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ABSTRACT

A new, data-driven approach to deriving overlapping
articulatory-feature based HMMs for speech recognition is
presented in this paper. This approach uses speech data from
University of Wisconsin's Microbeam X-ray Speech Production
Database. Regression tree models were created for constructing
HMMs. Use of actual articulatory data improves upon our
previous rule-based feature overlapping system. The regression
trees allow construction of the HMM topology for an arbitrary
utterance given its phonetic transcription and some prosodic
information. Experimental results in ASR show preliminary
success of this approach.

1. INTRODUCTION

Over the past several years, we have been developing a new,
data-driven approach to deriving overlapping articulatory-
feature based HMMs for speech recognition. This approach
uses simultaneous articulatory and acoustic data from the
University of Wisconsin Microbeam X-ray Speech Production
Database [2,14]. It then builds statistical models using
regression trees [12]. Use of the actual articulatory data
improves upon our previous rule-based feature overlapping
system [7,8,9,15]. The regression trees learned from the
articulatory data allow direct construction of the HMM
topology appropriate for any arbitrary utterance if given its
phonetic transcription and high-level prosodic information such
as stress value and syllabic function of each phone.

The basic framework of our approach is the five articulatory
tiers or feature dimensions: the lips, the tongue tip, the tongue
dorsum, the velum, and the larynx. In each of these articulatory
dimensions, a phonetic unit is associated with one or more
symbolic features. Based on this framework and on the findings
from experimental phonetics and autosegmental phonology, we
established a set of rules that describe the temporal overlapping
of features between neighboring phones. Many of the
pronunciation alternations are naturally accounted for by this
feature overlapping process, for example, the assimilation of
velum features (nasalization), lip features (lip rounding) and
larynx features (voicing/unvoicing), etc.

In contrast to the conventional allophone-based approach to
pronunciation modeling, this articulatory feature-based
approach links itself to the physical process of speech
production. This link makes it possible to use experimental
data to enhance our earlier rule-based HMM topology
construction method. The rule-based method now is expanded

to include numerical parameters: the percentile temporal
overlap between a pair of features. This allows us to incorporate
in the new system a learning component using articulatory data.
In our recent experiments, a Java-based graphical interface has
been developed for hand-labeling of articulatory feature
overlapping with the Microbeam X-ray data. The hand-labeled
data is used for training regression trees. This labeling process
is carried out by hands and eyes, aided by the Java-based
graphical interface.

To test the effectiveness of this new, data-driven approach, the
TIMIT speech corpus is used for training and testing the newly
constructed, articulatory-feature based HMMSs. The initial
results have shown superior performance over the triphone-
based approach in the phone recognition tasks. In the remaining
sections of this paper, we introduce our new data-driven
framework, the use of the X-ray microbeam data, the
construction of the HMM topology, and some preliminary ASR
experimental results.

2. THE ARTICULATORY FEATURE
FRAMEWORK

We created a five-tier framework of articulatory features for use
in our system development. These five tiers describe active
articulators involved in the pronunciation of speech sounds.
Each articulator is located at one of these five tiers. An
articulator may take up a feature from each of a few feature
dimensions. Each feature dimension has a set of possible
features. The tier to articulator correspondence is shown in
Table 1.

TIER ARTICULATORS DIMENSIONS

1 Upper Lip, Lower Lip 1: shape,2: manner
2 Tongue Tip, Tongue Blade 1: place,2: manner
3 Tongue dorsum, Tongue Root | I: place,2: manner
4 Velum 1: nasal opening

5 Glottis 1: phonation

Table 1. Articulators on five tiers.

At each tier, an articulator takes up one feature from each
feature dimension. Each tier may be specified by one or more
feature dimension. Each feature dimension contains a set of
possible features. Which feature will be taken up depends on
the phone that is pronounced. If we do not consider asynchrony
of features at the five tires, which is a character of spontaneous



speech and will be explained later, the pronunciation of a phone
can be described statically by a bundle of simultaneous
features. Thus we say a pronunciation unit can be expressed by
a feature bundle using features from five tiers.

A few examples of phones expressed by feature bundles are
given below. (The TIMIT style phone names are used.)

o [dx] as in ladder. Lip = [flat, open], Tongue Tip =
[alveolar, flap], Tongue Root = [low, open], Velum =
[high], Glottis = [voicing]

o [nx] as in manner. Lip = [flat, open], Tongue Tip =
[alveolar, flap], Tongue Root = [low, open], Velum =
[low], Glottis = [voicing]

We may call these static feature bundle descriptions of phones
their lexical descriptions, which can be affected by overlapping
features of neighboring phones in spontaneous speech. When
this happens, features at each tier will have different temporal
behaviors and may overlap with features of other phones.

