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Abstract - ' Research in the speech recognition speech-to-text conversion) 
area hus been underway for a couple of decades, and a greal deal of progress 
has been made in reducing the word error rate (WER). In this paper, we at- 
tempt to summarize the state of the art in speech recognition algorithms. 
The algorithms we describe span the areas of lexicon design, feature extrac- 
tion, classifir design, combinntion of hypotheses, and speaker adaphthn 
of acoustic models. We will benchmark the algorithms on two main sources 
of speech, the first being Voicemail (conversational telephone speech from a 
single speaker) and the second being Switchboard (conversatbnal telephone 
speech between two speakers). We ako present the results of some cross- 
hmuin experiments which highlight the "bri#leness" of speech recognition 
systems today and illustrates the need to focus research effort on improving 
cross-domain pedormance. 
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I. INTRODUCTION 

Research in the speech recognition area has been underway 
for a couple of decades, and a great deal of progress has been 
made in reducing the word error rate ( W R )  on some specific 
categories of speech such as Broadcast News and Switchboard 
transcription and Voicemail transcription. For instance, the 
WER on the DARPA sponsored Voicemail transcription task 
has dropped by more than a factor of two over the last three 
years. Further, the basic techniques that are used in most of 
these tasks are similar. In this paper, we attempt to summarize 
the state of the art in speech recognition algorithms. We will 
benchmark the algorithms on two main sources of speech, the 
first being Voicemail (conversational telephone speech from a 
single speaker) and the second being Switchboard (conversa- 
tional telephone speech between two speakers). 

A number of algorithms were developed in the context of these 
tasks that contributed significantly to reducing the WER. In 
the following sections, we describe some of these algorithms, 
spanning the areas of lexicon design, feature extraction, classi- 
fier design, combination of hypotheses, and speaker adaptation 
of acoustic models. These algorithms were instrumental in re- 
ducing the word error rate on Voicemail data to around 28%. 

We would like to acknowledge the support of DARPA under Grant 
MDA972-97-C-0012 forfundingpart of this work. 

Further, though Voicemail and Switchboard both represent 
spontaneous conversational telephone speech, we will show 
that there are significant differences between the two. For in- 
stance, systems trained on one of these databases do not pro- 
vide good performance on the other database. The "brittleness" 
of speech recognition systems today is apparent in the results 
of some of the cross-domain experiments we describe, and it 
illustrates the need to focus research effort on improving cross- 
domain performance. 

11. BACKGROUND 

A. Trainingnest data 

Voicemail 
The Voicemail training database comprises 70 hours of speech, 
which corresponds to approximately 700k words of text. We 
will refer to this training database as T-VMl. The size of the 
testing vocabulary is 1 l k  words. The development test set for 
this database comprises 43 messages (D-VM) and the evalu- 
ation test set (E-VM) comprises 86 messages. The language 
model is a trigram built from the 700k words of text. 

Switchboard 
We used 2378 of the 2438 Switchboard I conversations [ 11 as 
our training set, and the 19 conversations used in the 1997 
Johns Hopkins Workshop as the test set. This training set rep- 
resents around 250 hours of speech and 2 million words of text. 
We will refer to this training database as T-SWB1 and to the 
test database as E-SWB. The size of the vocabulary used for 
testing was 18k words. The language model is a trigram built 
from the 1.2 million words of text. 

B. System Description 

The speech recognition system uses a phonetic representation 
of the words in the vocabulary. Each phone is modelled with a 
3-state left-to-right HMM. Further, we identify the variants of 
each state that are acoustically dissimilar by asking questions 
about the phonetic context in which the state occurs. The ques- 
tions are arranged hierarchically in the form of a decision tree, 
and its leaves correspond to the basic acoustic units that we 
model. For futher details, see [2]. A feature vector is extracted 
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System 
S-VMI f433 

S-VMZ f708 

S-VM3 t708 

S-VM4 fW8 

S-VMS fs26 

S-VM6 f8101 

S-VM7f84l.vM) 

