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ABSTRACT

We extend the well-known technique of constrained Maxi-
mum Likelihood Linear Regression (MLLR) to compute a
projection (instead of a full rank transformation) on the fea-
ture vectors of the adaptation data. We model the projected
features with phone-dependent Gaussian distributions and
also model the complement of the projected space with a
single class-independent, speaker-specific Gaussian distri-
bution. Subsequently, we compute the projection and its
complement using maximum likelihood techniques. The re-
sulting ML transformation is shown to be equivalent to per-
forming a speaker-dependent heteroscedastic discriminant
(or HDA) projection. Our method is in contrast to tradi-
tional approaches which use a single speaker-independent
projection, and do speaker adaptation in the resulting sub-
space. Experimental results on Switchboard show a 3% rel-
ative improvement in the word error rate over constrained
MLLR in the projected subspace only.

1. INTRODUCTION

In many modern speech recognition systems, speaker adap-
tation and discriminant transformations play key roles in
acoustic modeling and/or front-end design. For the latter,
the signal processing typically starts by computing Mel-
frequency warped cepstral coefficients (MFCCs) for each
speech frame, and by concatenating a window of several
adjacent frames to form high-dimensional feature vectors.
Unfortunately, these vectors, which have typically 100 to
200 dimensions, are difficult to model accurately, and must
be projected down to a lower dimensional space. Early sys-
tems did this by extracting the first and second cepstral time
derivatives from this context window, but more recently, it
has been found that improved performance results from us-
ing linear discriminant analysis or related procedures to find
the transformation to a low dimensional subspace [6, 9, 10].
As a final signal-processing step, the resulting features may
be subjected to a diagonalizing transformation such as the
maximum likelihood linear transform (MLLT) if diagonal
covariance Gaussian models are to be employed [5, 6].

We note that the projection from a high dimensional
space to a low dimensional one can be viewed as discard-

ing or “rejecting” some of the dimensions as uninformative.
That is, the information carried by the rejected dimensions
is not further considered, and both the models and the data
now “live” in the low dimensional space. In the case of
LDA or HDA, one may argue that the projected subspace
has been designed to carry most of the discriminant infor-
mation useful for classification, and that the contributionof
the rejected dimensions is minor and can be neglected. This
is certainly true if one is constrained to use a single sub-
space across all speakers and channel conditions, but it is
questionable in the context of speaker adaptation.

Speaker adaptation, as exemplified by MLLR, is a sec-
ond key technique that is used in most state-of-the art sys-
tems. In this step, a linear transform is found such that,
when it is applied to either the Gaussian means [7] or, as
in constrained MLLR, to the feature vectors themselves [4],
the likelihood of the acoustic data associated with an ut-
terance is maximized with respect to an initial word hy-
pothesis. The utterance is then re-decoded after applying
the transform. Regardless of whether the models or feature
vectors are transformed, this step is applied in thereduced
subspace determined by the initial projection.

This paper is motivated by the following observations:

1. It may be desirable to make the subspace in which
the classification is performed speaker dependent. In-
tuitively, we want to be able to “borrow” dimensions
from the rejected subspace if those dimensions carry
discriminant information for a particular speaker.

2. The HDA transform is an ML transform for normal
populations with common means and covariances in
the rejected subspace [3, 6].

3. If we make the assumption that the rejected dimen-
sions are identically distributed across all the pho-
netic classes, then the constrained MLLR transform
becomes a speaker-dependent HDA transform.

These observations suggest that it is possible to create
speaker-dependent discriminant transforms using just the
apparatus of constrained MLLR in the complete feature space.

The paper is organized as follows: in section 2 we briefly
revisit the constrained MLLR formulation, introduce the ex-



tension for the projection case, and show its connection to
HDA. Section 3 describes the experiments and results and
section 4 provides a final discussion.

2. FEATURE SPACE MLLR AND HDA

The goal of standard MLLR, as originally formulated by
Leggetteret. al in [7], is to affinely transform the meansf�jg of the diagonal Gaussian mixture components of the
HMM model � such as to maximize the likelihood of the
adaptation dataX = X1 : : :XT , i.e. findA 2 IRn�n andb 2 IRn with �j = A�j + b =W�j (1)

whereW = [AT jbT ]T and �j = [�Tj j1]T , such that the
auxiliary function of the EM algorithmQ(�; �) =XQ P (QjX; �) logP (X;Qj�) (2)

is maximized with respect toW . This turns out to be a linear
regression problem yielding a closed form solution forW .

