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Abstract — ! Research in the speech recognition speech-to-text conversion)
area has been underway for a couple of decades, and a great deal of progress
has been made in reducing the word error rate (WER). In this paper, we at-
tempt to summarize the state of the art in speech recognition algorithms.
The algorithms we describe span the areas of lexicon design, feature extrac-
tion, classifier design, combination of hypotheses, and speaker adaptation
of acoustic models. We will benchmark the algorithms on two main sources
of speech, the first being Voicemail (conversational telephone speech from a
single speaker) and the d being Switchboard ( tonal teleph
speech between two speakers). We also present the results of some cross-
domain experiments which highlight the "brittleness” of speech recognition
systems today and illustrates the need to focus research effort on improving
cross-domain performance.
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I. INTRODUCTION

Research in the speech recognition area has been underway
for a couple of decades, and a great deal of progress has been
made in reducing the word error rate (WER) on some specific
categories of speech such as Broadcast News and Switchboard
transcription and Voicemail transcription. For instance, the
WER on the DARPA sponsored Voicemail transcription task
has dropped by more than a factor of two over the last three
years. Further, the basic techniques that are used in most of
these tasks are similar. In this paper, we attempt to summarize
the state of the art in speech recognition algorithms. We will
benchmark the algorithms on two main sources of speech, the
first being Voicemail (conversational telephone speech from a
single speaker) and the second being Switchboard (conversa-
tional telephone speech between two speakers).

A number of algorithms were developed in the context of these
tasks that contributed significantly to reducing the WER. In
the following sections, we describe some of these algorithms,
spanning the areas of lexicon design, feature extraction, classi-
fier design, combination of hypotheses, and speaker adaptation
of acoustic models. These algorithms were instrumental in re-
ducing the word error rate on Voicemail data to around 28%.

1 We would like to acknowledge the support of DARPA under Grant
MDA972-97-C-0012 for funding part of this work.
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Further, though Voicemail and Switchboard both represent
spontaneous conversational telephone speech, we will show
that there are significant differences between the two. For in-
stance, systems trained on one of these databases do not pro-
vide good performance on the other database. The “brittleness”
of speech recognition systems today is apparent in the results
of some of the cross-domain experiments we describe, and it
illustrates the need to focus research effort on improving cross-
domain performance.

II. BACKGROUND
A. Training/Test data

Voicemail

The Voicemail training database comprises 70 hours of speech,
which corresponds to approximately 700k words of text. We
will refer to this training database as T-VM1. The size of the
testing vocabulary is 11k words. The development test set for
this database comprises 43 messages (D-VM) and the evalu-
ation test set (E-VM) comprises 86 messages. The language
model is a trigram built from the 700k words of text.

Switchboard

We used 2378 of the 2438 Switchboard I conversations [1] as
our training set, and the 19 conversations used in the 1997
Johns Hopkins Workshop as the test set. This training set rep-
resents around 250 hours of speech and 2 million words of text.
We will refer to this training database as T-SWB1 and to the
test database as E-SWB. The size of the vocabulary used for
testing was 18k words. The language model is a trigram built
from the 1.2 million words of text.

B. System Description

The speech recognition system uses a phonetic representation
of the words in the vocabulary. Each phone is modelled with a
3-state left-to-right HMM. Further, we identify the variants of
each state that are acoustically dissimilar by asking questions
about the phonetic context in which the state occurs. The ques-
tions are arranged hierarchically in the form of a decision tree,
and its leaves correspond to the basic acoustic units that we
model. For futher details, see [2]. A feature vector is extracted
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System | FSP | D | #L | #G | Trg
S-VM1 433 Ceps 39 2313 134k T-VM1
S-VM2 708 Proj (1) 39 2313 134k T-VMI1
§-VM3 708 Proj (2) 39 2313 134k T-VM1
S$-VM4 1608 Ceps 39 2313 36k T-VM1
S-VMS 1526 MSG 26 3527 154k T-VM1
S-VM6 8101 Ceps 39 2307 130k T-VM1
§-VM7 f844.v60 Ceps 39 2778 279% T-VMI
S§-VMS {844.v70 Proj (1) 39 2778 279k T-VM1
S-SWBI1 844.v28 Ceps 39 3140 277k T-SWB1
S-SWB2 901 Proj (3) 60 3140 277 T-SWBI1
S-VM9 844.v50 Ceps 39 2778 260k T-VMI +