S - V M B W . v 7 0  

S-SWBlW.v28 

S-SWZP301 

S-VM9f844.vSO 1 Ceps j 1 '2::: 1 260k 1 T-VMI + 
T-SWBI 

S-VMIO W . v 4 0  Roj (4) 2Wk T-VMI+ 

T-SWBI 

TABLE I 
SYSTEMS DESCRIPTION: F S P  INDICATES THE TYPE OF FEATURE SPACE, 

D INDICATES THE'DIMENSIONALITY OF THE SPACE, #L INDICATES THE 

NUMBER OF LEAVES IN THE DECISION TREE, #G INDICATES THE 

NUMBER OF GAUSSIANS, AND Trg INDICATES THE TRAINING DATA THAT 

WAS USED TO BUILD THE SYSTEM 

FSP D 
ceps 39 

F"j(1) 39 

Roj(2) 39 

ceps 39 

MSG 26 

ceps 39 

Ceps 39 

Roj(1) 39 

ceps 39 

Fmj(3) W 

every 10 ms, and we model the pdf of the feature vector for 
each leaf of the decision tree with a mixture of gaussians. The 
baseline feature vector is the Me1 cepstrum augmented with its 
1st and 2nd temporal derivatives (which we refer to as deltas). 
We will refer to this as the cepstral feature space. Some of the 
systems that we experimented with spliced together 9 frames 
of cepstra (the cepstra at the current frame and 4 frames before 
and after the current frame) and projected the spliced feature 
vector down to a lower dimension by means of a linear trans- 
form. We will refer to this feature space as the projected feature 
space. 

During the course of running these experiments, we built a 
number of "baseline" acoustic models using both Voicemail 
and Switchboard training data. The improvements accruing 
from specific algorithms are benchmarked on these baseline 
systems. We summarize the models that we worked with in 
Table 1. 

111. LEXICON DESIGN 

One observation in connection with voicemail data is that 
crossword co-articulation is very common in this data because 
of the casual nature of the speech and the fast speaking rate. 
For instance, the phrase 'going to take' would often be pro- 
nounced as 'gontake = G A0 N T AE KD'. We chose to model 
such effects by constructing compound words. A similar tech- 
nique was used in [4] to obtain performance improvements on 
the Switchboard task - our work differs from [4] in the measure 
used to select the compound words. 

S-VM1 I I 70 

Examples I D-VM 
1 34.7% 

AREA-CODE e. 
A-CALL, E-MAIL. 
TAKECARE 
GIVE-ME-A-CALL. 
LET-ME-KNOW. 
AS-SOON-AS, 
THANK-YOU-VERY-MUCH 
TALK-TO-YOU-LATER-BYE, 
THANKSALQT. 

32.3% 

PLEASEGIVEME-A-CALL I 
TABLE II 

W O R D  ERROR RATES FOR LM MEASURE 

The use of these compound words serves multiple purposes. 
First, it is generally the case that decoding errors are more com- 
mon in shorter words, hence, as the compound words have rel- 
atively long baseforms, there are fewer errors in the compound 
words. Second, as mentioned earlier, they enable the mod- 
elling of cross-word co-articulation effects. Third, stereotypi- 
cal phrases such as "hi-this-is" are very common in Voicemail, 
and can serve as a trigger for detecting quantities of interest 
such as names. 

We present a novel algorithm for automatically selecting com- 
pound words from a training corpus. The algorithm ranks all 
pairs of words in the corpus on the basis of a linguistic mea- 
sure, and makes the highest ranking pairs compound words. 
The measure is defined in terms of the direct bigrum proba- 
bility between the words wi and wj, Pf(Wt+l = W j l W t  = 
wi), and a reverse bigram probability between the words as 
P,(W, = WiJWt+l = W j ) .  

The measure that we introduced was the geometrical average 
of the direct and the reverse bigram: 

A. Results 

This measure was applied iteratively to the corpus resulting in 
an increasing number of compound words per iteration. Ta- 
ble I1 summarizes the total number of new compound words, 
examples of such words, the word error rate. 

In summary, it may be seen that adding compound words based 
on the LM measure results in a 7 % relative improvement in the 
word error rate. This vocabulary (with compound words) and 
the associated trigram LM will be used in all Voicemail related 
experiments in subsequent sections. 

IV. FEATURE EXTRACTION 

In this section, we report on the results of experiments in fea- 
ture extraction. As mentioned earlier, most systems extract 
Me1 cepstra every 10 ms from the sampled speech. Though 
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the Me1 cepstra are perceptually motivated, they do not explic- 
itly attempt to discriminate between different phonetic classes. 
Further, it is possible to augment the Me1 cepstra by using ad- 
ditional knowledge related to the speech production process in 
the hope that this will better help discriminate between pho- 
netic classes. In this section, we describe a process of comput- 
ing a linear transformation on the Me1 cepstra that separates 
the phonetic classes out. We also describe the utility of adding 
spectral peak related information to the Me1 cepstra. 