The MLLR formulation has been extended by Gales [4]
in the following way. The author distinguishes between
constrainedMLLR where the covariances of the Gaussians
have to share the same transform as the means, i.e.�j =A�jAT and unconstrainedMLLR where the covariances
are transformed independently of the means. Both con-
strained and unconstrained MLLR aremodel spacetrans-
formations in the sense that they act on the model param-
eters not on the features. In contrast,feature spaceMLLR
transforms the observation vectors, that isX t = AXt + b.
There is a duality between constrained model space and fea-
ture space MLLR in the sense that transforming the means
and the covariances is equivalent to transforming the fea-
tures since the respective Gaussian likelihoods are equal:jAjN (AX + bj�; �) = N (XjA�1(� � b);A�1�A�T )

(3)jAj represents the determinant of the Jacobian of the
transformationX ! AX + b and is supposed to be pos-
itive. It is required forN (�;�;�) to be a valid probability
density function in the transformed space [8].

Rewriting the auxiliary function (2) for feature space
MLLR yields, after some manipulations, the objective func-
tionTXt=1 NXj=1 
t(j) �log jAj � 12(AXt � �j)T��1j (AXt � �j)�+C

(4)

whereC is a constant with respect toA. The biasb has been
dropped since it can be taken into account by extending the
matrix and the observation vectors analogous to (1). For
simplicity of notation, the summation over the HMM states
and over the mixture components within a state has been
collapsed into a single sum over all the Gaussians in the
model.
t(j) represents the posterior probability of compo-
nentj at timet given the complete observation sequence.
The gradient of (4) with respect toA has the expressionTA�T� TXt=1 NXj=1 
t(j)��1j AXtXTt �
t(j)��1j �jXTt (5)

Following the terminology from [2], we define thesuffi-
cient statisticsfor feature space MLLR by:� K = TXt=1 NXj=1 
t(j)��1j �jXTt and� Gi = TXt=1 NXj=1 
t(j)�2ji XtXTt ; i = 1 : : :n
where�j = diag(�2j1; : : : ; �2jn). By rewriting (5) in terms
of these statistics, the rows ofA can be found independently
through iteratively solving a set of quadratic equations (for
more details the reader is referred to [4]). Until now, we
have studied the case whenA is a full rank transformation
operating in the completen-dimensional space. To consider
the projection to ap-dimensional subspace withp � n, the
following structure will be imposed on the model parame-
ters�j = " �(p)j�(n�p)0 # ; �j = " �(p)j 00 �(n�p)0 # ; 1 � j � N

(6)

meaning that, after the transformation is applied, the re-
jected dimensions are supposed to be identically (Gaussian)
distributed across all the mixture components. This is a sim-
ilar assumption to the one made in HDA [6]. Correspond-
ingly,A can be decomposed into two parts,A = [A(p)T jA(n�p)T ]T , whereA(p), of dimensionp � n,
will be the useful projection andA(n�p), of dimensionn �p� n, will provide the complementary dimensions. Its role
is to provide a full rank completion toA(p) in order to be
able to make meaningful likelihood comparisons across fea-
ture spaces of equal dimension (n). Our next task at hand
is to find the ML estimates for the completion parameters�(n�p)0 and�(n�p)0 . Plugging (6) into (4) leads to the ob-
jective function



�12 TXt=1 NXj=1 
t(j) h(A(p)Xt � �(p)j )T�(p)�1j (A(p)Xt � �(p)j )i�12 TXt=1(A(n�p)Xt � �(n�p)0 )T�(n�p)�10 (A(n�p)Xt � �(n�p)0 )+T log jAj+ C
(7)

which, when differentiated with respect to�(n�p)0 and�(n�p)0 ,
provides the ML solution�(n�p)0 = A(n�p)�;�(n�p)0 = diag(A(n�p)�A(n�p)T ) (8)

where� and� represent the mean and the covariance of the
adaptation data. In regular HDA [6], (8) is plugged back
into (7) yielding an objective function which now depends
only onA:�12 TXt=1 NXj=1 
t(j) h(A(p)Xt � �(p)j )T�(p)�1j (A(p)Xt � �(p)j )i�T2 TXt=1 log j diag(A(n�p)�A(n�p)T )j+ T log jAj+ C

(9)

However, (9) is difficult to optimize in practice due to
the presence of the two determinant terms. We would like to
be able to use the techniques of feature space MLLR which
consist in accumulating the sufficient gradient statisticsK
andfGig and in solving simpler, independent problems for
the rows ofA. In order to do this, we have to provide
an explicit solution for�(n�p)0 and�(n�p)0 . This is not a
straightforward matter as both terms depend onA(n�p) (andA(n�p) depends on them). We solve this iteratively by first
fixing �(n�p)0 , �(n�p)0 and findingA which is then used to
update�(n�p)0 and�(n�p)0 according to (8). At the begin-

ning,A is initialized to the identity matrix and�(n�p)0 and�(n�p)0 to the mean and the diagonal covariance of the re-
jected dimensions of the adaptation data. Lastly, we derive
a simplified form for the sufficient statistics of feature space
MLLR:K = � K(p)K(n�p) � = " PTt=1PNj=1 
t(j)�(p)�1j �(p)j XTtT�(n�p)�10 �(n�p)0 �T #

