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ABSTRACT
Motivation: A large amount of data on metabolic path-
ways is available in databases. The ability to visualise the
complex data dynamically would be useful for building
more powerful research tools to access the databases.
Metabolic pathways are typically modelled as graphs in
which nodes represent chemical compounds, and edges
represent chemical reactions between compounds. Thus,
the problem of visualising pathways can be formulated as
a graph layout problem. Currently available visual inter-
faces to biochemical databases either use static images
or cannot cope well with more complex, non-standard
pathways.
Results: This paper presents a new algorithm for draw-
ing pathways which uses a combination of circular, hier-
archic and force-directed graph layout algorithms to com-
pute positions of the graph elements representing main
compounds and reactions. The algorithm is particularly de-
signed for cyclic or partially cyclic pathways or for combi-
nations of complex pathways. It has been tested on five
sample pathways with promising results.
Availability: On request from the authors.
Contact: mywyb2@cam.ac.uk

INTRODUCTION
Today, a large amount of information on metabolic
pathways is available in various databases. Pathways
are typically modelled as complex networks of chemical
compounds and reactions. It is evident that a graphical
representation of such networks is useful for managing the
intrinsic complexity of the data. Powerful research tools
could be built which dynamically query a database and
visualise the resulting pathway. The visualised pathway
could be used to refine the query and to navigate through
the database.

An example of such a system is KEGG (Kyoto Ency-
clopaedia of Genes and Genomes), an online database
system for querying information on metabolic and reg-
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ulatory pathways and genome sequences (Kanehisa and
Goto, 2000). As in most currently available systems,
KEGG visualises pathways in a static way. Pathway
diagrams are manually drawn and stored as bitmap image
files. These diagrams are displayed as interactive image
maps with links to additional information on enzymes and
to adjacent pathways.

Another example for static visualisation of pathways
is the ExPASy Molecular Biology Server (Appel et al.,
1994) which gives online access to the scanned-in version
of the Boehringer Mannheim ‘Biochemical Pathways’
map (Michal, 1993). The map is partitioned into 115
rectangular pieces. Keywords entered by the user are
matched against entries on the map, and the corresponding
pieces of the map can be displayed.

As Brandenburg et al. (1998) pointed out, static visuali-
sation has many severe disadvantages. Whenever the data
has been updated, the corresponding images have to be
edited manually to reflect the changes. Furthermore, there
is no way to specify the amount of detail to be displayed
or to hide parts of the pathway. Finally, when it comes to
visualising user defined or novel pathways, static visuali-
sation is not applicable at all.

Therefore the visualisation process should be performed
dynamically at runtime, based on the information provided
by the database. Dynamic visualisation in contrast to
static visualisation provides high flexibility, which is
necessary for complex queries and the construction of
novel pathways.

Metabolic pathways are commonly modelled as directed
graphs. A pathway is a collection of interconnected
biochemical reactions. Main reactants and products (the
compounds that constitute the ‘backbone’ of the pathway)
are represented as nodes and the reactions as edges of
the graph. Usually the enzymes catalysing the reaction
are displayed as edge labels. Side substrates are drawn
near the edge, connected to the edge by curved arcs.
Therefore, the problem of dynamically drawing a pathway
is a graph layout problem. Given as input a combinatorial
description of a graph, a graph layout algorithm should
compute geometric positions for the graph elements
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according to a set of rules.
There are a number of standard graph layout algorithms.

Examples include algorithms for circular, orthogonal or
planar drawing, and force-directed layout heuristics (Di
Battista et al., 1994, 1999; Brandenburg et al., 1997).
However, none of these algorithms give satisfactory results
when applied to pathway networks.

Little previous work has been done on developing graph
layout algorithms for drawing biochemical networks. Karp
and Paley (1994) have pointed out that rather than search-
ing for one single, all-purpose graph layout algorithm, dif-
ferent algorithms should be applied to parts of the pathway
with different topologies. They devised an algorithm for
drawing metabolic pathways which breaks the graph into
cyclic, linear and tree-structured components and then ap-
plies different layout methods to each of these individu-
ally. Their algorithm has been implemented in the EcoCyc
system, an electronic encyclopaedia that allows scientists
to visualise a collection of biochemical information (Karp
et al., 2000).