System 
S-VM1 
S-VM2 

A. Linear transformations of the feature space 

Feature space D-VM E-VM 
Cepstra + deltas 32.3 % 39.6 % 
HDA+MLLT 30.2 % 35.3 70 

In this subsection, we report on experiments related to design- 
ing a linear transformation that can be applied on the Me1 cep- 
stra to better discriminate between phonetic classes. Linear 
discriminant analysis is a standard technique for dimensional- 
ity reduction with minimal loss of discrimination information. 
However, the LDA formulation makes certain assumptions that 
are not true. Chief among these is the assumption that all the 
classes have the same covariance matrix. A second assump- 
tion is that the classes are modelled with full covariance gaus- 
sians (an assumption that is not true in most speech recognition 
systems). We experimented with two variants of LDA as de- 
scribed below. 

A. 1 Maximum likelihood discriminant (MLD) transformation 

Let { ~ i } l l i l ~  denote a sequence of D dimensional feature 
vectors, where each of the vectors belongs to a single class 
j E { 1 , .  . . , J } .  Let N j ,  p j ,  Cj denote the sample count, mean 
and covariance of the j t h  class. The class information may be 
condensed into two matrices called 

l J  

l J  

within-class scatter: W = - Nj  C j  
j=1 

between-class scatter: B = - NjpjpT - piiT 
j=1 

The LDA objective function tries to find a PxD projection, 8, 
such that the ratio of the following determinants is maximized 

However, the assumption of equal class covariances in LDA 
can lead to a serious degradation in classification performance 
In [5 ]  we presented a HDA formulation that modified the LDA 
objective function ( 2) to take into account the different covari- 
ance matrices of the different classes. The modified objective 
function is given by 

and taking the log of the above objective yielded the HDA ob- 
jective function 

J 

H ( 8 )  = - N ~  log jmjeTI + Niog pmT( (4) 
j=1 

This objective function does not yield a closed form solution 
as for the case of LDA, however, it may be optimized using 
non-linear optimization techniques. 

The discrimination between classes provided in the HDA fea- 
ture space requires the use of full covariance gaussian models 
for the classes. This is generally too computationally expen- 
sive to be practical in most speech recognition systems, conse- 
quently, the models are replaced with gaussians that have diag- 
onal covariances. If the HDA feature space is characterized by 
dimensions that are highly correlated, the modeling approxi- 
mation inherent in the diagonal covariance assumption negates 
any beneficial effect that the HDA may have. Consequently, 
we applied a further transformation (MLLT) that tries to di- 
agonalize the HDA feature space [7]. The application of this 
transform does not change the HDA objective function value. 
We refer to this final feature space as the HDA+MLLT space. 

A.2 Results 

The word error rates obtained on the development and evalu- 
ation voicemail test sets for the cepstral and projected feature 
spaces are shown in Table 111. The acoustic models were de- 
scribed in Section 11-B, and the language model and vocabulary 
were described in Section 111-A. In summary, the HDA+MLLT 
space is seen to provide a relative improvement of 10- 15% over 
the baseline cepstral space. 

B. Augmenting cepstra with spectral peak information 

One of the most commonly used acoustic observations are the 
Me1 cepstra, which are extracted from the speech signal every 
10 ms. The Me1 cepstra are based on perceptual studies and at- 
tempt to emulate the way in which the human auditory system 
works. It is possible to augment this information further by in- 
corporating additional knowledge about the speech production 
process into the process of feature extraction. One source of 
information is represented in the spectral peak trajectories of 
speech. In this section, we attempt to add information related 
to spectral peak trajectories and energies to the baseline Me1 
cepstral observations. A similar idea was proposed in [8] with 
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the objective of providing robustness to noise. However, no 
attempt was made in [8] to quantify the amount of information 
provided by the new features. This analysis [6] (and the subse- 
quent speech recognition experiments), indicate that the useful 
information is not in the locations of the spectral peaks, but 
rather in the energy at those spectral peaks. 

B. 1 Tracking spectral peaks 

We experimented with extracting features that track the spec- 
tral peak locations in some predefined bands, and quantified 
the amount of information contained in these new features over 
and above the cepstra. Subsequently, we incorporated these 
new features into the speech recognition system using feature 
fusion, and obtained experimental results that indicate an im- 
provement in the word error rate due to the addition of these 
features. The spectral peaks were obtained by first bandpass 
filtering the speech signal using two bandpass filters with pass- 
bands of 250-750 Hz and 850-2300 Hz (we assumed that there 
was only one dominant spectral peak in each bandpass signal) 
*. Subsequently we used an adaptive filter [lo] to isolate the 
spectral energy peaks in each of the filtered signals. 

