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Abstract

Modern classification applications necessitate supplementing the few
available labeled examples with unlabeled examples to improve classi-
fication performance. We present a new tractable algorithm for exploit-
ing unlabeled examples in discriminative classification. This is achieved
essentially by expanding the input vectors into longer feature vectors via
both labeled and unlabeled examples. The resulting classification method
can be interpreted as a discriminative kernel density estimate and is read-
ily trained via the EM algorithm, which in this case is both discriminative
and achieves the optimal solution. We provide, in addition, a purely dis-
criminative formulation of the estimation problem by appealing to the
maximum entropy framework. We demonstrate that the proposed ap-
proach requires very few labeled examples for high classification accu-
racy.

1 Introduction

In many modern classification problems such as text categorization, very few labeled ex-
amples are available but a large number of unlabeled examples can be readily acquired.
Various methods have recently been proposed to take advantage of unlabeled examples to
improve classification performance. Such methods include the EM algorithm with naive
Bayes models for text classification [1], the co-training framework [2], transduction [3, 4],
and maximum entropy discrimination [5].

These approaches are divided primarily on the basis of whether they employ generative
modeling or are motivated by robust classification. Unfortunately, the computational effort
scales exponentially with the number of unlabeled examples for exact solutions in discrim-
inative approaches such as transduction [3, 5]. Various approximations are available [4, 5]
but their effect remains unclear.

In this paper, we formulate a complementary discriminative approach to exploiting unla-
beled examples, effectively by using them to expand the representation of examples. This
approach has several advantages including the ability to represent the true Bayes optimal
decision boundary and making explicit use of the density over the examples. It is also
computationally feasible as stated.

The paper is organized as follows. We start by discussing the kernel density estimate and
providing a smoothness condition, assuming labeled data only. We subsequently introduce
unlabeled data, define the expansion and formulate the EM algorithm for discriminative



training. In addition, we provide a purely discriminative version of the parameter estima-
tion problem and formalize it as a maximum entropy discrimination problem. We then
demonstrate experimentally that various concerns about the approach are not warranted.

2 Kernel density estimation and classification

We start by assuming a large number oflabeledexamplesD = {(x1, ỹ1), . . . , (xN , ỹN )},
whereỹi ∈ {−1, 1} andxi ∈ Rd. A joint kernel density estimate can be written as

P (x, y) =
1
N

N∑
i=1

δ(y, ỹi) K(x,xi) (1)

where
∫

K(x,xi)dµ(x) = 1 for eachi. With an appropriately chosen kernelK, a function
of N, P (x, y) will be consistentin the sense of converging to the joint density asN →∞.

Given a fixed number of examples, the kernel functionsK(x,xi) may be viewed as con-
ditional probabilitiesP (x|i), wherei indexes the observed points. For the purposes of this
paper, we assume a Gaussian formK(x,xi) = N(x; xi, σ

2I ). The labelsỹi assigned
to the sampled pointsxi may themselves be noisy and we incorporateP (y|i), a location-
specific probability of labels. The resulting joint density model is

P (x, y) =
1
N

N∑
i=1

P (y|i)P (x|i)
y x

i

Interpreting1/N as a prior probability of the index variablei = 1, . . . , N , the resulting
model conforms to the graph depicted above. This is reminiscent of theaspect modelfor
clustering of dyadic data [6]. There are two main differences. First, the number of aspects
here equals the number of examples and the model is not suitable for clustering. Second, we
do not search for the probabilitiesP (x|i) (kernels), instead they are associated with each
observed example and are merely adjusted in terms of scale (kernel width). This restriction
yields a significant computational advantage in classification, which is the objective in this
paper.

The posterior probability of the labely given an examplex is given by P (y|x) =∑
i P (y|i)P (i|x), whereP (i|x) ∝ P (x|i)/P (x) asP (i) is assumed to be uniform. The

quality of the posterior probability depends both on how accuratelyP (y|i) are known as
well as on the properties of the membership probabilitiesP (i|x) (always known) that must
be relatively smooth.

