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ABSTRACT 

A new, data-driven approach to deriving overlapping 
articulatory-feature based HMMs for speech recognition is 
presented in this paper. This approach uses speech data from 
University of Wisconsin's Microbeam X-ray Speech Production 
Database. Regression tree models were created for constructing 
HMMs. Use of actual articulatory data improves upon our 
previous rule-based feature overlapping system. The regression 
trees allow construction of the HMM topology for an arbitrary 
utterance given its phonetic transcription and some prosodic 
information. Experimental results in ASR show preliminary 
success of this approach. 

1. INTRODUCTION 
Over the past several years, we have been developing a new, 
data-driven approach to deriving overlapping articulatory-
feature based HMMs for speech recognition. This approach 
uses simultaneous articulatory and acoustic data from the 
University of Wisconsin Microbeam X-ray Speech Production 
Database [2,14]. It then builds statistical models using 
regression trees [12]. Use of the actual articulatory data 
improves upon our previous rule-based feature overlapping 
system [7,8,9,15]. The regression trees learned from the 
articulatory data allow direct construction of the HMM 
topology appropriate for any arbitrary utterance if given its 
phonetic transcription and high-level prosodic information such 
as stress value and syllabic function of each phone. 

The basic framework of our approach is the five articulatory 
tiers or feature dimensions: the lips, the tongue tip, the tongue 
dorsum, the velum, and the larynx. In each of these articulatory 
dimensions, a phonetic unit is associated with one or more 
symbolic features. Based on this framework and on the findings 
from experimental phonetics and autosegmental phonology, we 
established a set of rules that describe the temporal overlapping 
of features between neighboring phones. Many of the 
pronunciation alternations are naturally accounted for by this 
feature overlapping process, for example, the assimilation of 
velum features (nasalization), lip features  (lip rounding) and 
larynx features (voicing/unvoicing), etc. 

In contrast to the conventional allophone-based approach to 
pronunciation modeling, this articulatory feature-based 
approach links itself to the physical process of speech 
production.  This link makes it possible to use experimental 
data to enhance our earlier rule-based HMM topology 
construction method. The rule-based method now is expanded 

to include numerical parameters: the percentile temporal 
overlap between a pair of features. This allows us to incorporate 
in the new system a learning component using articulatory data. 
In our recent experiments, a Java-based graphical interface has 
been developed for hand-labeling of articulatory feature 
overlapping with the Microbeam X-ray data. The hand-labeled 
data is used for training regression trees. This labeling process 
is carried out by hands and eyes, aided by the Java-based 
graphical interface. 

To test the effectiveness of this new, data-driven approach, the 
TIMIT speech corpus is used for training and testing the newly 
constructed, articulatory-feature based HMMs. The initial 
results have shown superior performance over the triphone-
based approach in the phone recognition tasks. In the remaining 
sections of this paper, we introduce our new data-driven 
framework, the use of the X-ray microbeam data, the 
construction of the HMM topology, and some preliminary ASR 
experimental results.  

2. THE ARTICULATORY FEATURE 
FRAMEWORK 

We created a five-tier framework of articulatory features for use 
in our system development. These five tiers describe active 
articulators involved in the pronunciation of speech sounds. 
Each articulator is located at one of these five tiers. An 
articulator may take up a feature from each of a few feature 
dimensions. Each feature dimension has a set of possible 
features. The tier to articulator correspondence is shown in 
Table 1. 

 

TIER            ARTICULATORS DIMENSIONS 

1 Upper Lip, Lower Lip 1: shape,2: manner 

2 Tongue Tip, Tongue Blade 1: place,2: manner 

3 Tongue dorsum, Tongue Root 1: place,2: manner 

4 Velum 1: nasal opening 

5 Glottis 1: phonation 

 Table 1. Articulators on five tiers. 

At each tier, an articulator takes up one feature from each 
feature dimension. Each tier may be specified by one or more 
feature dimension. Each feature dimension contains a set of 
possible features. Which feature will be taken up depends on 
the phone that is pronounced. If we do not consider asynchrony 
of features at the five tires, which is a character of spontaneous 



 

 

speech and will be explained later, the pronunciation of a phone 
can be described statically by a bundle of simultaneous 
features. Thus we say a pronunciation unit can be expressed by 
a feature bundle using features from five tiers. 

A few examples of phones expressed by feature bundles are 
given below. (The TIMIT style phone names are used.) 

o [dx] as in ladder.   Lip = [flat, open], Tongue Tip = 
[alveolar, flap], Tongue Root = [low, open], Velum = 
[high], Glottis = [voicing]   

o [nx] as in manner. Lip = [flat, open], Tongue Tip = 
[alveolar, flap], Tongue Root = [low, open], Velum = 
[low], Glottis = [voicing] 

We may call these static feature bundle descriptions of phones 
their lexical descriptions, which can be affected by overlapping 
features of neighboring phones in spontaneous speech. When 
this happens, features at each tier will have different temporal 
behaviors and may overlap with features of other phones.  