T-SWBI1
S§-VMI0 f844.v40 Proj (4) 39 2778 260k T-VMI +

T-SWBI1

TABLE 1

SYSTEMS DESCRIPTION: F'S P INDICATES THE TYPE OF FEATURE SPACE,
D INDICATES THE DIMENSIONALITY OF THE SPACE, # L INDICATES THE
NUMBER OF LEAVES IN THE DECISION TREE, #G INDICATES THE
NUMBER OF GAUSSIANS, AND T'rg INDICATES THE TRAINING DATA THAT
WAS USED TO BUILD THE SYSTEM

every 10 ms, and we model the pdf of the feature vector for
each leaf of the decision tree with a mixture of gaussians. The
baseline feature vector is the Mel cepstrum augmented with its
1st and 2nd temporal derivatives (which we refer to as deltas).
We will refer to this as the cepstral feature space. Some of the
systems that we experimented with spliced together 9 frames
of cepstra (the cepstra at the current frame and 4 frames before
and after the current frame) and projected the spliced feature
vector down to a lower dimension by means of a linear trans-
form. We will refer to this feature space as the projected feature
space.

During the course of running these experiments, we built a
number of “baseline” acoustic models using both Voicemail
and Switchboard training data. The improvements accruing
from specific algorithms are benchmarked on these baseline
systems. We summarize the models that we worked with in
Table I

III. LEXICON DESIGN

One observation in connection with voicemail data is that
crossword co-articulation is very common in this data because
of the casual nature of the speech and the fast speaking rate.
For instance, the phrase ’going to take’ would often be pro-
nounced as ’gontake = G AO N T AE KD’. We chose to model
such effects by constructing compound words. A similar tech-
nique was used in [4] to obtain performance improvements on
the Switchboard task - our work differs from [4] in the measure
used to select the compound words.

D-VM
34.7%

System | It.
S-VM1 | 0

Examples

o &

AREA-CODE, GIVE-ME,
A-CALL, E-MAIL,
TAKE-CARE
GIVE-ME-A-CALL,

70 LET-ME-KNOW,
AS-SOON-AS,
THANK-YOU-VERY-MUCH
TALK-TO-YOU-LATER-BYE,

THANKS-A-LOT,
PLEASE-GIVE-ME-A-CALL

TABLEII
WORD ERROR RATES FOR LM MEASURE

S-vM1 | 3 32.3%

The use of these compound words serves multiple purposes.
First, it is generally the case that decoding errors are more com-
mon in shorter words, hence, as the compound words have rel-
atively long baseforms, there are fewer errors in the compound
words. Second, as mentioned earlier, they enable the mod-
elling of cross-word co-articulation effects. Third, stereotypi-
cal phrases such as "hi-this-is” are very common in Voicemail,
and can serve as a trigger for detecting quantities of interest
such as names.

We present a novel algorithm for automatically selecting com-
pound words from a training corpus. The algorithm ranks all
pairs of words in the corpus on the basis of a linguistic mea-
sure, and makes the highest ranking pairs compound words.
The measure is defined in terms of the direct bigram proba-
bility between the words w; and wj;, Pr(Wip1 = w;|W; =
w;), and a reverse bigram probability between the words as

P,-(Wt = 'w,;IWt_H = ’Ll)j).

The measure that we introduced was the geometrical average
of the direct and the reverse bigram:

LM2(w;,w;) = v/ Pr(w; |wi)f’r>(wi [wj) =

P(w;, wy)

v/ P(w;) P(w;)

A. Results

This measure was applied iteratively to the corpus resulting in
an increasing number of compound words per iteration. Ta-
ble II summarizes the total number of new compound words,
examples of such words, the word error rate.

In summary, it may be seen that adding compound words based
on the LM measure results in a 7 % relative improvement in the
word error rate. This vocabulary (with compound words) and
the associated trigram LM will be used in all Voicemail related
experiments in subsequent sections.

IV. FEATURE EXTRACTION

In this section, we report on the results of experiments in fea-
ture extraction. As mentioned earlier, most systems extract
Mel cepstra every 10 ms from the sampled speech. Though
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the Mel cepstra are perceptually motivated, they do not explic-
itly attempt to discriminate between different phonetic classes.
Further, it is possible to augment the Mel cepstra by using ad-
ditional knowledge related to the speech production process in
the hope that this will better help discriminate between pho-
netic classes. In this section, we describe a process of comput-
ing a linear transformation on the Mel cepstra that separates
the phonetic classes out. We also describe the utility of adding
spectral peak related information to the Mel cepstra.

