
A PLAN-BASED DIALOG SYSTEM WITH
PROBABILISTIC INFERENCES

Kuansan Wang

Speech Technology Group, Microsoft Research
One Microsoft Way

Redmond, Washington 98052, USA

ABSTRACT
In this paper, we present a dialog system that extends the plan-
based approach with two features. Instead of Boolean inference,
we include into the system the probabilistic measures from the
front-end speech and language processes. As a result, rules can
be activated and facts gathered based on statistical confidence
measures. We also introduce the notion of entity types to classify
the rules and facts. The entity types, derived from the schema of
the knowledge base, assist the semantic evaluation process by
indicating which rules and facts are interoperable. The semantic
evaluation and dialog planning can therefore be better insulated
among tasks, and be encapsulated into reusable components. To
assess the feasibility and discover the areas for improvements for
this framework, we launched the project DR. WHO, in which we
strive to develop a speech interface for a personal information
management application. We describe the current progress in the
discourse area in this paper.

1. INTRODUCTION

It is widely acknowledged that, in order to create scalable dialog
applications, one must prepare the computer with enough
intelligence to automatically determine the proper course of
actions. Plan-based systems, such as [1-3], are designed with this
idea in mind. The mathematical foundation of the plan-based
approach is logical inference. The behaviors of the system and
the knowledge of the domain are programmed as a set of logical
rules and axioms. The system interacts with the user to gather
facts, which consequently trigger rules and generate more facts as
the interaction progresses. One can lump a set of axioms and
rules into self-contained modules (idioms) that serve as reusable
building blocks for new applications. The logical containers [4],
for example, are a possible implementation.

Although powerful, the plan-based approach has the following
difficulties that prevent it from wide adoption. First, authoring
the logical rules and axioms often requires human experts that
are well versed in both the system design and the application
domain. The performance of the system correlates highly to the
quality of the rules, and the skills of writing high quality rules are
hard to acquire. Secondly, the plan-based infrastructure resting
upon Boolean logic often implies making “hard” decision. In
many cases, a softer, or “fuzzy” logic is more appropriate. This is
even more applicable to a spoken dialog system, in which the
speech recognition results are usually manifest as a list of
alternative hypotheses with various degrees of likelihood.
Finally, the proper system behaviors often require iterative
refinements based on trial results or field data. These data can be

either too overwhelming for human experts to digest, or
sometimes outright unavailable due to technical or privacy
concerns. As a result, it is highly desirable for a plan-based
system to be equipped with the data-driven capabilities that are
suitable for on-line adaptation. The idea of data-driven dialog
system is not new. For instance, statistical methods have been
applied to acquire dialog strategies [5], semantic parsing [6], or
both [7]. We would like to embrace the notion of fuzzy decision
implied by the statistical methods and extend it to the whole
system that seamlessly integrates the strengths of a plan-based
approach.

The extent to which our approach applies dwells within the
boundary where an objective and analytical performance measure
makes sense. A dialog system, however, inevitably include areas
where the ultimate performance measure is a subjective one. To
that end, we further distinguish the notions of response planning
and rendering. In a planned-based system, response planning is a
natural outgrow of the semantic evaluation process. It is the step
where the system’s intent is computed. The outcome of the
planning process is a message the system would like to convey to
the user. Ideally, the message should point to a proper course of
action that is independent of the physical environment in which
the user interacts with the system. The response generation, in
contrast, is the process in which the message is physically
presented to the user. This is the stage mostly susceptive to
application specific and user interface considerations. To handle
a message requesting the user to select a sizeable list of
alternatives, for example, a system with a suitable visual display
might choose to present the whole list, while a speech only
system might require a more clever strategy and resolve the
ambiguity in more dialog turns. For the scope of this paper, we
will focus on the system components preceding the rendering
stage. An implementation of the rendering stage using the
framework described in this paper is described in [12].