In the following example, we show how such alternation
phenomena as lip rounding and velum lowering (nasalization)
can be accounted for by feature overlapping. Consider the word
strong and its pronunciation [s t r ao ng]. The nasal consonant
[ng] can overlap its velum feature with features of [r] and [ih],
and [r] can overlap its lip feature with features of [s] and [t]. As
a result, the phones [s t r ao] of this word can assimilate
features from neighboring phones and their pronunciations
undergo a process of alteration. This can be illustrated by the
gestural score representation as shown in Fig 1.

Lip: | r |

TT: | s |_ | t | |r |

TD: | ao| | ng |
Vel: | ng |
Glo: | ri ao ng |

Figure 1. Feature bundles of strong.

Fig 1 uses the gestural score representation to show feature
bundles of phones in their overlapping relations. In this figure
we can see that the velum feature of [ng], i.e. the nasal
lowering feature overlaps with several phones and so does the
lip feature of [r], i.e. the lip rounding feature. In the feature
overlapping situation, a phone is no longer represented by a
single feature bundle of static nature, but by a number of
feature bundles. This feature bundle series just form the basis
for our construction of HMM topologies: each feature bundle
corresponding to a HMM state. This is in comparison with the
triphone-based models that use several states (normally 3) to
represent a context-dependent phone, in which the boundary
states represent the transition from phone to phone. In a
triphone model, boundary states only reflect the influence of
the immediate neighboring phones while in our model a state

may reflect influence of a more distant neighboring phone.

3. USE OF THE X-RAY MICROBEAM
SPEECH PRODUCTION DATABASE

In this section we describe the use of the Wisconsin X-ray
speech production database. Based on the five-tier articulatory
feature framework described in section 2, we wanted to collect
information from real speech data on the duration and overlap
of articulatory features. We used the University of Wisconsin's
X-ray Microbeam Speech Production Database [2] for the
intended work. Consequently, a feature overlapping database
with regression-tree based prediction models has been created
and used in our speech recognition research.

3.1 The X-ray Speech Production Corpus

The University of Wisconsin's Microbeam X-ray Speech
Production database used in this study contains natural,
continuous spoken utterances in both isolated sentences and
short paragraphs. The speech data were recorded from 32
female speakers and 25 male speakers. Each speaker completed
118 tasks. Some of the tasks are unnatural speech, which were
not used in our work. The data come in three forms: text data,
which are the orthographic transcripts of the spoken utterances;
digitized waveforms of the recorded speech; and X-ray
trajectory data of articulator movements, simultaneously
recorded with the waveform data.

The trajectory data are recorded for the individual articulators.
The articulators are arranged as Upper Lip, Lower Lip, Tongue
Tip, Tongue Blade, Tongue Dorsum, Tongue Root, Lower
Front Tooth (Mandible Incisor), Lower Back Tooth (Mandible
Molar). On each articulator of the speaker a pellet is attached to
record its movement in the sagittal plane.

Based on this data set, we first carried out a number of
necessary transformations. The orthographic transcripts are
converted into phonetic transcripts. The conversion is based on
the TIMIT dictionary. The phoneme set used by the dictionary
is extended with allophones that are predictable by the phonetic
context. The waveform data are transformed into wideband
spectrograms that can be displayed in a window of the graphical
labeling tool. The trajectory data is displayed as two-
dimensional curves of time versus position for each of the eight
articulators. The positions are factored into X-component and
Y-component for forward-backward and up-down movements
in the sagittal plane.

3.2. Labeling Articulatory Features

The feature labeling work is based on the theory of
autosegmental phonology [3,11] and articulatory phonology [4].
These theories propose non-linear segmental features,
especially articulatory features. This labeling work is also based
on our previous work of feature overlapping models in speech
recognition application [7,8,9,15].

we first performed segmentation and alignment. The
spectrograms are aligned with the trajectories. The starting and
end positions of both figures are aligned. Next, the



spectrograms are segmented according to the speech tasks and
aligned with the phones of the utterance. The labeling is
focused on the identification and tagging of articulatory
features in the trajectories and aligning them with the phonetic
symbols and appropriate sections of the spectrogram. Based on
the five-tier articulatory feature model, both the trajectory and
spectrogram data are used for locating features. For example, a
lip opening feature can be identified on the Y position curve of
the Upper or the Lower Lip, depending on the phone. A lip
rounding feature can be identified on the Lips X position curve,
and so on. Fig 2 shows some labeled features for the sentence
The other one is too big, in which the articulators Upper Lip,
Tongue Tip and Tongue Root are used for identifying tier 1, 2
and 3 features respectively, while other articulators are used
only for reference. The tier 4 and 5 features are mainly
identified from the spectrogram.
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3.3. Building a Predictive Model

The model for predicting overlaps of articulatory features is
based on regression trees, which are automatically learned from
the data of the labeled corpus. We expect feature overlapping to
be context-dependent. Thus, since the labeled corpus only
contains limited contexts for each phone, there is need to
generalize the labeled corpus so that an arbitrary phone
sequence of a speech task can be best dealt with.

