
A ROBUST TRAINING STRATEGY AGAINST EXTRANEOUS ACOUSTIC
VARIATIONS FOR SPONTANEOUS SPEECH RECOGNITION

Hui Jiangy and Li Dengz

Department of Electrical and Computer Engineering, University of Waterloo, Canada
y Currently Multimedia Communications Research Lab, Bell Labs, Murray Hill, NJ 07974

z Currently Microsoft Research, Redmond, WA 98052
Email: hui@research.bell-labs.com and deng@microsoft.com

ABSTRACT

In the paper, we propose a robust training strategy to deal with ex-
traneous acoustic variations for conversational speech recognition.
This strategy generalizes speaker adaptive training, where HMM
parameter transformations are used to normalize the extraneous
variations in the training data according to a set of pre-defined con-
ditions. Then a compact model and the associated prior p.d.f.’s of
transformation parameters are estimated using the maximum like-
lihood criterion. In the testing phase, the compact model and the
prior p.d.f.’s are used to search for the unknown word sequence
based on Bayesian Prediction Classification. The proposed strat-
egy is evaluated in a Switchboard task to deal with pronunciation
variations in spontaneous speech recognition. Preliminary results
show moderate word error rate reduction over a well-trained base-
line system under identical experimental conditions.

1. INTRODUCTION

In the past few decades, the statistical models, such as hidden
Markov models (HMM), have achieved significant success in au-
tomatic speech recognition (ASR). In the conventional paradigm
of ASR, the statistical models are usually estimated from a huge
amount of training data. The training data usually are collected
under as many different conditions as possible for the purpose of
properly representing possible incoming speech data in the future
use. Even though the data collection conditions greatly may differ
due to a wide range of factors, the conventional paradigm treats
all train data collected in different conditions in an identical man-
ner by simply pooling them together. Then the model parameters
are resolved from the pooled data set via some parameter estima-
tion techniques, e.g. ML criterion and discriminant training. An
apparent shortcoming of this training paradigm is that the large
amount of pooled training data not only include the relevant vari-
ability (such as phonetic distinction), but also involve many other
extraneous variations which are irrelevant to our modeling purpose
and should therefore be compensated for. We call the variations in
the data which have nothing to do with our modeling purpose as
extraneous variations. For instance, in a typical case of speech
recognition, it is only necessary to model the phonetically relevant
variation sources. All other variabilities are considered to be extra-
neous, including those arising from speaker, transducer, telephone
channel, speaking style, speaking rate, pronunciation change, etc.

In the conventional implementation of speech recognizers, we
do not have an explicit mechanism to compensate these extraneous
and irrelevant variations in the training procedure. In particular,

when we recognize spontaneous speech where many types of ex-
traneous variations abound, speech recognition performance can
be significantly affected. In the training phase, due to the extrane-
ous variations, training data may deviate from what is assumed in
the model. This would make the estimated models diverge from
the desired behavior. In the testing phase, the deviation due to the
extraneous variation can also be viewed as a special kind of mis-
match between the models and the testing data. In this paper, we
describe a robust strategy to deal with the extraneous acoustic vari-
ations in the training phase only. How to handle them in the testing
phase is currently under investigation.

Recently, some researchers began to notice the importance to
compensate the extraneous variations in the training phase in or-
der to improve the generalization capability of the models. In
[1], the “speaker-adaptive training” (SAT) by BBN researchers is
one of important steps along this direction. The work reported in
[4] shows another way to normalize irrelevant variability in the
training phase, but for the purpose of learning a model structure
(HMM state tying). In this paper, we propose a new robust train-
ing strategy to compensate and/or normalize the extraneous vari-
ations, with more elegant theoretical foundation and practical ef-
fectiveness. Briefly, we label each utterance in the training set
with a pre-defined condition, which could depend on speaker id,
speaking style, pronunciation, transducer, transmission channel,
etc. The data from different conditions are first normalized by us-
ing appropriate transformations before they are pooled together to
estimate a “compact model”. Meanwhile, a prior distribution of
transformation parameters is estimated to represent the knowledge
of all possible transformations used in the training phase across the
“conditions”. In this way, the extraneous variation is adequately
compensated for and the compact model can then converge prop-
erly to represent the relevant variations in question. In the test-
ing/decoding phase, based on the compact model and the prior
distribution of transformation parameters, we use a new search al-
gorithm to decode any new input utterance according to Bayesian
prediction[6].