A. Linear transformations of the feature space

In this subsection, we report on experiments related to design-
ing a linear transformation that can be applied on the Mel cep-
stra to better discriminate between phonetic classes. Linear
discriminant analysis is a standard technique for dimensional-
ity reduction with minimal loss of discrimination information.
However, the LDA formulation makes certain assumptions that
are not true. Chief among these is the assumption that all the
classes have the same covariance matrix. A second assump-
tion is that the classes are modelled with full covariance gaus-
sians (an assumption that is not true in most speech recognition
systems). We experimented with two variants of LDA as de-
scribed below.

A.1 Maximum likelihood discriminant (MLD) transformation

Let {z;}1<i<n denote a sequence of D dimensional feature
vectors, where each of the vectors belongs to a single class
Jje{1,---,J}. Let Nj, u;,2; denote the sample count, mean
and covariance of the j** class. The class information may be
condensed into two matrices called

‘ J
1 . 1
within-class scatter: W= N jE—l N;%;

J
! T _ T
between-class scatter: B= v jé_l Njpjp; — o

The LDA objective function tries to find a PxD projection, 8,
such that the ratio of the following determinants is maximized

_ 1687

J()—-W )

However, the assumption of equal class covariances in LDA
can lead to a serious degradation in classification performance
In [5] we presented a HDA formulation that modified the LDA
objective function ( 2) to take into account the different covari-
ance matrices of the different classes. The modified objective
function is given by

|0BET N
T, 95,077 ®

System | Feature space D-VM | E-VM

S-VM1 | Cepstra + deltas | 32.3 % | 39.6 %

S-VM2 | HDA+MLLT 302% | 353 %
TABLE III '

WORD ERROR RATE FOR CEPSTRA, HDA+MLLT, AND DHDA FEATURES

and taking the log of the above objective yielded the HDA ob-
jective function

J
H(0) = ~N;log|0x;67| + Nlog|9B6T|  (4)
j=1

This objective function does not yield a closed form solution
as for the case of LDA, however, it may be optimized using
non-linear optimization techniques.

The discrimination between classes provided in the HDA fea-
ture space requires the use of full covariance gaussian models
for the classes. This is generally too computationally expen-
sive to be practical in most speech recognition systems, conse-
quently, the models are replaced with gaussians that have diag-
onal covariances. If the HDA feature space is characterized by
dimensions that are highly correlated, the modeling approxi-
mation inherent in the diagonal covariance assumption negates
any beneficial effect that the HDA may have. Consequently,
we applied a further transformation (MLLT) that tries to di-
agonalize the HDA feature space [7]. The application of this
transform does not change the HDA objective function value.
We refer to this final feature space as the HDA+MLLT space.

A.2 Results

The word error rates obtained on the development and evalu-
ation voicemail test sets for the cepstral and projected feature
spaces are shown in Table III. The acoustic models were de-
scribed in Section II-B, and the language model and vocabulary
were described in Section III-A. In summary, the HDA+MLLT
space is seen to provide a relative improvement of 10-15% over
the baseline cepstral space.

B. Augmenting cepstra with spectral peak information

One of the most commonly used acoustic observations are the
Mel cepstra, which are extracted from the speech signal every
10 ms. The Mel cepstra are based on perceptual studies and at-
tempt to emulate the way in which the human auditory system
works. It is possible to augment this information further by in-
corporating additional knowledge about the speech production
process into the process of feature extraction. One source of
information is represented in the spectral peak trajectories of
speech. In this section, we attempt to add information related
to spectral peak trajectories and energies to the baseline Mel
cepstral observations. A similar idea was proposed in [8] with
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the objective of providing robustness to noise. However, no
attempt was made in [8] to quantify the amount of information
provided by the new features. This analysis [6] (and the subse-
quent speech recognition experiments) indicate that the useful
information is not in the locations of the spectral peaks, but
rather in the energy at those spectral peaks.