Here we provide a simple condition on the membership probabilitiesP (i|x) so that any
noise in the sampled labels for the available examples would not preclude accurate deci-
sions. In other words, we wish to ensure that the conditional probabilitiesP (y|x) can be
evaluated accurately on the basis of the sampled estimate in Eq. (1). Removing the label
noise provides an alternative way of setting the width parameterσ of the Gaussian kernels.
The simple lemma below, obtained via standard large deviation methods, ties the appro-
priate choice of the kernel widthσ to the squared norm of the membership probabilities
P (i|xj).

Lemma 1 Let IN = {1, . . . , N}. Given anyδ > 0, ε > 0, and any collection of distribu-
tionspi|k ≥ 0,

∑
i∈IN

pi|k = 1 for k ∈ IN , such that‖p·|k‖2 ≤ ε/
√

2 log(2N/δ),∀k ∈
IN , and independent samplesỹi ∈ {−1, 1} from someP (y|i), i ∈ IN , then
P (∃k ∈ IN : |

∑N
i=1 ỹipi|k −

∑N
i=1 wipi|k| > ε) ≤ δ wherewi = P (y = 1|i) − P (y =

−1|i) and the probability is taken over the independent samples.



The lemma applies to our case by settingpi|k = P (i|xk), {ỹi} represents the sampled
labels for the examples, and by noting that the sign of

∑
wiP (i|x) is the MAP decision

rule from our model,P (y = 1|x) − P (y = −1|x). The lemma states that as long as the
membership probabilities have appropriately bounded squared norm, the noise in the label-
ing is inconsequential for the classification decisions. Note, for example, that a distribution
pi|k = 1/N has‖p·|k‖2 = 1/

√
N implying that the conditions are achievable for large

N . The squared norm ofP (i|x) is directly controlled by the kernel widthσ2 and thus the
lemma ties the kernel width with the accuracy of estimating the conditional probabilities
P (y|x). Algorithms for adjusting the kernel width(s) on the basis of this will be presented
in a longer version of the paper.

3 The expansion and EM estimation

A useful way to view the resulting kernel density estimate is that each examplex is rep-
resented by a vector of membership probabilitiesP (i|x), i = 1, . . . , N . Suchmixture
distancerepresentations have been used extensively; it can also be viewed as a Fisher score
vector computed with respect to adjustable weightingP (i). The examples in this new
representation are classified by associatingP (y|i) with each component and computing
P (y|x) =

∑
i P (y|i)P (i|x). An alternative approach to exploiting kernel density esti-

mates in classification is given by [7].

We now assume that we have labels for only a few examples, and our training data is
{(x1, ỹ1), . . . , (xL, ỹL),xL+1, . . . ,xN}. In this case, we may continue to use the model
defined above and estimate the free parameters,P (y|i), i = 1, . . . , N , from the few labeled
examples. In other words, we can maximize the conditional log-likelihood

L∑
l=1

log P (ỹl|xl) =
L∑

l=1

log
N∑

i=1

P (ỹl|i)P (i|xl) (2)

where the first summation is only over the labeled examples andL � N . SinceP (i|xl)
are fixed, this objective function is jointly concave in the free parameters and lends itself
to a unique maximum value. The concavity also guarantees that this optimization is easily
performed via the EM algorithm [8].

Let pi|l be the soft assignment for componenti given (xl, ỹl), i.e., pi|l = P (i|xl, ỹl) ∝
P (ỹl|i)P (i|xl). The EM algorithm iterates between the E-step, wherepi|l are recom-
puted from the current estimates ofP (y|i), and the M-step where we updateP (y|i) ←∑

l:ỹl=y pi|l/
∑

l pi|l.

This procedure may have to be adjusted in cases where the overall frequency of different
labels in the (labeled) training set deviates significantly from uniform. A simple rescaling
P (y|i) ← P (y|i)/Ly by the frequenciesLy and renormalization after each M-step would
probably suffice.