B.2 Results 

We incorporated the new features into the speech recognition 
system using feature fusion i.e., the cepstral features in the 
speech recognition system were augmented with the new fea- 
tures. The new features were specifically either the frequency 
estimate of the peaks, or the energy at these peaks. We further 
augmented the "fused" feature with its first and second tem- 
poral derivatives. The word error rate results computed on the 
D-VM test set are summarized in Fig 1. The x-axis indicates 
the dimensionality of the extracted feature (either number of 
cepstra, or number of cepstra + el e2, or number of cepstra + 
SllSZ). 

The acoustic models were described in Section 11-B, and the 
language model and vocabulary were described in Section III- 
A. For reasons of quick turnaround time, the S-VM4 system, 
which represents a smaller version of the S-VM1 system, was 
used as the baseline for these experiments. The figure shows 
that the (el, e2) estimates do contain more information than 
the higher order (13th) cepstra and can be used to improve the 
performance of the system (by 5.7% on the dev test and 5.2% 
on the eval test). 

V. CLASSIFIER DESIGN 

The basic speech recogntion problem could be interpreted as 
a classification problem, where the goal is to predict the class 
corresponding to an acoustic observation. In most instances, 

These passband ranges are motivated by physio linguistic observations [9] 
that state that the spectral peaks in the speech signal correspond to formants. 
and the range of movement of the first two formants are respectively 250-750 
Hz and 850-2300 Hz for the average American speaker. 

42 i 

Cepstra,sl ,sZ+detlas 
Cepstra e l  .ez+deltas 

10 12 14 16 18 20 
Feature dimension 

Cepstra.61 ,sZ+deltas 

Cepstra 01 ,eZ+d%ltas 

10 12 14 16 I8  20 22 
Feature dimension 

Fig. 1. Word error rate vs feature dimension 

this problem is converted to a likelihood problem by the ap- 
plication of Bayes' rule, which requires the evaluation of the 
probability of an acoustic observation belonging to a class. 
The classes generally correspond to context dependent pho- 
netic states. The probability density of the observations for 
each of these classes is very often modeled using mixtures of 
multi-dimensional gaussians. In this section, we look at how 
to improve the performance of a classifier based on mixtures 
of gaussians by applying an iterative scheme that successively 
focuses on the regions of the acoustic space that are difficult to 
classify. 

Boosting is a technique for sequentially training and combin- 
ing a collection of classifiers in such a way that the later clas- 
sifiers make up for the deficiencies of the earlier ones. Many 
variants exist [ 121 but all follow the same basic strategy. There 
is a sequence of iterations, and at each iteration a new classifier 
is trained on a weighted set of the training examples. Initially, 
every example gets the same weight, but in subsequent itera- 
tions, the weights of hard-to-classify examples are increased 
relative to the easy ones. The outputs of the classifiers are 
then combined in such a way as to guarantee certain bounds 
on both training and testing error [12]. We report results here 
using an extension to Adaboost that was presented in [ 111 and 
that allows for large speedups in training time. The extension 
was motivated by the scale of the problem, where we have tens 
of millions of labeled training pairs, thousands of classes, and 
hundreds of thousands of gaussians that model the probability 
density of the classes. 

A. Results 

The experimental results obtained by boosting the system are 
summarized in Table IV for the E-VM test set. The starting 
point was the S-VM1 system described in Section 11-B, and the 
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E-VM 
System 
S-VM2 

1stIt. 1 2nd I 3rd I 4th I 5th 
39.6 I 39.5 1 39.2 I 39.1 I 38.9 

Baseline I Consensus I Baseline I Consensus 
30.2 % I 28.9 % I 35.2% I 33.8% 

TABLE IV 
WORD ERROR RATE FOR DIFFERENT ITERATIONS OF BOOSTING S-VM5 

Rover 

D-VM E-VM 

42.4% 41.6% 47.7% 46.9% 
29.2% 28.5 % 34.2% 33.3% 

I S-VM6 1 33.7 % I 31.2 % I 39.4% 1 37.7% I 

language model and vocabulary were described in Section III- 
A. The word error rate numbers indicate a small but consistent 
improvement with an increasing number of iterations. 

TABLE V 
W O R D  ERROR RATES FOR VARIOUS SYSTEMS USING 1-BEST AND 

CONSENSUS HYPOTHESIS 

VI. COMBINING MULTIPLE HYPOTHESES 
I Svstem I Training I Test 

The most commonly used decoding paradigm for speech 
recognition is the maximum a-posteriori (MAP) rule which is 
used to guide the hypothesis search. 