2. SYSTEM OVERVIEW

The key idea in this work is to augment the decision process in
the plan-based system from using solely the Boolean logic to
probabilistic measures. Essentially, the rules being triggered no
longer just depend on whether all the predicates are satisfied, but
also the likelihood of the predicates. From this perspective, one
may also argue a probabilistic plan-based dialog problem is a
step-wise pattern recognition problem that can be stated as
follows. Given an input x (natural language text or speech), the
objective of the system is to arrive at an action A so that the cost
of choosing A is minimized. With a proper categorization, one

can assuming uniform cost, which leads to the optimal solution
to be the maximum a posteriori (MAP) decision

∑ −−

−

≈

=

F nnnn

nAopt

SxFPSFSPSAP

SxAPA

),|(),|()|(maxarg

),|(maxarg

11

1
(1)

where F denotes a collection of semantic objects (Sec. 2.2) of x
and Sn, the discourse semantics for the nth dialog turn. Based on
this formulation, a dialog system is basically composed of three
components: a semantic parser that converts x into a collection of
semantic objects, a discourse manager that derives new dialog
context based on the per-turn semantic parse and the previous
context, and a response manager that picks the most suitable
action from all the possibilities and renders it to the physical
device. The probabilistic measures governing the operations of
response, discourse, and the parse are called the behavior model
P(A|Sn), the semantic model P(Sn|F, Sn-1), and the language
model P(F| x, Sn-1), respectively.

The equation above seems to suggest that a plan-based system is
merely an embodiment of a statistical state machine for which the
discourse semantics are regarded as states. The difference,
however, is that the “states” for the plan-based system are
generated dynamically and not limited to a pre-determined finite
set. This capability of handling unbounded number of states is a
key strength of plan-based systems in terms of scalability and
flexibility.

2.1 Knowledge and Semantic Classes

Since it is crucial to utilize domain knowledge at every possible
step during the semantic evaluation process, we follow the
principles outlined in [4] to convey domain knowledge in the
system. We assume that the domain knowledge conforms to a
relational or objected oriented database, of which schema is
clearly defined. We use the term entity to refer to a data item in
the domain (a row in a database table), or a function (command
or query) that can be fulfilled in the domain. A column in the
database table is called an entity attribute, and each database
table is given an entity type. If the domain is characterized by an
objected oriented database, the inheritance relationships among
the entity types follow those of the database.

Through a small subset of its attributes, an entity can be realized
linguistically in many ways. We call each one of them a semantic
class. For example, a person can be referred to with his full name
(“Xuedong Huang”), a pronoun anaphora (“him”), or through
relationships to others (“Kuansan’s manager”). In this case, one
can derive three semantic classes for the entity type “person.”
Note that the semantic class can be recursive, as demonstrated in
the last example that a “person” semantic class contains an
attribute of “person” type. Since the entities can be nested, i.e., a
database column can in turn refer to another table, an attribute in
the semantic class can also be an entity type. The main
motivation of having multiple semantic classes for each entity
type is to better encapsulate the language, semantic, and behavior
models based on the domain knowledge. While the entity
relationships capture the domain knowledge, the semantic class
hierarchy represents how knowledge can be expressed in the
semantics of a language.

2.2 Semantic Parser

An instantiation of a semantic class is called a semantic object.
Due to the nested nature of semantic classes, a semantic object F
in Eq. (1) can itself be a tree of semantic objects. The attributes
of a semantic object are either domain entities or semantic
objects. One may view the semantic object attributes as the
predicates in the plan-based model. A user’s utterance may also
consist of disjoint fragments that only make sense at the
discourse level. For instance, in the context of setting up a
meeting, the user utterance “Kuansan Wang at a quarter to two”
can be parsed into two objects: a person and the meeting time.

Parsing is essentially a dynamic programming problem. The
language model defines how attributes are phrased. We have
been experimenting with two types of language models: context
free grammar with robust parsing [8], and, more recently, the
unified grammar [9]. The unified grammar is an N-gram of
terminal and non-terminal tokens. Terminals are words in the
lexicon. Non-terminals are the unified grammars associated with
all the attributes contained by the semantic class. If an attribute is
an entity type, its unified grammar includes the union of all the
semantic classes of this type.