Takai-Igarashi and Kaminuma (1998) developed a Cell
Signalling Network Database (CSNDB) with an interface
for dynamic visualisation of pathway data. A new system,
PaF-CSNDB, also allows users to find and construct
novel pathways (Takai-Igarashi and Kaminuma, 1999).
Pathway diagrams are constructed dynamically by a
modified version of an algorithm first implemented in the
ACEDB software (A. C. elegans database) (Durbin and
Mieg, 1991). The original algorithm (S.Letovsky, personal
communication) is very similar to the one by Karp and
Paley. Acyclic and cyclic components of the graph are
identified and laid out using a hierarchic and a circular
algorithm, respectively.

PathDB, a pathway database focused on plant
metabolism, takes a similar approach. The informa-
tion stored in the database is converted into a graph
structure. If the structure contains cycles, the visualisation
front-end lets the user choose between a hierarchical or a
circular layout method to calculate the co-ordinates of the
nodes (J.Blanchard, personal communication).

In this paper we propose a new algorithm for drawing
graphs representing metabolic pathways. Based on the
one proposed by Karp and Paley, it takes into account
the topological structure of the graph. The algorithm is
supplemented by a special force-directed layout algorithm
and additional layout heuristics.

We will concentrate on the placement of the graph nodes
and edges representing main reactants and products only.
The problem of placement of labels that contain informa-
tion on enzymes and other information related to the bio-
chemical reactions is also being addressed by our research
group and will be the topic of a publication currently in
preparation. Readers interested in this topic are encour-
aged to contact the authors for more information.

SYSTEM AND METHODS
The algorithm was implemented in Java 1.3 and executed
on a Pentium II workstation running Windows NT. The
Java-based graph library YFiles (Wiese et al., 2000) was
used to create, manipulate, and view the graph. YFiles
provides Java classes representing data structures for
graphs, nodes, and edges. These data structures do not
only contain information about the abstract graph but also
graphical information such as location, sizes and labels
of nodes and edges. The library also offers a number of
standard graph layout modules, in particular for circular
and hierarchic layout, both of which are used in the
presented algorithm. The YFiles graphical user interface
provides functions for viewing, navigation and interactive
editing.

The algorithm does not depend on the choice of the
underlying graph library. There are many other packages
which could have been used for implementation instead of
YFiles. For example, Automatic Graph Drawing (AGD)
from Algorithmic Solutions Software, the Graph Drawing
Toolkit from Integra Sistemi or the Graph Layout Toolkit
from Tom Sawyer Software all offer features which are
similar to YFiles.

AESTHETIC GOALS
Common graph layout algorithms draw a graph in such a
way that it satisfies certain well-defined aesthetic criteria
and constraints such as planarity, minimal edge crossings
(edges intersecting with other edges or nodes), minimal
drawing area, and maximal symmetry. In the case of
metabolic pathways it is difficult, if not impossible, to state
such a set of clear cut constraints. Apart from meeting
the aesthetic criteria stated above it seems to be important
to adhere to well-established, albeit not well-defined,
conventions as can be found in relevant biochemistry
textbooks (Michal, 1999).

In the figures of such textbooks one can identify two
different structures that are used noticeably frequently:
directed, hierarchic components and circular components.
Whenever such a circular subgraph exists the remaining
components are laid out around the circle in such a way
that the components are near the nodes of the circle to
which they are connected. Sufficiently small components
which are connected to the circle by a relatively large
number of edges are often placed inside the circle in order
to avoid edge crossings. Our algorithm is based on these
observations.

ALGORITHM
Some chemical reactions have more than one main
reactant or product. In these cases the reaction has to be
represented as a hyperedge, i.e. an edge with multiple
source and target nodes. The YFiles library does not
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Oxaloacetate 2-Oxo-glutarate

AspartateGlutamate

Fig. 1. Hyperedges model chemical reactions with multiple main
reactants or products. Zero size dummy nodes are inserted at the
forking positions.

support hyperedges, so hyperedges were simulated by
inserting a dummy node at the front of an edge which forks
out to the multiple target nodes. Similarly, a dummy node
is inserted at the back of the edge which is connected to
all source nodes. The sizes of the dummy nodes were set
to zero (Figure 1).

A simple cycle is a cyclic path in which each node of
the path is visited exactly once. The algorithm starts by
traversing the directed connected graph to look for the
longest simple cycle contained in the graph. The cycle
is found by breaking the graph into strongly connected
components (subgraphs in which every two nodes are
reachable from each other) and then using a depth first
search on these components.