B.1 Tracking spectral peaks

We experimented with extracting features that track the spec-
tral peak locations in some predefined bands, and quantified
the amount of information contained in these new features over
and above the cepstra. Subsequently, we incorporated these
new features into the speech recognition system using feature
fusion, and obtained experimental results that indicate an im-
provement in the word error rate due to the addition of these
features. The spectral peaks were obtained by first bandpass
filtering the speech signal using two bandpass filters with pass-
bands of 250-750 Hz and 850-2300 Hz (we assumed that there
was only one dominant spectral peak in each bandpass signal)
2, Subsequently we used an adaptive filter [10] to isolate the
spectral energy peaks in each of the filtered signals.

B.2 Results

We incorporated the new features into the speech recognition
system using feature fusion i.e., the cepstral features in the
speech recognition system were augmented with the new fea-
tures. The new features were specifically either the frequency
estimate of the peaks, or the energy at these peaks. We further
augmented the “fused” feature with its first and second tem-
poral derivatives. The word error rate results computed on the
D-VM test set are summarized in Fig 1. The x-axis indicates
the dimensionality of the extracted feature (either number of
cepstra, or number of cepstra + e, e2, or number of cepstra +
81, S?)*

The acoustic models were described in Section II-B, and the
language model and vocabulary were described in Section III-
A. For reasons of quick turnaround time, the S-VM4 system,
which represents a smaller version of the S-VMI1 system, was
used as the baseline for these experiments. The figure shows
that the (e;,e2) estimates do contain more information than
the higher order (13th) cepstra and can be used to improve the
performance of the system (by 5.7% on the dev test and 5.2%
on the eval test).

V. CLASSIFIER DESIGN

The basic speech recogntion problem could be interpreted as
a classification problem, where the goal is to predict the class
corresponding to an acoustic observation. In most instances,

2 These passband ranges are motivated by physio linguistic observations [9]
that state that the spectral peaks in the speech signal correspond to formants,
and the range of movement of the first two formants are respectively 250-750
Hz and 850-2300 Hz for the average American speaker.
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Fig. 1. Word error rate vs feature dimension

this problem is converted to a likelihood problem by the ap-
plication of Bayes’ rule, which requires the evaluation of the
probability of an acoustic observation belonging to a class.
The classes generally correspond to context dependent pho-
netic states. The probability density of the observations for
each of these classes is very often modeled using mixtures of
multi-dimensional gaussians. In this section, we look at how
to improve the performance of a classifier based on mixtures
of gaussians by applying an iterative scheme that successively
focuses on the regions of the acoustic space that are difficult to
classify.

Boosting is a technique for sequentially training and combin-
ing a collection of classifiers in such a way that the later clas-
sifiers make up for the deficiencies of the earlier ones. Many
variants exist [12] but all follow the same basic strategy. There
is a sequence of iterations, and at each iteration a new classifier
is trained on a weighted set of the training examples. Initially,
every example gets the same weight, but in subsequent itera-
tions, the weights of hard-to-classify examples are increased
relative to the easy ones. The outputs of the classifiers are
then combined in such a way as to guarantee certain bounds
on both training and testing error [12]. We report results here
using an extension to Adaboost that was presented in [11] and
that allows for large speedups in training time. The extension
was motivated by the scale of the problem, where we have tens
of millions of labeled training pairs, thousands of classes, and
hundreds of thousands of gaussians that model the probability
density of the classes.

A. Results
The experimental results obtained by boosting the system are

summarized in Table IV for the E-VM test set. The starting
point was the S-VM1 system described in Section II-B, and the
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E-VM

1stIt. | 2nd | 3rd | 4th | 5th
396 | 39.5]39.2139.1 | 389
TABLE IV

WORD ERROR RATE FOR DIFFERENT ITERATIONS OF BOOSTING

language model and vocabulary were described in Section III-
A. The word error rate numbers indicate a small but consistent
improvement with an increasing number of iterations.

VI. COMBINING MULTIPLE HYPOTHESES

The most commonly used decoding paradigm for speech
recognition is the maximum a-posteriori (MAP) rule which is
used to guide the hypothesis search.

w* = argmazy,p(w/y) = argmaz,p(y/w)p(w)/p(y) ()

where w represents the sequence of decoded words and y de-
notes the acoustic observations corresponding to the sentence.
In [13] a novel decoding rule was applied to a word lattice (that
was produced by a MAP decoder) to obtain a “consensus hy-
pothesis” as follows: the word lattice (graph) produced by a
MAP decoder is first converted into a chain-like structure by
merging different paths in the graph. The components of the
chain represent parallel sequences of words. The criterion for
merging two paths in the graph is related to the time overlap be-
tween the paths and the phonetic similarity between the word
sequences in the two paths. The decoding rule was equivalent
to picking the most probable word in each component. The
concatenation of these words represents the consensus hypoth-
esis. Further details are given in [13].

