

A context of the form Va . (ctz1,...,ctz,) = C t withn > 1
is called a polymorphic predicate. Note that for n = 0 we
have “ordinary” Haskell 98 predicates.

7.5 Implementing generalized instance declara-
tions

How do we translate a method call op :: Op T? We must
create a C-dictionary for T if op is a method of class C. In
the higher-order kinded situation, we may need to create a
dictionary transformer to pass to op. Fortunately, it turns
out that the now-standard machinery to construct the cor-
rect dictionary to pass can easily be extended to construct
dictionary transformers too.

At a call site we have to solve the following problem: we
have a set of assumptions H and a single clause H, the dictio-
nary (transformer) required, and we want to know whether
H is a logical consequence of H. Additionally we return an
expression for the dictionary (transformer) for H. We use
the following notation: H F H — d means that d is a dic-
tionary (transformer) expression that shows how H can be
deduced from H.

The assumptions H embody:

O Any instance declarations in scope. For example:
Eq Int — dict-Eq-Int
Ya.Eq a = Eq (List a) — dict-Eq-List .
O Information about superclasses. For example:

Va.Ord a = Eq a > dict-Eq-Ord.

This says that if we have Ord a we can deduce Eq a; in
concrete terms we witness this fact by the selector func-
tion dict-Eq-Ord which selects the FEq dictionary from
the Ord one.

O Constraints from the type signature. For example, if we
are checking types for the function

f = H=T
fr=...
then we put the assumptions H in our assumption set,

and try to deduce all the dictionaries that are needed by
calls in the body of f.

We use the following inference rules (A stands for As-
suMPTION, C for CoNJUNCTION, MP for MoDUS PONENS):

(H— d)eH
H-H—d (A)
H& (Hy,...,H)) — (di,...,dn)
HF(Vae. H=Q)—f HFHp—d
HF P — (f d) (MP)

where ¢ = [a:=Z] is a renaming substitution (the z; are fresh
variables) and 6 = match(Qo, P) is the result of matching
Qo against P (note that only the variables in Qg are bound).

So far, these rules are entirely standard, see, for instance,
[10]. To these we add one new rule (DR stands for DEDUC-
TION RULE).

H, (Ho— v)F Qo d
HF (Va.H = Q) — (Av — d)

(DR)

where ¢ = [a@ := ¢] is a Skolem substitution, that is, the
c; are Skolem constants. Thus, to deduce the polymorphic
predicate Va.H = @ we add the body H to the set of

assumptions and try to deduce @. The Skolem substitution
ensures that this derivation works for all a.

The new rule is called DEDUCTION RULE because it re-
sembles the deduction theorem of first-order logic. It is also
reminiscent of the usual typing rule for A-abstraction while
Mobus PONENS corresponds to the typing rule for applica-
tion. In fact, these two rules capture dictionary abstraction
and dictionary application.

Here is an example of a deduction using these rules.
Later lines are deduced from earlier ones using the speci-
fied rule (we abbreviate Binary by B and Ord by 0).

= {Ord Int — d-0O-1I,
Binary Int — d-B-1I,
(Va.(Binary a, Ord a)
= Binary (Set a)) — d-B-S}

(4) HF 0 Int = d-O-1 A

(3) H+ B Int v d-B-I A

(2) H+ (B Int,0 Int) + (d-B-I, d-O-I) C(3,4)
(1)HF (Va.(B a,0 a) = B (Set a)) — d-B-S A

(0) H+ B (Set Int) — d-B-S (d-B-I,d-0-I) MP(1,2)

Here is another example, this time of a higher-order case:

= {Binary Int — d-B-1,
(Va.(Binary a) = Binary (List a)) — d-B-L,
(Yf a.(Binary a,Vb.(Binary b) = Binary (f b))
= Binary (GRose f a)) — d-B-G}.

We abbreviate H, (Binary ¢ — v) by H .

(9)H + (Vb.(B b) = B (List b)) — d-B-L A
B)H FBcrw A
(M H + (B ¢,Vb.(B b) = B (List b))

v (v, d-B-L) C(8,9)
(6)H + (Vf a.(...) = B (GRose f a)) — --G A
(5) H + B (GRose List ¢) — d-B-G (v,d-B-L) MP(6,7)
(4) HF (Vb.(B b) = B (GRose List b)

s (\v — d-B-G (v, d-B-L)) DR(5)
(3) H+ B Int v d-B-I A
(2) HF (B Int,Vb.(B b) = B (GRose List b))

s (d-B-I, \v = d-B-G (v, d-B-L)) C(3,4)
(1)HF(Vfa.(...)= B (GRose f a)) = d-B-G A
(0) HF+ B (GRose (GRose List) Int)

++ d-B-G (d-B-I, \v = d-B-G (v, d-B-L)) MP(1,2)

The new inference rule kicks in at line (4) and introduces a
new assumption, B ¢ + v, that is used in line (8).