A set of regression trees is trained for predicting feature
duration and overlapping at for phones in context. The training
data has numerical values as the dependent variable and
symbolic features of left and right phones as the predictors.
The University of Minnesota's Firm regression tree learning
tool [12] is used. The predictors we used for training a
regression tree include the features of its left and right two-
phones. The predictors also include these phones' higher-level
prosodic information: word stress, syllabic function (onset, coda
or nucleus) and word boundary information. So a training
example for a feature duration or overlap consists of 32
predictor values. Following is a training example of the tier-1
overlapping of stop consonants:
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Figure 1: The other one ia boo bg
Figure 2. The labeled sentence The other one is too big.

With a Java based labeling tool developed by our group, we are
able to align spectrograms, phones and features graphically,
save and reload labeled utterances and obtain the numerical
data of feature duration, prominence and overlap. Currently we
only use the duration and overlap information for deriving
regression trees and gestural scores. The prominence (position)
data is also retained, which can be used for estimating
constriction degrees or build speech synthesis models.

The result of the labeling work is a feature overlapping
database that provides numerical data of articulatory feature
duration and overlap for natural English speech. Based on this
database, we are able to derive predictive models for creating
gestural scores if given an arbitrary phone string of an
utterance.

18, wi, 0, n, 0, 0, mmopn, n0, v1, wi, 0, m, labcls, 0, 0, n1, v1,

wi, 1,n, 0,0, Ifopn, n0, vl, wi, 1,n, 0, 0, hfcrt, nO, vl

The number 18 is the dependent variable, meaning an
overlapping of 18 units (one unit is 0.866 ms). This is followed
by four neighboring phones' features each consisting of
boundary, stress, syllabic information and tier-1 to tier-5
features. Altogether 60 regression trees were trained for 30 tiers
of 10 phone types. The regression trees generalize for every
possible five-phone context since only features are used as
context information. One of the applications of this model is to
predict Hidden Markov Model topologies in automatic speech
recognition systems. Here is a HMM model toplogy for [s].

~0 <VecSize> 39 <MFCC_0 Z D A>
~h "t 253"

<BeginHMM>

<NumStates> 6

<State> 2

~s "s296"

<State> 3

~s "s37"

<State> 4

~s "s393"

<State> 5

~s "s1413"

<TransP> 6

0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.230769 0.769231 0.0 0.0 0.0
0.0 0.0 0.692308 0.307692 0.0 0.0
0.0 0.0 0.0 0.230769 0.769231 0.0
0.00.00.00.00.115385 0.884615
0.0 0.0 0.0 0.0 0.0 0.0
<EndHMM>




4. EXPERIMENTAL RESULTS

Using the data-driven predictive model we carried out
experiments in speech recognition. The TIMIT phone
recognition task is chosen for our experiments. Compared with
the triphone-based approach, the feature-based approach
predicts model states by considering larger-span context, up to
two or three phones to each side of a central phone. This results
in more discriminative training of the models.

Using the HTK toolkit [16], we have trained all the context-
dependent phones as predicted by the overlapping model from
the training section of TIMIT corpus. This resulted in 64230
context dependent phones based on 39 monophone set. Then
we used the decision tree based state tying to overcome the data
insufficiency problem. Our questions for decision tree based
state tying are designed according to the predictions made by
the feature overlapping model. Five-phone context is used in
the question design. The contexts that are likely to affect the
central phones through feature overlapping, as predicted by the
model, form questions for separating a state pool. For example,
the nasal release of stops in such context as [k aatax n],[lao g
ih ng] will give rise to questions as *+ax2n, *+ih2ng, etc,
where the '2' is used to separate first right context phone from
second right context phone. The experiment results for phone
recognition are as follows.

SYSTEM CORRECTION | ACCURACY
% Y%
Triphone (Baseline) 73.99 70.86
Overlapping-feature 74.70 72.95

The test was done on the 1680 test files of the TIMIT corpus.
There are a total number of 53484 phone tokens appearing in
these files. The initial application of the feature overlapping
model based on corpus data and machine learning has shown
that this is a powerful model.

Currently we are continuously labeling the feature overlapping
database. With more data available we expect better results will
be achieved. We also plan to incorporate rule-based prediction
models with the data-driven models for speech recognition
experiments. In our future work, we plan to apply the
overlapping model obtained from English data to other
languages. It is our assumption that articulatory features and
their overlapping patterns can be shared by all languages to a
high degree.
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