Base cases
Two trivial base cases can now be identified: if no cycle
could be found at all, the top-to-bottom hierarchic layout
algorithm provided by the graph library is applied. The
hierarchic layout algorithm partitions the nodes into layers
such that nodes in one layer can only be connected to
nodes in adjacent layers. If this is not possible, edges
crossing several layers are split into several shorter edges,
and dummy nodes are inserted. Then the nodes within a
layer are permuted to minimise edge crossings. Finally the
nodes are positioned to give a balanced layout (Sugiyama
et al., 1981; Eades and Sugiyama, 1990).

The other base case applies when the longest cycle is
in fact the entire graph. In this case the circular layout
algorithm provided by the graph library is used.

General case
If none of the two base cases apply, a longest cycle
must have been found, and this cycle must be a proper
subgraph of the given graph, so there exist nodes which
do not belong to the cycle. These nodes are now grouped
into connected components, i.e. sets of connected nodes.
The resulting components are by definition not connected
to each other. Since the original graph was a connected
graph, each of the components must have at least one

connection to the cycle. We can distinguish two kinds of
components. The inner components are those consisting
of only one node and that are connected to the cycle
by at least two edges, and will be placed inside the
circle. All other components are outer components, and
will be placed around the circle. The choice of one
node as threshold for the inner components was made
in a somewhat arbitrary manner, since it appeared to be
aesthetically the best value. There can be more than one
inner node in a cycle but only if they are not connected to
each other.

Next, the circular layout algorithm is applied to the
cycle, and the minimum radius is chosen such that the
resulting circle is large enough to accommodate all inner
components.

The outer components are then laid out by recursively
applying the same algorithm to each of them individually.
The recursion is guaranteed to terminate since one of
the two base cases will eventually hold. After that, each
component is collapsed into a supernode. The supernode
is set to the same location and extent as the subgraph it
represents. The supernode–subgraph relationship is stored
in a hash table so that later the supernodes can be expanded
quickly.

A customised spring embedding layout algorithm
(Quinn and Breuer, 1979; Eades, 1984) is applied to the
remaining graph, now consisting of the circular cycle, the
inner components and the outer supernodes. The spring
embedding algorithm places the inner components inside
and the supernodes around the circle. The placement is
done in such a way that the inner components and the
supernodes lie near the circle nodes they are connected
to but without overlapping each other. The details of this
algorithm are discussed in the next section.

Finally, the supernodes are expanded and replaced by
the corresponding subgraphs.

THE CUSTOMISED SPRING EMBEDDING
ALGORITHM
The purpose of this sub-algorithm is to lay out the inner
components inside the given circle and the supernodes
outside the circle. We add the further constraints that
nodes must not overlap and that nodes not belonging
to the circle are positioned near the nodes on the circle
to which they are connected. A force-directed approach
seems to be the most natural solution to this problem.
Force-directed layout algorithms model the graph as
a system of particles with forces acting on them and
attempt to find a minimum energy configuration of this
system. The spring embedding algorithm is the best
known force-directed layout algorithm (Quinn and Breuer,
1979; Eades, 1984). Each edge acts as a spring with a
preferred length and exerts a repulsive or attractive force

463



M.Y.Becker and I.Rojas

on the nodes connected by it. Nodes are considered as
mutually repulsive charges. The total energy of the system
is minimised by iteratively letting the nodes move in
direction of the forces exerted on them, starting from their
initial positions.

The YFiles library implements a version of the spring
embedding algorithm. However, it was found to be unsuit-
able for our purpose, mainly because it does not consider
node sizes. We developed a customised implementation
with additional heuristics.

As in the original algorithm, the force strength is
dependent on the distances between two nodes, but now
the distance is computed not as the distance between the
centres of the two nodes but rather as the distance between
the boundaries of the nodes, thus taking node sizes into
account. This is essential because the size of a supernode
is the extent of the bounding box of the corresponding
subgraph.

Furthermore, each supernode in the system can be
assigned a centre of mass location. We define the centre
of mass of a supernode to be the average position of those
nodes inside the supernode which are connected to the
circle. In the original spring embedding algorithm, the
mutually repulsive charge forces act as if the entire charge
was concentrated at the geometric centre of the node. In
our model the charge is concentrated at the centre of mass.
Also, the ends of the springs are modelled as if they were
attached not to the geometric centre of a supernode but
to its centre of mass. Using the centre of mass location
rather than the geometric centre takes into account the
internal structure of a supernode without adding too much
overhead.