8 Related work

This paper improves on our earlier work [4] in several re-
spects. First, generic definitions now appear solely in class
declarations as generic default methods. In the previous
design generic definitions and classes were two competing
features. We feel that the new proposal fits better with
“the spirit of Haskell”. Second, we have spelled out the
implementation in considerable detail. In particular, the
notion of generic representation types and the conversion
between types and representation types has been made pre-
cise. Third, we have described a separate extension that
allows the programmer to define instance declarations for
higher-order kinded types. The need for this extension was
noted in [4] but no solution was given.

Though there is a considerable amount of work on generic
programming [18, 3, 9] this is the first paper we are aware
of — apart from PolyP [8] — that aims at adding generic

features to an eristing functional language. The PolyP ex-
tension offers a special construct (essentially, a type case)
for defining generic functions. The resulting definitions are
similar to ours (modulo notation) except that the generic
programmer must additionally consider cases for type com-
position and for type recursion. Furthermore, PolyP is re-
stricted to regular data types of kind x — %, whereas our
proposal works for all types of all kinds. This is quite a sig-
nificant advantage. In particular, our proposal deals grace-
fully with mutually-recursive data types and with data types
with many parameters, both of which make explicit recur-
sion operators clumsy and hard to use in practice.

The DrIFT tool [19] is a pre-processor for Haskell that
allows the programmer to specify rules that explain how
to implement a deriving clause for classes other than the
standard classes. The rules are specified as Haskell func-
tions, mapping a type representation to Haskell program
text. DrIFT has the significant advantage of technical sim-
plicity. However, our system offers much stronger static
guarantees: if a generic default declaration passes the type
checker, then so will any instance declarations that use it. In
DrIFT, a rule may typecheck fine, while producing Haskell
text that itself will not typecheck. We also believe that
our closer integration with the language design (achieving
generic programming by enriching default-method declara-
tions) make the programmer’s life easier.

9 Conclusions and further work

This paper describes two separate extensions to Haskell.
The first extension supports generic programming through
a new form of default method declaration. The second ex-
tension allows one to define instance declarations for higher-
order kinded types through the notion of polymorphic predi-
cates. Though these extensions are orthogonal to each other,
the second ensures that one gets the most out of the first
one (surely, one wants to derive instances for higher-order
kinded types).

We believe that our proposals fit nicely into the Haskell
language:

O They fit with the “spirit of Haskell”. At first sight,
generic programming and Haskell type classes are in com-
petition, but we use generic programming to smoothly
extend the power of type classes.

O We are able to explain what “deriving” means in a sys-
tematic way. The ad hoc nature of deriving has long
been considered a wart, and programmers often want to
add new “derivable” classes — that is, classes for which
you can say “deriving (C)”. Now they can.

O Generic definitions can be over-ridden at particular types
by programmer-supplied instance declarations. This sets
our approach apart from other generic programming
schemes. Not only is this useful for primitive types, but
generic methods are often inapplicable for abstract types
— consider equality on sets represented as unordered
lists, for example.

O There is no run-time passing or case-analysis of types,

beyond Haskell’s existing dictionary passing. Of course,
dictionary-passing is a sort of type passing, but it already
exists in Haskell, and it would be extremely tiresome to
introduce another, overlapping mechanism.
Nor are there any new requirements to inspect the run-
time representation of a value, a feature of some propos-
als. Our proposal is a 100% compile-time transforma-
tion.

O

O

Like Haskell’s type classes, static specialisation is possi-
ble to eliminate run-time overhead (see Section 6.6).

Our scheme deals successfully with constructor names
and labels. We have to admit, though, that this is one
of the trickier corners of the design.

We cunningly re-use Haskell’s type-class mechanism to
instantiate the generic methods for particular types, by
expressing the generic methods as generic instance dec-
larations (Section 4.3). This approach means that we
do not need to explain or implement exactly how this
code instantiation takes place (e.g. how much is done at
compile time). Instead we just piggy-back on an exist-
ing piece of implementation technology. (This is really a
point about the implementation, not about the design.)

There seem to be two main shortcomings. Firstly, the

details of implementing the generic default methods (repre-
sentation types, bidirectional mapping functions, and so on)

are
the
not

undeniably subtle, which is often a bad sign. Secondly,
technology to deal with constructor and field labels does
fit in as elegantly as we would wish.

We are currently implementing the proposal and we hope

to make the new features available in the next release of the
Glasgow Haskell Compiler.

There are several directions we plan to explore in the

future:

O

Currently, generic default declarations may be given only
for type classes. However, the theory [6] also deals with
constructor classes whose type parameter range over
types of first-order kind. Consequently, we plan to lift
this restriction.