- tu* = avmazc,p(u/y) = argmaz,p(y/u)p(u)/p(y) (5) 

where p represents the sequence of decoded words and y de- 
notes the acoustic observations corresponding to the sentence. 
In [ 131 a novel decoding rule was applied to a word lattice (that 
was produced by a MAP decoder) to obtain a "consensus hy- 
pothesis" as follows: the word lattice (graph) produced by a 
MAP decoder is first converted into a chain-like structure by 
merging different paths in the graph. The components of the 
chain represent parallel sequences of words. The criterion for 
merging two paths in the graph is related to the time overlap be- 
tween the paths and the phonetic similarity between the word 
sequences in the two paths. The decoding rule was equivalent 
to picking the most probable word in each component. The 
concatenation of these words represents the consensus hypoth- 
esis. Further details are given in [ 131. 

A. Results 

We evaluated the performance of this technique on the E-VM 
test set with a number of systems (denoted S-VM2, S-VM5, 
S-VM6). The acoustic models were described in Section II- 
B, and the language model and vocabulary were described in 
Section 111-A. Subsequently, we combined the consensus hy- 
potheses of these three systems using ROVER [ 141. The results 
are presented in Table V (baseline results refers to the 1-best 
hypothesis of the corresponding system) and show a consis- 
tent improvement (of approximately 3% relative) by using the 
consensus hypothesis rather than the 1-best hypothesis. 

VII. CROSS-DOMAIN EXPERIMENTS 

Finally, we examine the difference between two different 
sources of telephone speech, as typified in Voicemail and 
Switchboard conversations. Specifically we examined the per- 
formance on the Switchboard test set using acoustic models 
trained on Voicemail and vice-versa. Superficially, as Voice- 
mail and Switchboard both represent telephone bandlimited 

~~ 

Cross domain-Cepstral feature space 

Cross domain - Projected feature space 
I S-VM8 1 T-VM1 I 36.3 % I 57.3 % 1 
1 S-SWB2 I T-SWB1 

Joint Training - Cepstral feature space 
1 S-VM9 I T-VM1 141.7% I 48.7% 1 

1 46.8 % I 38.5 % 

I I +T-SWBl t I I 
I I I I I 

Joint Training - Projected feature space 
1 S-VM10 I T-VM1 1 36.9 % I 44.7 % I 
I I T-SWB1 I I I 

TABLE VI 
WER PERFORMANCE FOR CROSS-DOMAIN CONDITION 

conversational speech, one would expect the performance on 
either test set to be independent of what database it is trained 
on, but the results show that this is not the case. The language 
model and vocabulary were NOT mismatched in these experi- 
ments. The difference in performance also appears to depend 
on the feature space that is used. We present results here for 
several systems. 

From Table VI, the performance degradation from the matched 
condition (shown underlined) due to a mismatch in the acous- 
tic models ranges from 35-36% for the cepstral feature space 
to 29-49% for the projected feature space. The degradation ap- 
pears to be worse for the Switchboard test set. Training the 
acoustic models on data from both domains does reduce the 
degradation to a large extent (6% for the cepstral feature space, 
1% for the projected feature space). The results show that the 
individual systems built on either training database are rela- 
tively domain-dependent, and that our current modeling tech- 
niques are not as robust as one might desire and should be the 
focus of future algorithm development. Further details of these 
experiments are given in [ 151. 
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VIII. CONCLUSION [I31 

~ 4 1  
In this paper we report on the evolution of the word error rate 
(WER) on a large vocabulary telephone speech recognition 
task, as typified in voicemail. We report results on a nu,mber of 
algorithms spanning the areas of lexicon design, feature extrac- 
tion, classifier design, and combination of hypotheses, which 
acoustic models and were instrumental in reducing the word 
error rate on Voicemail data to around 28%. More specifically, 
the algorithms and their relative contributions were : 
0 a lexicon design technique that yields a 7% relative im- 
provemnt in performance 
0 a novel linear projection (HDA+MLLT) that improves perfor- 
mance on the baseline cepstral feature space by approximtely 
10% relative 
0 a novel feature fusion technique that augments the cepstra 
with spectral peak energy information and yields a relative im- 
provement of 2.5% 
0 use of boosting techniques for gaussian mixtures that yields 
3% relative improvement 
0 use of a consensus hypothesis algorithm that provides a 3% 
relative improvement 
Finally, we also reported on the results of some cross-domain 
experiments that underline the ”brittleness” of the speech 
recognition systems we use today and highlight the need to 
focus research attention on improving cross-domain perfor- 
mance. In particular 
0 the cross-domain experiments that show the sensitivity of 
system performance to training data 
0 the crude approach of making the system more robust by 
training on the union of all data sets does seem to work 

[15] 
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