Each node is associated with a value for its inertia, i.e. its
resistance to move, and each edge with an individual pre-
ferred length. Clearly the nodes of the circular subgraph
should be fixed, hence these nodes are assigned an infinite
inertia.

The energy configuration of the system may have
multiple local minima, and depending on the initial
placement of nodes the algorithm will converge to one of
these minima. Therefore care must be taken to compute
appropriate initial positions for the nodes.

Computing initial positions
The inner components can simply be placed at the centre
of the circle initially. The spring embedding algorithm will
automatically find appropriate positions for these nodes
within the circle.

For the outer supernodes we can define a preferred
radial angle relative to the circle. This angle is the average
of radial angles of those nodes of the circle to which the
supernode is connected.

Suppose the centre of mass of a supernode lies in
its upper region. That means that the edges connecting

Fig. 2. In the left-hand panel the only node of the outer supernode
(darkly shaded) which is connected to the circle lies on the right,
so the centre of mass of the supernode lies on the right, hence
the preferred orientation is west. The circle is rotated such that the
supernode lies west of the circle. Similarly, in the right-hand panel,
the centre of mass of the outer supernode is at its bottom, hence the
preferred orientation is north of the circle.

it to the circle are incident with internal nodes of the
supernode which are located mainly in the upper region of
the supernode. So if the supernode is initially positioned
such that its centre of mass is south of the circle (at −90◦
relative to the circle) and if the circle is then rotated in
such a way that the resulting preferred radial angle of the
supernode is −90◦, it is likely that fewer edge crossings
occur. In this case we say that the preferred orientation of
the supernode is South. Note that the preferred orientation
of a supernode depends only on the displacement of its
centre of mass relative to its geometric centre.

Similarly, the preferred orientation of a supernode is
North if the centre of mass lies in its bottom region, East
if the centre of mass lies on its left-hand side and West if
it lies on its right-hand side (Figure 2).

It is clear that this preference cannot be satisfied for
all supernodes simultaneously. In our algorithm the circle
is initially rotated in such a way that at least the largest
supernode has its preferred orientation.

After the rotation has been performed, the preferred
radial angle is computed for all other supernodes, and
each supernode is placed around the circle accordingly
(Figure 3). The preferred edge lengths are set to the
actual current lengths of the supernode edges. This ensures
that the radial angles are conserved during the spring
embedding layout process, if possible.

The customised spring embedding algorithm is then
applied to the circle nodes, the inner components and the
outer supernodes.

For each outer supernode, its new position is analysed,
and it is checked whether its centre of mass can be
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Fig. 3. The preferred radial angle of the centre of mass of an outer
supernode (darkly shaded) is computed by taking the weighted
average over the angles of the connected circle nodes (bold borders).
The preferred angle (0◦, −18◦ and −12◦, respectively) is indicated
by the arrow in the centre of the circle.

Fig. 4. In the top panel, bends are inserted at the edges connecting
the circle to the outer supernode (darkly shaded) in an attempt to
avoid edge crossings with the circle. In the bottom panel, the same
graph without bends. The edges clearly intersect with the circle.

GLUCOSE 6-P

FRUCTOSE 6-P

FRUCTOSE 1,6-P

GLYCERAL-
DEHYDE 3P

PYRUVATE

ACETYL-CoA

GLYCERONE-P

CITRATE

ISOCITRATE

2-OXO-GLUTARATE

SUCCINYL-
CoA

SUCCINATE

MALATE

OXALOACETATE

GLUTAMATE

ASPARTATE

ARGININO-
SUCCINATE

ARGININE

ORNITHINE

CITRULLINE

FUMARATE

[ACONITATE]

[OXALO-SUCCINATE]

GLYOXYLATE

Fig. 5. Combination of TCA cycle, Glycolysis and Urea cycle.

brought closer to the circle by mirroring or flipping it. This
heuristic attempts to further reduce the number of edge
crossings.

Finally, bends are attached to edges connecting the circle
to outer components so that the edges emerge orthogonally
from the circle. This is done in an attempt to reduce edge
crossings with the circle (Figure 4).

EXPERIMENTAL RESULTS
The algorithm has been tested on five different pathways
or combinations of pathways.

The tested pathways were all relatively complex in that
they contain cyclic as well as hierarchical components. In
all five cases good results were produced. The layout is
clear and easy to understand because it emphasises the
topological structures of different parts of the graph and
keeps logically connected units together. The algorithm
managed well to avoid overlapping components and to
reduce the required drawing area and unnecessary edge
crossings.