(10)

andGi = 8<: PTt=1PNj=1 
t(j)�(p)2ji XtXTt ; i = 1 : : : pT�(n�p)20i�p (� + ��T ); i = p+ 1 : : :n
(11)

3. EXPERIMENTS AND RESULTS

The speech recognition experiments were conducted on the
Switchboard database. We have experimented with two sys-
tems which differ only in the number of diagonal Gaussian
mixture components: 60K and 277K. Both systems were
trained on 243 hours of data and have 3140 context depen-
dent HMM states. The first system has a maximum num-
ber of 20 mixture components per state while for the sec-
ond the maximum number was set to 120. They use 40-
dimensional LDA+MLLT features obtained in the follow-
ing way. We first compute an LDA projection from 117
dimensions to 40 dimensions. The 117 dimensional vec-
tors are formed by splicing 9 consecutive 13-dimensional
cepstral vectors for each frame in the training data. The
classes for LDA are given by all the HMM states except
those corresponding to the silence phones. The LDA com-
putation required estimating one full covariance Gaussian
model for each state in the original 117-dimensional space.
Once the LDA matrix has been obtained, we also keep the
eigenvectors corresponding to the rejected dimensions (or
equivalently, the ones which correspond to the minimum
eigenvalues). That is, we actually compute a full rank LDA
and separate the resulting matrix into a40� 117 projection
and a complement. The range of the projection is further
diagonalized through a maximum likelihood linear trans-
form leading to a composite LDA+MLLT transform. The
models for MLLT are obtained by projecting the initial 117-
dimensional Gaussian parameters. Next, we estimate the
60K and 277K diagonal Gaussian mixture components in
the 40-dimensional LDA+MLLT space. Here the experi-
mental setups for feature space MLLR in the subspace only
and for the projection-based case differ in the following
way: for the former we accumulate statistics in the LDA+MLLT
space and estimate a constrained MLLR transform in that
same subspace. For the latter, the statistics are accumu-
lated in the complete LDA space (more correctly, in the
LDA+MLLT space and the LDA complement). We then
augment the model output distributions with a Gaussian dis-
tribution for the rejected dimensions estimated from the statis-
tics of the adaptation data in the LDA complement. Sub-
sequently, we compute a117 � 117 feature space MLLR
transform and isolate a40�117 projection partA(p). The fi-
nal adapted features are obtained by multiplying the spliced
117-dimensional vector with the full rank LDA matrix and
then by projecting the resulting (117-dimensional) vectorto
40 dimensions throughA(p).



System WER 60K WER 277K
Baseline 50.0% 46.0%
MLLR 46.1% 43.3%
FMLLR 47.5% 44.3%
FMLLR-P 46.5% 42.9%
FMLLR+MLLR – 41.4%
FMLLR-P+MLLR – 40.7%

Table 1: Word error rates for the various adaptation
schemes.

The test set consists of 40 Switchboard conversations
(80 speakers) of the Eval’98 set. It contains approximately
21K words and 1.5 hours of speech with an average con-
versation length of 5 minutes. In table 1, we compare the
performance of standard MLLR, feature space MLLR (FM-
LLR) and projection-based feature space MLLR (FMLLR-
P) for the two different systems. For standard MLLR, we
have used multiple transforms (between 3 and 5 with an av-
erage of 4) based on a regression tree obtained by bottom-up
clustering the HMM states with a Gaussian likelihood met-
ric. It can be seen that one single FMLLR-P transform out-
performs both the multiple standard MLLR transforms (for
the 277K system) and the constrained FMLLR transform.
For the latter, the difference in performance increases with
the size of the system (from 1% to 1.4%). Additionally, we
have also experimented with adding MLLR on top of the
FMLLR and FMLLR-P stages. These results are summa-
rized in the last two lines of table 1. The gains from stan-
dard MLLR and FMLLR-P turned out to be additive (from
2.7% to 2.2%).

4. CONCLUSION

In this paper, we have made the connection between con-
strained MLLR, as a technique for speaker adaptation, and
heteroscedastic discriminant analysis, as a technique forfea-
ture extraction and front-end design. We have shown that
it is possible to create speaker-dependent discriminant pro-
jections by computing constrained MLLR transforms in the
complete space for a particular model where the distribu-
tions of the rejected dimensions are tied across all the pho-
netic classes to the overall distribution of the adaptation
data. Future work will be pursued along two directions:
first, we will investigate speaker-adaptive training [1] inthe
context of this technique where a canonical model is trained
on features which are transformed through speaker-dependent
HDA projections. Secondly, we will allow for multiple fea-
ture space projections by making use of regression classes.
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