In this work, the proposed strategy is used to normalize and/or
compensate the extraneous variations in the Switchboard task in
order to obtain better acoustic models which can adequately de-
scribe phonetically relevant variation sources. According to [2, 8],
in the Switchboard task, pronunciation variations in conversational
speech is one major extraneous variation source hampering speech
recognition. Therefore, we have in this work specifically focused
on the “condition” that characterizes the pronunciation variation.
To facilitate the implementation, we have also chosen very sim-



ple transformations, i.e., piecewise linear functions, to normal-
ize and/or compensate pronunciation variations of conversational
speech in the Switchboard task.

2. OVERVIEW OF THE NEW STRATEGY

Following the idea originally presented in [1], suppose we have a
compact HMM model �c = f�i; aij ; wik; mik; rik j 1 � i; j �
N; 1 � k � Kg for each speech unit W we desire to model,
and all training data for W is composed of X = fX(r) j r =

1; 2; � � � ; Rg, where X(r) denotes those data collected under the
condition r. Here each condition corresponds to a distinct pronun-
ciation of the word W . In each state of the compact model, we
have the state distribution of HMM with diagonal precision matrix
as

pi(x) =

KX
k=1

wik �

DY
d=1

q
rikd

2�
exp[�

rikd

2
(xd �mikd)

2] (1)

where D denotes the dimension of feature vectors.
Here we aim to choose some proper transformations to nor-

malize/compensate the pronunciation variations in conversational
speech. In other words, we need to choose a set of transformations
for model �c: fT

(r)
� (�) j r = 1; 2; � � � ; Rg, where each trans-

formation T (r)
� (�) with its parameters � corresponds to a specific

condition r so that for each condition r the transformed model
T
(r)
� (�c) gives a better description of the data X(r) collected un-

der this condition r (r = 1; 2; � � � ; R). The same algorithm of
“speaker-adaptive training” in [1] can be used to estimate the com-
pact model �c and the corresponding transformations T(r)� (�) ac-
cording to the Maximum likelihood criterion. However, in the test-
ing phase, it is not appropriate to use the compact model �c to
evaluate the testing data directly because �c would not match the
original data due to the involved transformations. Furthermore,
we do not know which transformation should be used for each sin-
gle testing utterance because we have no idea of which condition
it comes from. In this paper, the idea of Bayesian Prediction is
proposed to solve this problem. In the training stage, a prior dis-
tribution of transformation parameters is simultaneously estimated
to represent the knowledge of all transformations possibly used in
training stage. In the testing phase, the Bayesian Predictive Classi-
fication (BPC) algorithm helps to make an optimal decision given
the information supplied by the prior distribution on the transfor-
mation parameters.

First of all, we must choose a suitable functional form for the
transformation T (r)

� (�). Obviously, this requires that: i) The trans-
formation is sufficiently powerful to normalize the acoustic differ-
ence caused by pronunciation variability; ii) The transformation
form is simple enough so that Bayesian prediction is tractable in
the decoding phase. One possible choice is the piecewise linear
transformation. In this work, as the first step, we choose the sim-
plest transform, namely the bias vector plus the mean vector of
HMM: m0

ikd = mikd + bd (d = 1; 2; � � � ; D).
In principle, each transformation could be related or tied to any

different segments of the speech signal. In this work, we assume
that each transform is HMM state-dependent; i.e., we use different
transformations for different HMM states and the transformations
of the state parameters are tied based on the triphone state-tying in
the entire HMM set.

Secondly, we need to choose a proper prior distribution for
transformation parameters, i.e., b in this case. In order to have

a simple form in decoding stage, We choose the following prior
p.d.f. based on the concept of natural conjugate prior:

�(b) =

DY
d=1

q
�d

2�
exp[�

�d

2
(bd � �d)

2] (2)

where f�d; �d j d = 1; 2; � � � ; Dg are hyperparameters.
As a remark, we also can use a finite mixture form for the prior

distribution as in [7] to have a more accurate description of prior
information.

3. THE ROBUST TRAINING ALGORITHM

We integrate the above ideas into the conventional acoustic mod-
eling method of large vocabulary speech recognition system, us-
ing triphone decision-tree based state tying[9]. Our robust training
strategy designed specifically for pronunciation variation is as fol-
lows:

1. Build a base-line system based on the conventional HMM
(HTK implementation).

2. Transcribe the pronunciation for all speech utterances in
the training set (phone recognition with the base-line sys-
tem) and obtain Viterbi segmentation of each utterance at
the HMM’s state level; Then label each frame of the MFCC
features with its corresponding word w and with the pro-
nunciation id p of the word w in the current utterance.