At the end of each system’s turn, the discourse manager provides
the parser with “dialog focus,” a list of semantic objects and
classes that, based on the current dialog context, are most likely
to be instantiated in the following turn. Effectively, dialog focus
creates a dialog state dependent language model. The parser uses
the dialog focus to bias the grammar in forming and scoring the
parse trees.

2.3 Discourse Semantics Evaluation

The discourse manager maintains a stack of discourse trees and
an entity memory that are operated under a two-step algorithm.
The discourse tree has the same form as a parse tree. The
discourse is designed to assume a tree structure so that the
representation remains the same whether the information is
obtained through several dialog turns or a single one.

During the expansion phase, the discourse manager affixes the
semantic objects as branches to the discourse tree. Ambiguity
arises when a parse can be attached to more than one node on the
discourse tree. Ambiguity is resolved either by using the parse
scores or by triggering a dialog event. As indicated in Eq. (1), we
currently use Viterbi approximation for the discourse semantics,
i.e., only the discourse tree with the highest score, rather than a
weighted sum of all possible interpretations, determines the
system’s response. The goal here, however, is to collapse the
discourse tree by resolving the semantic objects into the domain
entities. Following the expansion is the evaluation phase, in
which the discourse manager taps into the knowledge base with
the semantic object attributes. The semantic objects to entity
conversion proceeds from the leaves up towards the root of the
discourse tree. The process ends when the root node is converted,
which indicates the dialog goal has been achieved. Whenever a
conversion occurs, the consequent entity is added to the entity
memory. Here we adopt the chunking memory model [10] in
implementing the entity memory. The entity memory consists of
turn and discourse memories. Either type of memory consists of a

number of priority queues that are delineated by entity types. An
entity can only be remembered into the queue of compatible
types (e.g., through inheritance). When referred to, the memory
item will increase its priority in the queue. The turn memory is a
cache for holding entities in each turn. There are two types of
turn memories. The explicit memory holds the entities that are
resolved directly from semantic objects. In contrast, the implicit
memory is for entities that are deduced from anaphora, deixis, or
ellipsis. In accessing the memory, the explicit turn memory takes
precedent over the discourse memory, which in turn has a higher
priority than the implicit. At the end of the system’s turn, all the
turn memory items are moved and sorted into the discourse
memory. The distinctions between the three kinds of memories
and the rules to operate them are designed as a simple
mechanism for most common but not all the possible scenarios. It
is worth noting that the design has a bias towards direct and
backward reference. For example, in the expression “Forward
this mail to John, his manager, and his assistant”, the second
“his” will be evaluated as referring to John, not John’s manager.
The implicit memory, however, provides a back off for
expression like “Send email to John, his manager, and her
assistant” in which the pronoun “her” should be taken as
indicating John’s manager is a female and resolved accordingly.
However, since we only store the entities and not the semantic
objects into the memory, the mechanism is not suitable for
forward or default references, as in the examples like “Since his
promotion last May, John has been working very hard” or “It
being so nice, John moved the meeting outside.” Fortunately,
these natural language phenomena are rare in a spoken dialog
environment.

The evaluation phase begins at converting the semantic objects
whose attributes are all filled. Note that in our system, anaphora
and deixis are handled with specialized semantic classes. In
addition to memory manipulation, semantic classes can also be
decorated with behaviors on inference. An “auto” semantic class,
in particular, is designed to automatically infer information not
supplied by the user. For instance, a meeting entity, once
resolved, can be later referred to in expressions such as “the
morning meeting”, “meeting with Kuansan”, or “the meeting in
building 113” that, on the first encountered, are nevertheless
ambiguous. In our system, the strategy to automatically resolve
partially specified entities is as follows. During the evaluation
stage, a partially filled, auto semantic object is first compared
with the entities in the memory based on the type compatibility.
If a candidate is found, the discourse manager then computes a
goodness of fit score by consulting the knowledge base and
considering the position of the entity in the memory list. The
semantic object is converted immediately to the entity from the
memory if the score exceeds the threshold. In the process, all the
actions implied by the entities are carried out following the order
the corresponding semantic objects are converted.