In Haskell 98 instance heads must have the general form
C (T a) where a is a sequence of distinct variables.
The Glasgow Haskell Compiler, however, allows for non-
general instance heads such as C (List Char). We are
confident that the implementation scheme for generic
methods can be extended to deal with this extra compli-
cation.

Multi-parameter type classes are on the wish list of many
Haskell programmers. So it would be a shame if the
generic extension failed to support them. Now, multi-
parameter classes correspond to generic definitions with
multiple type arguments, which are theoretically well un-
derstood. So we are confident that we can also deal with
this generalization.

Acknowledgements

We

would like to thank three anonymous referees for many

valuable comments. Thanks are furthermore due to Jeremy
Gibbons for the Haskell equals sign.

References

[1]

Roland Backhouse, Patrik Jansson, Johan Jeuring, and
Lambert Meertens. Generic Programming — An Intro-
duction. In S. Doaitse Swierstra, Pedro R. Henriques,
and Jose N. Oliveira, editors, 3rd International Summer
School on Advanced Functional Programming, Braga,
Portugal, volume 1608 of Lecture Notes in Computer
Science, pages 28—-115. Springer-Verlag, Berlin, 1999.

Richard Bird, Oege de Moor, and Paul Hoogendijk.
Generic functional programming with types and rela-
tions. Journal of Functional Programming, 6(1):1-28,
January 1996.

12

3]

[4]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Robin Cockett and Tom Fukushima. About Charity.
Yellow Series Report 92/480/18, Department of Com-
puter Science, University of Calgary, June 1992.

Ralf Hinze. A generic programming extension for
Haskell. In Erik Meijer, editor, Proceedings of the 3rd
Haskell Workshop, Paris, France, September 1999. The
proceedings appeared as a technical report of Univer-
siteit Utrecht, UU-CS-1999-28.

Ralf Hinze. Manufacturing datatypes. Journal of Func-
tional Programming, Special Issue on Algorithmic As-
pects of Functional Programming Languages, 2001. To
appear.

Ralf Hinze. A new approach to generic functional pro-
gramming. In Thomas W. Reps, editor, Proceedings of
the 27th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’ 00),
Boston, Massachusetts, pages 119-132, January 2000.

Ralf Hinze. Polytypic values possess polykinded types.
In Roland Backhouse and J.N. Oliveira, editors, Pro-
ceedings of the Fifth International Conference on Math-
ematics of Program Construction (MPC 2000), July
2000.

Patrik Jansson and Johan Jeuring. PolyP—a polytypic
programming language extension. In Conference Record
24th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL’97, Paris,
France, pages 470-482. ACM-Press, January 1997.

C.B. Jay, G. Belle, and E. Moggi. Functorial ML. Jour-
nal of Functional Programming, 8(6):573-619, Novem-
ber 1998.

Mark P. Jones. Qualified Types: Theory and Practice.
Cambridge University Press, 1994.

Mark P. Jones. Type classes with functional dependen-
cies. In G. Smolka, editor, Proceedings of the 9th Euro-
pean Symposium on Programming, ESOP 2000, Berlin,
Germany, volume 1782 of Lecture Notes in Computer
Science, pages 230-244. Springer-Verlag, March 2000.

Daniel Leivant. Polymorphic type inference. In Proc.
10th Symposium on Principles of Programming Lan-
guages, 1983.

Jeffrey R. Lewis, Mark B. Shields, Erik Meijer, and
John Launchbury. Implicit parameters: Dynamic scop-
ing with static types. In Thomas W. Reps, editor, Pro-
ceedings of the 27th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
Boston, Massachusetts, pages 108-118, January 2000.

Chris Okasaki. Purely Functional Data Structures.
Cambridge University Press, 1998.

Simon Peyton Jones and John
tors. Haskell 98 — A Non-strict, Purely Func-
tional Language, February 1999. Available from
http://www.haskell.org/definition/.

Hughes, edi-

Simon Peyton Jones, Mark Jones, and Erik Meijer.
Type classes: Exploring the design space. In Proceed-
ings of the Haskell Workshop, 1997.

[17]

Simon L. Peyton Jones. Compiling Haskell by pro-
gram transformation: A report from the trenches. In
Hanne Riis Nielson, editor, Programming Languages
and Systems—ESOP’96, 6th European Symposium on
Programming, Linkdping, Sweden, 22-24 April, volume
1058 of Lecture Notes in Computer Science, pages 18—
44. Springer-Verlag, 1996.

Karl Fritz Ruehr. Analytical and Structural Polymor-
phism Ezxpressed using Patterns over Types. PhD thesis,
University of Michigan, 1992.

Noel Winstanley. A type-sensitive preprocessor for
Haskell. In Glasgow Workshop on Functional Program-
mang, Ullapool, 1997.

13