A. Results

We evaluated the performance of this technique on the E-VM
test set with a number of systems (denoted S-VM2, S-VM5,
S-VMB6). The acoustic models were described in Section II-
B, and the language model and vocabulary were described in
Section ITI-A. Subsequently, we combined the consensus hy-
potheses of these three systems using ROVER [14]. The results
are presented in Table V (baseline results refers to the 1-best
hypothesis of the corresponding system) and show a consis-
tent improvement (of approximately 3% relative) by using the
consensus hypothesis rather than the 1-best hypothesis.

VII. CROSS-DOMAIN EXPERIMENTS

Finally, we examine the difference between two different
sources of telephone speech, as typified in Voicemail and
Switchboard conversations. Specifically we examined the per-
formance on the Switchboard test set using acoustic models
trained on Voicemail and vice-versa. Superficially, as Voice-
mail and Switchboard both represent telephone bandlimited

D-VM E-VM
System | Baseline | Consensus | Baseline | Consensus
S-VM2 | 302% 28.9 % 35.2% 33.8%
S-VM6 | 33.7% 312 % 39.4% 37.7%
S-VM5 | 424 % 41.6 % 47.7% 46.9%
Rover 29.2 % 28.5 % 34.2% 33.3%
TABLEV

WORD ERROR RATES FOR VARIOUS SYSTEMS USING 1-BEST AND
CONSENSUS HYPOTHESIS

[ System [ Training | Test
Cross domain-Cepstral feature space

E-VM | E-SWB
S-VM7 | T-VM1 395% | 622 %
S-SWB1 | T-SWB1 535% | 458 %
Cross domain - Projected feature space
S-VM8 | T-VM1 363% | 5713 %
S-SWB2 | T-SWB1 468 % | 385 %
Joint Training - Cepstral feature space
S-VM9 | T-VM1 417% | 48.7 %
+ T-SWB1
Joint Training - Projected feature space
S-VM10 | T-VM1 369% | 44.7 %
T-SWB1
TABLE VI

WER PERFORMANCE FOR CROSS-DOMAIN CONDITION

conversational speech, one would expect the performance on
either test set to be independent of what database it is trained
on, but the results show that this is not the case. The language
model and vocabulary were NOT mismatched in these experi-
ments. The difference in performance also appears to depend
on the feature space that is used. We present results here for
several systems.

From Table VI, the performance degradation from the matched
condition (shown underlined) due to a mismatch in the acous-
tic models ranges from 35-36% for the cepstral feature space
to 29-49% for the projected feature space. The degradation ap-
pears to be worse for the Switchboard test set. Training the
acoustic models on data from both domains does reduce the
degradation to a large extent (6% for the cepstral feature space,
1% for the projected feature space). The results show that the
individual systems built on either training database are rela-
tively domain-dependent, and that our current modeling tech-
niques are not as robust as one might desire and should be the
focus of future algorithm development. Further details of these
experiments are given in [15].
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VIII. CONCLUSION

In this paper we report on the evolution of the word error rate
(WER) on a large vocabulary telephone speech recognition
task, as typified in voicemail. We report results on a nu,mber of
algorithms spanning the areas of lexicon design, feature extrac-
tion, classifier design, and combination of hypotheses, which
acoustic models and were instrumental in reducing the word
error rate on Voicemail data to around 28%. More specifically,
the algorithms and their relative contributions were :

e a lexicon design technique that yields a 7% relative im-
provemnt in performance

e anovel linear projection (HDA+MLLT) that improves perfor-
mance on the baseline cepstral feature space by approximtely
10% relative

e a novel feature fusion technique that augments the cepstra .

with spectral peak energy information and yields a relative im-
provement of 2.5%

e use of boosting techniques for gaussian mixtures that yields
3% relative improvement

o use of a consensus hypothesis algorithm that provides a 3%
relative improvement

Finally, we also reported on the results of some cross-domain
experiments that underline the brittleness” of the speech
recognition systems we use today and highlight the need to
focus research attention on improving cross-domain perfor-
mance. In particular ’

o the cross-domain experiments that show the sensitivity of
system performance to training data

e the crude approach of making the system more robust by
training on the union of all data sets does seem to work
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