Often in the design process, we find it desirable to segregate a
dialog into several self-contained sessions, so that each of which
can employ specialized language, semantic, and even behavior
models to further improve the system performance. These
sessions are sub-goals of the dialog, which usually manifest
themselves as “trunk” nodes on the discourse tree. We implement
a tree stack in which each trunk node is treated as the root for a
discourse tree. The stack is managed in a first-in last-out fashion

as currently no digression is allowed from one sub-dialog to
another. So far, the no-digression rule is considered a reasonable
trade-off for dynamic model swapping.

A system response is needed whenever the dialog goal has been
reached or some semantic objects cannot be successfully
converted. The task for the discourse manager here is to send to
the response manager a universal message that suggests the
proper course of action. At the end of the above evaluation
process, the discourse manager tabulates the remaining semantic
objects and examines the causes that prevent them from being
converted. We score these causes with domain knowledge and
their proximity to the current focus. Most often, the response is
either a confirmation or a negotiation. A confirmation occurs
when a semantic object has obtained all its attributes, but the
score is too low to accept it outright as an entity. In this case, the
discourse manager simply presents the score to the response
manager, which then decides whether an explicit or implicit
confirmation is appropriate. A negotiation response can arise
whether a semantic object is fully filled or not. For under-
specified semantic objects, possible actions include simply to
pursue the unfilled attributes in a predefined order, or to gather
the entities in the knowledge base sorted by various keys. For
cases of ill specification, an entity that matches the semantic
object attributes does not exist. The discourse manager can
simply report such fact, or suggest removal or replacement of
certain attributes, depending on how much domain knowledge to
be included in the planning process.

3. DR. WHO’S IMPLEMENTATION

We implement a dialog system for project DR. WHO [11]. Our
first effort aims at providing the four mobile applications, i.e.,
messaging, scheduling, directory, and reminders, with a spoken
language interface on a palm-size computer. The system is
implemented to render the responses on the display, although the
design also includes synthesized speech rendering for eyes-busy
or other displayless usages [12]. When used with a pointing
device (e.g., a stylus or a roller), the user can point to a specific
area of the screen before issuing speech commands. This user-
assisted focus forming, known as the tap-and-talk feature, allows
the system to dynamically swap in semantic grammar that has
tighter coverage.

We use the object models of Microsoft Outlook as the foundation
for the knowledge base. Entity types related to the logical
objects, such as messages and appointments, are directly
obtained from the object models. We also derive the functional
entities, such as reading email and setting up a meeting, from the
capabilities exposed by these object models. For the directory
task, we also develop a middleware using the Microsoft Access
object model to connect to the human resource database on the
corporate intranet. The entity type “person,” based on the Access
database, contains an email address attribute that serves as the
cross-reference key for the people objects (e.g., attendees of a
meeting, email recipients) in the Outlook database. The directory
task provides a good glimpse of the system since it is the most
compact and originates widely reused components. The task is
modeled by a single semantic class with two attributes that can
be described in XML as

<class type=”Task” name=”Directory” inference=”auto”>

<slot type=”Person”/>
<slot type=”DirectoryItems”/>
<expert ref=”./directory.dll”/>

</class>

The semantic class has an entity type “Task”, indicating it can be
a dialog goal for the DR. WHO application. It is declared as an
auto-inference semantic class, so the discourse manager will try
to resolve missing attributes from the memory. Its first attribute,
the target person, is declared by the entity type, which can match
all the semantic objects modeling that type (Sec. 2.1). The
second attribute is a list of personal properties (e.g., phone
number, office location, manager). As a common technique, we
use a right-recursive semantic class to form a list:

<class type=”DirectoryItems” memory=”explicit”>
<slot type=”DirectoryItem”/>
<slot type=”DirectoryItems”/>

</class>

Finally, the semantic class is supplied with the domain expert
that interacts with the database and plans the responses. A
sample text-based dialog goes like this:

U: What is the phone number for Dan?
S: Many Dan’s are in the database. Please say the full name.
U: Dan Venolia.
S: The number is 4257032891.
U: Where is his office?
S: The office is in building 31, room 1362.
U: How about Kuansan’s?
S: The office is in building 31, room 1363.
U: Who is Dan’s manager?
S: Xuedong Huang.
U: What are his office and phone numbers?
S: The office is in building 31, room 1332.
S: The phone number is 4259363966.