3. State tying of all triphone models and estimation: build a
single decision-tree for each state of phone models based
on all data belonging to its corresponding triphones. For
each tied state of the tri-phone models (i.e., each leaf node
of the each tree):

(a) Cluster all data in the state into a total of R different
conditions according to the different labels of w and
p.

(b) Pool all related data,X = fX(r) j r = 1; 2; � � � ; Rg,
where X(r) denotes all data under the condition r.
Use the state distribution in the current leaf node as
the initial estimate of the compact model �c for this
tied state. Here �c is the mixture Gaussian of this tied
state, i.e., �c = fwk;mk; rk j 1 � k � Kg.

(c) Given the current �c, estimate R transformations
fT (r)

� (�) j r = 1; 2; � � � ; Rg for each condition r

based on X(r) = fx(r)t j 1 � t � T (r)g: for all
d = 1; 2; � � � ; D (use b[d] = 0 as initialization )

b(r)[d] =

PT (r)

t=1

PK

k=1
�
(r)
t (k) � rkd � (x

(r)
td �mkd)PT (r)

t=1

PK

k=1
�
(r)
t (k) � rkd

(3)

where �(r)t (k) denotes the probability of x(r)t in mix-
ture component lt = k, i.e., �(r)t (k) = Pr(lt =

k j x
(r)
t ; b(r)) =

wk�N (x
(r)
t

j mk+b
(r); rk)P

K

k=1
wk �N (x

(r)
t

j mk+b
(r); rk)

.

(d) Re-estimate the compact model �c: for 1 � k � K
and 1 � d � D

mkd =

PR

r=1

PT (r)

t=1
�
(r)
t (k) � rkd � (x

(r)
td � b(r)[d])PR

r=1

PT (r)

t=1
�
(r)
t (k) � rkd

(4)



rkd =
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�
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(5)
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PK
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(r)
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(e) Goto step (3c) unless some convergence conditions
are met.

(f) Estimate the prior distribution of transformation pa-
rameters � = f�; �g based on the method of mo-
ment: for 1 � d � D

�d =
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f�d; �dg can be tied for all states related to the cur-
rent leaf node.

4. ROBUST DECODING BASED ON BAYESIAN
PREDICTIVE CLASSIFICATION

Based on Bayesian Prediction Classification[6], given observation
X , the optimal recognition result Ŵ is expressed as

Ŵ = argmax
W

Pr(W ) �

Z
�

Pr(X j T�(�c);W ) � �(�) d�

= argmax
W

Pr(W ) �

Z
�

X
s;l

Pr(X j s; l; T�(�c);W ) � �(�) d�

� argmax
W

Pr(W ) �max
s;l

Z
�

Pr(X j s; l; T�(�c);W ) � �(�) d�

Given a test utterance X = (x1; x2; � � � ; xT ), the compact
model �c and the prior p.d.f. �(�) of transformation parameter �,
as shown in eq.(2) with hyperparameters estimated from eqs. (7)
and (8). The recursive search procedure for approximately accom-
plishing the above equation is described as follows:

(1) Initialization

Æ1(i) = �i � ~bi(x1) 1 � i � N (9)

 1(i) = 0 1 � i � N (10)

where

~bi(xt) = arg max
1�k�K

Z
wik � N (xtjmik + bi; rik) � �(bi) dbi

= arg max
1�k�K

wik �

DY
d=1

s
�
(i)
d rikd

2�(�
(i)
d + rikd)

exp[�
�
(i)
d rikd

2(�
(i)
d + rikd)

(xtd �mikd � �
(i)
d )2]

Here, Æt(i) denotes the partial predictive value based on the
optimal partial path arriving at state i at the time instant
t. The corresponding best partial path is represented by a
chain of points started from  t(i).

(2) Recursion: for 2 � t � T , 1 � j � N , do
(2.1) Path-merging in state j:

Æt(j) = max
1�i�N

[ Æt�1(i) � aij ] (11)

 t(j) = arg max
1�i�N

[ Æt�1(i) � aij ] (12)

(2.2) Update the partial predictive value:
If ( it is the first time to involve state j in computation of
Æt(j) )1, then

Æt(j) = Æt(j)� ~bj(xt) (13)

else

Æt(j) = Æt(j)�
~bj(xj1 ; xj2 ; � � � ; xjLj )

~bj(xj1 ; xj2 ; � � � ; xj(Lj�1)
)

(14)

where Lj is the accumulated number of feature vectors be-
longing to state j based on the optimal partial path up to
the time instant t; xji denotes the ith vector in the state j;
and ~bj(xj1 ; xj2 ; � � � ; xjLj ) denotes the contribution of data

fxj1 ; xj2 ; � � � ; xjLj g, residing in state j, to the partial pre-

dictive value Æt(j):