In the following example, we show how such alternation 
phenomena as lip rounding and velum lowering (nasalization) 
can be accounted for by feature overlapping. Consider the word 
strong and its pronunciation [s t r ao ng]. The nasal consonant 
[ng] can overlap its velum feature with features of [r] and [ih], 
and [r] can overlap its lip feature with features of [s] and [t]. As 
a result, the phones [s t r ao] of this word can assimilate 
features from neighboring phones and their pronunciations 
undergo a process of alteration. This can be illustrated by the 
gestural score representation as shown in Fig 1. 

 

  Lip:                                 r      

  TT:      s            t             r   

  TD:                                         ao            ng 

  Vel:                                                        ng  

  Glo:                                 r      ao            ng 

   

       Figure 1. Feature bundles of strong. 

Fig 1 uses the gestural score representation to show feature 
bundles of phones in their overlapping relations. In this figure 
we can see that the velum feature of [ng], i.e. the nasal 
lowering feature overlaps with several phones and so does the 
lip feature of [r], i.e. the lip rounding feature. In the feature 
overlapping situation, a phone is no longer represented by a 
single feature bundle of static nature, but by a number of 
feature bundles. This feature bundle series just form the basis 
for our construction of HMM topologies: each feature bundle 
corresponding to a HMM state. This is in comparison with the 
triphone-based models that use several states (normally 3) to 
represent a context-dependent phone, in which the boundary 
states represent the transition from phone to phone. In a 
triphone model, boundary states only reflect the influence of 
the immediate neighboring phones while in our model a state 

may reflect influence of a more distant neighboring phone. 

3.  USE OF THE X-RAY MICROBEAM 
SPEECH PRODUCTION DATABASE 

In this section we describe the use of the Wisconsin X-ray 
speech production database. Based on the five-tier articulatory 
feature framework described in section 2, we wanted to collect 
information from real speech data on the duration and overlap 
of articulatory features. We used the University of Wisconsin's 
X-ray Microbeam Speech Production Database [2] for the 
intended work. Consequently, a feature overlapping database 
with regression-tree based prediction models has been created 
and used in our speech recognition research. 

3.1 The X-ray Speech Production Corpus 
The University of Wisconsin's Microbeam X-ray Speech 
Production database used in this study contains natural, 
continuous spoken utterances in both isolated sentences and 
short paragraphs. The speech data were recorded from 32 
female speakers and 25 male speakers. Each speaker completed 
118 tasks. Some of the tasks are unnatural speech, which were 
not used in our work. The data come in three forms: text data, 
which are the orthographic transcripts of the spoken utterances; 
digitized waveforms of the recorded speech; and X-ray 
trajectory data of articulator movements, simultaneously 
recorded with the waveform data.  

The trajectory data are recorded for the individual articulators. 
The articulators are arranged as Upper Lip, Lower Lip, Tongue 
Tip, Tongue Blade, Tongue Dorsum, Tongue Root, Lower 
Front Tooth (Mandible Incisor), Lower Back Tooth (Mandible 
Molar). On each articulator of the speaker a pellet is attached to 
record its movement in the sagittal plane.   

Based on this data set, we first carried out a number of 
necessary transformations. The orthographic transcripts are 
converted into phonetic transcripts. The conversion is based on 
the TIMIT dictionary. The phoneme set used by the dictionary 
is extended with allophones that are predictable by the phonetic 
context. The waveform data are transformed into wideband 
spectrograms that can be displayed in a window of the graphical 
labeling tool. The trajectory data is displayed as two-
dimensional curves of time versus position for each of the eight 
articulators. The positions are factored into X-component and 
Y-component for forward-backward and up-down movements 
in the sagittal plane. 

3.2. Labeling Articulatory Features 
The feature labeling work is based on the theory of 
autosegmental phonology [3,11] and articulatory phonology [4]. 
These theories propose non-linear segmental features, 
especially articulatory features. This labeling work is also based 
on our previous work of feature overlapping models in speech 
recognition application [7,8,9,15]. 

we first performed segmentation and alignment. The 
spectrograms are aligned with the trajectories. The starting and 
end positions of both figures are aligned. Next, the 



 

 

spectrograms are segmented according to the speech tasks and 
aligned with the phones of the utterance. The labeling is 
focused on the identification and tagging of articulatory 
features in the trajectories and aligning them with the phonetic 
symbols and appropriate sections of the spectrogram. Based on 
the five-tier articulatory feature model, both the trajectory and 
spectrogram data are used for locating features. For example, a 
lip opening feature can be identified on the Y position curve of 
the Upper or the Lower Lip, depending on the phone. A lip 
rounding feature can be identified on the Lips X position curve, 
and so on. Fig 2 shows some labeled features for the sentence 
The other one is too big, in which the articulators Upper Lip, 
Tongue Tip and Tongue Root are used for identifying tier 1, 2 
and 3 features respectively, while other articulators are used 
only for reference. The tier 4 and 5 features are mainly 
identified from the spectrogram.  

   Figure 2. The labeled sentence The other one is too big. 