The runtime of this algorithm isO(LN). The discriminative formulation suggests that EM
will provide reasonable parameter estimatesP (y|i) for classification purposes. The qual-
ity of the solution, as well as the potential for overfitting, is contingent on the smoothness
of the kernels or, equivalently, smoothness of the membership probabilitiesP (i|x). Note,
however, that whether or notP (y|i) will converge to the extreme values0 or 1 is not an in-
dication of overfitting. Actual classification decisions for unlabeled examplesxi (included
in the expansion) need to be made on the basis ofP (y|xi) and not on the basis ofP (y|i),
which function as parameters.



4 Discriminative estimation

An alternative discriminative formulation is also possible, one that is more sensitive to the
decision boundary rather than probability values associated with the labels. To this end,
consider the conditional probabilityP (y|x) =

∑
i P (y|i)P (i|x). The decisions are made

on the basis of the sign of the discriminant function

f(x) = P (y = 1|x)− P (y = −1|x) =
N∑

i=1

wiP (i|x) (3)

wherewi = P (y = 1|i) − P (y = −1|i). This is similar to a linear classifier and there
are many ways of estimating the weightswi discriminatively. The weights should remain
bounded, however, i.e.,wi ∈ [−1, 1], so long as we wish to maintain the kernel density
interpretation. Estimation algorithms with Euclidean norm regularization such as SVMs
would not be appropriate in this sense. Instead, we employ the maximum entropy discrim-
ination (MED) framework [5] and rely on the relationwi = E{yi} =

∑
yi=±1 yiP (y) to

estimate the distributionP (y) over all the labelsy = [y1, . . . , yN ]. Hereyi is a parame-
ter associated with theith example and should be distinguished from any observed labels.
We can show that in this case the maximum entropy solution factors across the examples
P (y1, . . . , yN ) =

∏
i Pi(yi) and we can formulate the estimation problem directly in terms

of the marginalsPi(yi).

The maximum entropy formalism encodes the principle that label assignmentsPi(yi) for
the examples should remain uninformative to the extent possible given the classification
objective. More formally, given a set ofL labeled examples(x1, ỹ1), . . . , (xL, ỹL), we
maximize

∑N
i=1 H(yi)− C

∑
l ξl subject to the classification constraints

ỹl

[
N∑

i=1

∑
yi=±1

yi Pi(yi)P (i|xl)

]
+ ξl ≥ γ ∀l ∈ [1 . . . L] (4)

whereH(yi) is the entropy ofyi relative to the marginalPi(yi). Hereγ specifies the target
separation (γ ∈ [0, 1]) and the slack variablesξl ≥ 0 permit deviations from the target to
ensure that a solution always exists. The solution is not very sensitive to these parameters,
andγ = 0.1 andC = 40 worked well for many problems. The advantage of this formula-
tion is that effort is spent only on those training examples whose classification is uncertain.
Examples already classified correctly with a margin larger thanγ are effectively ignored.
The optimization problem and algorithms are explained in the appendix.

5 Discussion of the expanded representation

The kernel expansion enables us torepresentthe Bayes optimal decision boundary provided
that the kernel density estimate is sufficiently accurate. With this representation, the EM
and MED algorithms actually estimate decision boundaries that are sensitive to the density
P (x). For example, labeled points in high-density regions will influence the boundary
more than in low-density regions. The boundary will partly follow the density, but unlike in
unsupervised methods, will adhere strongly to the labeled points. Moreover, our estimation
techniques limit the effect of outliers, as all points have a bounded weightwi = [−1, 1]
(spurious unlabeled points do not adversely affect the boundary).

As we impose smoothness constraints on the membership probabilitiesP (i|x), we also
guarantee that the capacity of the resulting classifier need not increase with the number
of unlabeled examples (in the fat shattering sense). Also, in the context of the maximum
entropy formulation, if a point is not helpful for the classification constraints, then entropy



is maximized forPi(y = ±1) = 0.5, implying wi = 0, and the point has no effect on the
boundary.