Due to space limitations we only show two of the
resulting images. Figure 5 shows the TCA cycle connected
to Glycolysis and the Urea cycle. The TCA cycle is
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Fig. 6. Propanoate metabolism.

the longest cycle found and has two outer components:
Glycolysis, and the Urea cycle together with Aspartate
and Glutamate. Glyoxylate is the only inner component
of the TCA cycle and hence placed inside the circle.
The hierarchical layout algorithm is applied to Glycolysis
since it does not contain a cycle. The second outer
component, the Urea cycle connected to Aspartate and
Glutamate, is laid out recursively. The Urea cycle is found
as the only cycle of the subgraph, and Glutamate and
Aspartate as the only outer component of the cycle.

Figure 6 shows the Propanoate metabolism. Here the
longest cycle is the one containing Acetyl-CoA, having
one inner component and four outer components, only one
of which requires the recursive step.

The results of the other experiments, images depicting
the Pentose phosphate cycle, the Urea cycle together with
the metabolism of amino groups, and Phenylalanine, Tyro-
sine and Tryptophan biosynthesis can be found on the web
at the EML research site (http://www.eml.villa-bosch.de).

DISCUSSION AND CONCLUSION
Potentially, the most time-consuming part of the algorithm
is the search for the longest cycle since the corresponding
decision problem is NP-complete. However, we observed
that the depth first search algorithm has good performance
if the displayed graph is sparse and not too large (a few
hundred nodes and an edge to node ratio of less than
1.5) as it is usually the case with metabolic pathway

networks for display purposes. For larger or more highly
connected graphs the search for the longest cycle becomes
the major bottleneck, and heuristic methods will be
necessary. The customised spring embedding algorithm
has a time complexity quadratic in the number of nodes
to be laid out and linear in the number of edges. Since
it can be assumed that the number of distinct connected
components outside the longest cycle in the graph is small,
the spring embedding algorithm is efficient enough for our
purposes. Furthermore, it worked well with a relatively
low maximum iteration bound of less than 500. The
overall performance of the pathway layout algorithm is
good enough for use in interactive applications.

The algorithm proposed by Karp and Paley (1994) does
not only compute positions for main compounds but also
deals with the problem of placing side substrates and
enzymes. This last point has been left out in our algorithm,
where we concentrated on the placement of the main
compounds. Apart from that, their algorithm differs from
ours mainly in that they use a special tree layout algorithm
in which nodes are packed as compactly as possible
(Karp et al., 1994), whereas in our case a customised
spring embedding algorithm is used. Our algorithm gives
better results for topologically more complex graphs,
e.g. if a combination of different pathways is to be
visualised simultaneously. The heuristic computation of
initial positions of nodes and the subsequent spring
embedding process helps to reduce the number of edge
crossings and to place interconnected components at more
appropriate locations.

It should be noted that the results produced by the algo-
rithm often differ in many aspects from the conventional
drawings in biochemistry textbooks. For instance, in some
cases a sequence of reactions is conventionally not drawn
as a circle although a cycle exists. In large pathways, it
is often the case that individual compounds have a high
degree of connectivity. If the algorithm is given such data
as input, ‘unconventional’ cycles will be discovered and
presumably many edge crossings will occur. This prob-
lem can be avoided if highly connected compounds are
allowed to appear in multiple instances of graph nodes,
thereby reducing the edge to node ratio. In fact, this is what
is usually done in conventional manual drawings.

Details such as the relative placement of well-known
pathways in a bigger pathway map or the traditional
orientation of specific hierarchical structures (e.g. left-
to-right or top-to-bottom) also belong to the established
conventions in biochemistry.

In order to comply with the above-mentioned conven-
tions the algorithm would need additional layout infor-
mation that is specific to the pathway or reactions to be
drawn. We assumed that such information is not avail-
able to the algorithm, which is the case if the graphs to
be drawn are novel or computer generated pathways, or
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the results of complex queries, and not only historically
important pathways.

In the future, work has to be done to develop graph
libraries and graph layout algorithms tailored to graphs
with hyperedges. Simulating hyperedges by inserting
dummy nodes did not always give optimal results because
the current algorithms treat them like normal nodes.

The presented algorithm appears to be an attractive
choice for visualising metabolic pathways. It produces
good results, even in complex cases where cyclic pathways
are to be visualised in the context of connected pathways.
Thus, the algorithm could well be used to enhance existing
and to build new graphical user interfaces to access
biochemical databases.
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