~bj(xj1 ; xj2 ; � � � ; xjn) =

Z
p(xj1 ; xj2 ; � � � ; xjn j

mik + bi; rik) � �(bi) dbi (15)

(3) Termination
~p(XjW ) � max

i
ÆT (i) (16)

s
�
T = argmax

i
ÆT (i) (17)

(4) Path (state sequence) Backtracking

s
�
t =  t+1(s

�
t+1) t = T � 1; T � 2; � � � ; 1 (18)

Here ~bj(xj1 ; xj2 ; � � � ; xjn) is calculated based on the “clos-
est” mixture component label sequence corresponding to the data
fxj1 ; xj2 ; � � � ; xjng:

~bj(xj1 ; xj2 ; � � � ; xjn) �
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!
L0
k

jk � ~fjk(xlk
1
; � � � ; xlk

L0
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1
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L0
k

d) (19)

1Including all states tied to state j.



where fxj1 ; xj2 ; � � � ; xjng denote feature vectors belonging to state
j in X , among which lk1 � � � l

k
L0
k

denote labels of the vectors “clos-

est” to the mixture component k of state j. Then we have

~fjkd(x1d; x2d; � � � ; x�d) =
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�

P
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�
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�

P
�

i=1
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2 .

5. EXPERIMENTS: SWITCHBOARD TASK

In this work, we choose a fast evaluation subset of Switchboard
corpora in Workshop 1996 (WS96) at John Hopkins University,
which is approximately 10 hours in duration. It is called “10-hr”
set hereafter.

5.1. The 10-hr baseline system

In the baseline system, we use the 39-dimension feature vector
which is composed of 12 MFCC’s with log-energy, and delta and
acceleration coefficients. The cepstral normalization is performed
in the utterance level. The acoustic models is 3-state 5-mixture-
per-state word-internal tri-phone HMM’s. The standard phonetic
decision tree method is used for state-tying. After tying, the num-
ber of all distinct tied-states is reduced to approximately 2K. The
dictionary only consists of all words (about 6474 words) occurring
in the ’10-hr’ set. The multiple pronunciation is adopted for some
words. The language model is the back-off bigram models which
is trained only on the transcriptions of all utterances in the ’10-
hr’ set. The testing data set consists of 200 utterances which are
randomly selected from the evaluation test set in WS96.

5.2. Definition and choice of “conditions”

One of the most important implementation issues here is how to
define the condition and partition the data into different conditions.
It is crucial to have a good tradeoff between the number of condi-
tions and the amount of data used for each condition. In this work,
we have tried the two methods to define a condition: (I) Align
training data in the word level, then perform phone recognition
for each word based on the alignment boundary. The phoneme
recognition results are viewed as the pronunciation of this word.
We usually cluster all different pronunciations of every word into
4 classes or fewer. In training stage (3a), all data from the same
word and same pronunciation class are treated as from the same
condition. (II) Align training data according to transcriptions,then
perform phone recognition for each word based on the alignment
boundary. When doing decision-tree state-tying, all data in this
state which corresponds to different phoneme recognition results
are treated as from different conditions.

5.3. Preliminary results

Some preliminary experimental results are included in Table 5.3.
From the results, we can see that the robust training method gives
close to 1% reduction in word error rate over a well-trained base-
line system. We also see that, for the 10-hr data, the method
(II) achieves somewhat better results because method (I) usually
causes too many conditions and too little data for each condition.

Sub Del Ins WER
10-hr baseline 43.94 17.92 3.49 65.39

Robust Training (I) 41.94 18.58 4.31 64.84
Robust Training (II) 42.61 18.17 3.90 64.68

Table 1: The performance (in %) comparison of the new training
approach with the 10-hr baseline system

5.4. Discussions

Although we have observed some moderate WER reduction for the
Switchboard task, the performance improvement is smaller than
what we expected. The possible reasons are: i) Pronunciation vari-
ations are very complicated and the associated variability in acous-
tic realization is only a small part of the problem. ii) The Switch-
board task involves many other independent types of variabilities
which have not been addressed in this work. iii) The variations
also affect recognition in the testing stage, and the robust training
strategy has yet to be combined with other methods. In particular,
phonetic reduction has been found to be one major cause of vari-
ability for spontaneous speech which requires dynamic modeling
methodologies beyond the conventional HMMs [3]. Our current
robust training strategy will be further developed for new dynamic
models of spontaneous speech intended to incorporate phonetic re-
duction (target undershoot) as well as pronunciation variations.
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