If we dispense with the conditional probability interpretation of the kernelsK, we are
free to choose them from a more general class of functions. For example, the kernels
no longer have to integrate to 1. An expansion ofx in terms of these kernels can still
be meaningful; as a special case, when linear kernels are chosen, the expansion reduces
to weighting distances between points by the covariance of the data. Distinctions along
high variance directions then become easier to make, which is helpful when between-class
scatter is greater than within-class scatter.

Thus, even though the probabilistic interpretation is missing, a simple preprocessing step
can still help, e.g., support vector machines to take advantage of unlabeled data: we can
expand the inputsx in terms of kernelsG from labeled and unlabeled points as inφ(x) =
1
Z [G(x,x1), . . . , G(x,xN )], whereZ optionally normalizes the feature vector.

6 Results

We first address the potential concern that the expanded representation may involve too
many degrees of freedom and result in poor generalization. Figure 1a) demonstrates that
this is not the case and, instead, the test classification error approaches the limiting asymp-
totic rate exponentially fast. The problem considered was a DNA splice site classification
problem with500 examples for whichd = 100. Varying sizes of random subsets were
labeled and all the examples were used in the expansion as unlabeled examples. The er-
ror rate was computed on the basis of the remaining500 − L examples without labels,
whereL denotes the number of labeled examples. The results in the figure were averaged
across 20 independent runs. The exponential rate of convergence towards the limiting rate
is evidenced by the linear trend in the semilog figure 1a). The mean test errors shown in fig-
ure 1b) indicate that the purely discriminative training (MED) can contribute substantially
to the accuracy. The kernel width in these experiments was simply fixed to the median
distance to the 5th nearest neighbor from the opposite class. Results from other methods
of choosing the kernel width (the squared norm, adaptive) will be discussed in the longer
version of the paper.

Another concern is perhaps that the formulation is valid only in cases where we have a
large number of unlabeled examples. In principle, the method could deteriorate rapidly
after the kernel density estimate no longer can be assumed to give reasonable estimates.
Figure 2a) illustrates that this is not a valid interpretation. The problem here is to classify
DNA microarray experiments on the basis of the leukemia types that the tissues used in
the array experiments corresponded to. Each input vector for the classifier consists of the
expression levels of over 7000 genes that were included as probes in the arrays. The number
of examples available was 38 for training and 34 for testing. We included all examples
as unlabeled points in the expansion and randomly selected subsets of labeled training
examples, and measured the performance only on the test examples (which were of slightly
different type and hence more appropriate for assessing generalization). Figure 2 shows
rapid convergence for EM and the discriminative MED formulation. The “asymptotic”
level here corresponds to about one classification error among the 34 test examples. The
results were averaged over 20 independent runs.

7 Conclusion

We have provided a complementary framework for exploiting unlabeled examples in dis-
criminative classification problems. The framework involves a combination of the ideas of
kernel density estimation and representational expansion of input vectors. A simple EM
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Figure 1: A semilog plot of the test error rate for the EM formulation less the asymptotic
rate as a function of labeled examples. The linear trend in the figure implies that the error
rate approaches the asymptotic error exponentially fast. b) The mean test errors for EM,
MED and SVM as a function of the number of labeled examples. SVM does not use
unlabeled examples.
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Figure 2: The mean test errors for the leukemia classification problem as a function of the
number of randomly chosen labeled examples. Results are given for both EM (lower line)
and MED (upper line) formulations.

algorithm is sufficient for finding globally optimal parameter estimates but we have shown
that a purely discriminative formulation can yield substantially better results within the
framework.

Possible extensions include using the kernel expansions with transductive algorithms that
enforce margin constraints also for the unlabeled examples [5]. Such combination can be
particularly helpful in terms of capturing the lower dimensional structure of the data. Other
extensions include analysis of the framework similarly to [9].