With a Java based labeling tool developed by our group, we are 
able to align spectrograms, phones and features graphically, 
save and reload labeled utterances and obtain the numerical 
data of feature duration, prominence and overlap. Currently we 
only use the duration and overlap information for deriving 
regression trees and gestural scores. The prominence (position) 
data is also retained, which can be used for estimating 
constriction degrees or build speech synthesis models. 

The result of the labeling work is a feature overlapping 
database that provides numerical data of articulatory feature 
duration and overlap for natural English speech. Based on this 
database, we are able to derive predictive models for creating 
gestural scores if given an arbitrary phone string of an 
utterance. 

3.3. Building a Predictive Model 
The model for predicting overlaps of articulatory features is 
based on regression trees, which are automatically learned from 
the data of the labeled corpus. We expect feature overlapping to 
be context-dependent. Thus, since the labeled corpus only 
contains limited contexts for each phone, there is need to 
generalize the labeled corpus so that an arbitrary phone 
sequence of a speech task can be best dealt with.  

A set of regression trees is trained for predicting feature 
duration and overlapping at for phones in context. The training 
data has numerical values as the dependent variable and 
symbolic features of left and right phones as the predictors. 
The University of Minnesota's Firm regression tree learning 
tool [12] is used. The predictors we used for training a 
regression tree include the features of its left and right two-
phones. The predictors also include these phones' higher-level 
prosodic information: word stress, syllabic function (onset, coda 
or nucleus) and word boundary information. So a training 
example for a feature duration or overlap consists of 32 
predictor values. Following is a training example of the tier-1 
overlapping of stop consonants: 

 
    18, wi, 0, n, 0, 0, mmopn, n0, v1, wi, 0, m, labcls, 0, 0, n1, v1, 
          wi, 1, n, 0, 0, lfopn,     n0, v1, wi, 1, n, 0, 0, hfcrt,    n0, v1  
 
The number 18 is the dependent variable, meaning an 
overlapping of 18 units (one unit is 0.866 ms). This is followed 
by four neighboring phones' features each consisting of 
boundary, stress, syllabic information and tier-1 to tier-5 
features. Altogether 60 regression trees were trained for 30 tiers 
of 10 phone types. The regression trees generalize for every 
possible five-phone context since only features are used as 
context information. One of the applications of this model is to 
predict Hidden Markov Model topologies in automatic speech 
recognition systems. Here is a HMM model toplogy for [s]. 

 

 

 

 

 

 

 

 

 

 

 

 

  

~o <VecSize> 39 <MFCC_0_Z_D_A> 
~h "t_253" 
<BeginHMM> 
 <NumStates> 6 
 <State> 2 
 ~s "s296" 
 <State> 3 
 ~s "s37" 
 <State> 4 
 ~s "s393" 
 <State> 5 
 ~s "s1413" 
<TransP> 6 
0.0 1.0 0.0 0.0 0.0 0.0  
0.0 0.230769 0.769231 0.0 0.0 0.0  
0.0 0.0 0.692308 0.307692 0.0 0.0  
0.0 0.0 0.0 0.230769 0.769231 0.0  
0.0 0.0 0.0 0.0 0.115385 0.884615  
0.0 0.0 0.0 0.0 0.0 0.0  
<EndHMM> 



 

 

4. EXPERIMENTAL RESULTS 
Using the data-driven predictive model we carried out 
experiments in speech recognition. The TIMIT phone 
recognition task is chosen for our experiments. Compared with 
the triphone-based approach, the feature-based approach 
predicts model states by considering larger-span context, up to 
two or three phones to each side of a central phone. This results 
in more discriminative training of the models.  

Using the HTK toolkit [16], we have trained all the context-
dependent phones as predicted by the overlapping model from 
the training section of TIMIT corpus. This resulted in 64230 
context dependent phones based on 39 monophone set. Then 
we used the decision tree based state tying to overcome the data 
insufficiency problem. Our questions for decision tree based 
state tying are designed according to the predictions made by 
the feature overlapping model. Five-phone context is used in 
the question design. The contexts that are likely to affect the 
central phones through feature overlapping, as predicted by the 
model, form questions for separating a state pool. For example, 
the nasal release of stops in such context as [k aa t ax n], [l ao g 
ih ng] will give rise to questions as *+ax2n, *+ih2ng, etc, 
where the '2' is used to separate first right context phone from 
second right context phone.  The experiment results for phone 
recognition are as follows. 

 

SYSTEM CORRECTION
% 

ACCURACY
% 

Triphone (Baseline) 73.99 70.86 

Overlapping-feature 74.70 72.95 

The test was done on the 1680 test files of the TIMIT corpus. 
There are a total number of 53484 phone tokens appearing in 
these files. The initial application of the feature overlapping 
model based on corpus data and machine learning has shown 
that this is a powerful model.  

Currently we are continuously labeling the feature overlapping 
database. With more data available we expect better results will 
be achieved. We also plan to incorporate rule-based prediction 
models with the data-driven models for speech recognition 
experiments. In our future work, we plan to apply the 
overlapping model obtained from English data to other 
languages. It is our assumption that articulatory features and 
their overlapping patterns can be shared by all languages to a 
high degree.  
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