Note that the system resolves the ambiguous name “Dan” only
once, even though the reference to “Dan” is interjected. The
second reference is automatically resolved since the semantic
class “Directory” is declared as “auto” and an entity that matches
the partial reference can be found in the memory. In contrast, no
clarification is needed for “Kuansan” since there is only one
person in the database that has “Kuansan” as either the first name
or last name. As shown above, we declare the semantic object of
directory items to be sent to the explicit memory once it is
resolved. Accordingly, when the user only mentions a person in a
query, the items in the memory are assumed by default, as in the
response to the utterance “How about Kuansan’s?”

4. SUMMARY

In this paper, we propose a framework that regards the plan-
based dialog approach as a cascade of statistical pattern
recognizers. At the semantic level, the patterns to be recognized
are what we refer to as the entities that, basically, are speech acts
or references. We define the linguistic constructs of the entities
as semantic objects. Consequently, at the language understanding
front-end, the patterns to be recognized are the semantic objects.
Finally, once the discourse semantics is reached, the patterns to
be recognized in the response generation stage are the desired
course of actions. We argue the predicates in a plan-based system
can be implemented via semantic objects.

We believe that introducing the statistical measures into the plan-
based approaches will further strengthen the robustness of the
system without comprising its scalability. We also introduce the
notion of semantic objects that are tightly related to the schema
describing the domain knowledge. By “objectifying” the rules
governing the semantic evaluation process, we hope to make the
components in the system more reusable, and hence more
extensible. We implement a prototype based on these ideas, and
so far, the results seem favorable and encouraging.

Several aspects in our current prototype require further
investigations. As indicated in Sec. 2, we employ Viterbi
approximation in inferring the discourse semantics. However, as
is reported in [7], it is worthwhile to maintain alternative
semantics for response planning. In addition, one key strength for
the plan-based approach is it provides a natural pathway towards
multimodal integration. We have not fully explored this area yet,
but are looking forward to it. Finally, the behavior and semantic
models in the prototype currently use hard-coded heuristic scores
to approximate the probabilities. We still have to establish how
much gain we can derive from data-driven, well-trained models.

5. ACKNOWLEDGEMENT

The interfaces to Outlook are implemented with the assistance of
Ricky Loynd.

6. REFERENCES
[1] Allen J.F., Ferguson G., Miller B., and Ringger E., “Trains

as an embodied natural language system,” Proc. AAAI-95
Symposium on Embodied Language and Action, 1995.

[2] Sadek M.D., Ferrieux A., Cozannet A., Bretier P., Panaget
F., and Simonin J., “Effective human-computer cooperative
spoken dialogue: The AGS demonstrator,” Proc. ICSLP-96,
1996.

[3] Cohen P.R. and Levesque H.J., “Communicative actions for
artificial agents,” Proc. ICMAS-95, San Francisco, 1995.

[4] Wang K., “An event based dialog system,” Proc. ICSLP-98,
1998.

[5] Levin E., Pieraccini R., and Eckert W., “A stochastic model
of human-machine interaction for learning dialog
strategies,” IEEE Trans. on Speech and Audio Processing,
pp.11-23, January 2000.

[6] Magerman D. M., “Statistical decision-tree models for
parsing,” Proc. ACL-95, 1995.

[7] Souvignier B., Kellner A., Rueber B., Schramm H., Seide
H., “The thoughtful elephant: strategies for spoken dialog
systems,” IEEE Trans. on Speech and Audio Processing,
pp.24-36, January 2000.

[8] Wang Y.-Y., “A robust parser for spoken language
understanding,” Proc. EuroSpeech-99, 1999.

[9] Wang Y.-Y., Mahajan M., Huang X., “A unified context-
free grammar and N-gram language model for spoken
language processing,” Proc. ICASSP-2000, 2000.

[10] Baddeley A., Working Memory, Oxford University Press,
1986.

[11] http://research.microsoft.com/stg/drwho.htm
[12] Wang K., “Implementation of a multimodal dialog system

using extensible markup languages,” Proc. ICSLP-2000,
2000