Acknowledgments

The authors gratefully acknowledge support from NTT and NSF. Szummer would also like
to thank Thomas Minka for many helpful discussions and insights.

References

[1] Nigam K., McCallum A., Thrun S., and Mitchell T. (2000) Text classification from
labeled and unlabeled examples.Machine Learning39 (2):103–134.

[2] Blum A., Mitchell T. (1998) Combining Labeled and Unlabeled Data with Co-
Training. InProc. 11th Annual Conf. Computational Learning Theory, pp. 92–100.



[3] Vapnik V. (1998)Statistical learning theory. John Wiley & Sons.

[4] Joachims, T. (1999) Transductive inference for text classification using support vector
machines.International Conference on Machine Learning.

[5] Jaakkola T., Meila M., and Jebara T. (1999) Maximum entropy discrimination. In
Advances in Neural Information Processing Systems 12.

[6] Hofmann T., Puzicha J. (1998) Unsupervised Learning from Dyadic Data. Interna-
tional Computer Science Institute, TR-98-042.

[7] Tong S., Koller D. (2000) Restricted Bayes Optimal Classifiers.Proceedings AAAI.

[8] Miller D., Uyar T. (1996) A Mixture of Experts Classifer with Learning Based on
Both Labelled and Unlabelled Data. InAdvances in Neural Information Processing
Systems 9, pp. 571–577.

[9] Castelli V., Cover T. (1996) The relative value of labeled and unlabeled samples in
pattern recognition with an unknown mixing parameter.IEEE Transactions on infor-
mation theory42 (6): 2102–2117.

A Maximum entropy solution

The unique solution to the maximum entropy estimation problem is found via introducing
Lagrange multipliers{λl} for the classification constraints. The multipliers satisfyλl ∈
[0, C], where the lower bound comes from the inequality constraints and the upper bound
from the linear margin penalties being minimized. To represent the solution and find the
optimal setting ofλl we must evaluate the partition function

Z(λ) = e−
∑L

l λlγ
∑

y1,...,yN

N∏
i=1

e
∑L

l ỹlλlyiP (i|xl) = (5)

= e−
∑L

l λlγ
N∏

i=1

(
e
∑L

l ỹlλlP (i|xl) + e−
∑L

l ỹlλlP (i|xl)
)

(6)

that normalizes the maximum entropy distribution. Hereỹ denote the observed labels.
Minimizing the jointly convex log-partition functionlog Z(λ) with respect to the Lagrange
multipliers leads to the optimal setting{λ∗l }. This optimization is readily done via an axis
parallel line search (e.g. the bisection method). The required gradients are given by

∂log Z(λ)
∂λk

= −γ +
N∑

i=1

tanh

(
L∑

l=1

ỹlλ
∗
l P (i|xl)

)
ỹkP (i|xk) = (7)

= −γ + ỹk

N∑
i=1

EP∗
i
{ yi }P (i|xk) (8)

(this is essentially the classification constraint). The expectation is taken with respect to
the maximum entropy distributionP ∗(y1, . . . , yN ) = P ∗

1 (y1) · · ·P ∗
N (yN ) where the com-

ponents areP ∗
i (yi) ∝ exp{

∑
l ỹlλlyiP (i|x)}. The label averagesw∗

i = EP∗{ yi } =∑
yi

yi P ∗
i (yi) are needed for the decision rule as well as in the optimization. We can iden-

tify these from abovew∗
i = tanh(

∑
l ỹlλ

∗
l P (i|xl)) and they are readily evaluated. Finding

the solution involvesO(L2 N) operations.

Often the numbers of positive and negative training labels are imbalanced. The MED
formulation (analogously to SVMs) can be adjusted by defining the margin penalties as
C+

∑
l:ỹl=1 ξl +C−∑

l:ỹl=−1 ξl, where, for example,L+C+ = L−C− that equalizes the
mean penalties. The coefficientsC+ andC− can also be modified adaptively during the
estimation process to balance the rate of misclassification errors across the two classes.
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