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AbstratWe settle the omplexity bounds of the model heking problem for therepliation-free ambient alulus with publi names against the ambientlogi without parallel adjunt. We show that the problem is PSPACE-omplete. For the omplexity upper-bound, we devise a new representa-tion of proesses that remains of polynomial size during proess exeution;this allows us to keep the model heking proedure in polynomial spae.Moreover, we prove PSPACE-hardness of the problem for several quitesimple fragments of the alulus and the logi; this suggests that thereare no interesting fragments with polynomial-time model heking algo-rithms.
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1 IntrodutionThe ambient alulus of Cardelli and Gordon (1999a, 1999b, 2000a) is a formal-ism for desribing the mobility of both software and hardware. An ambient isa named luster of running proesses and nested sub-ambients. Eah omputa-tion state has a spatial struture, the tree indued by the nesting of ambients.Mobility is abstratly represented by re-arrangement of this tree: an ambientmay move inside or outside other ambients.The ambient logi (Cardelli and Gordon 2000b) is a modal logi designedto speify properties of distributed and mobile omputations programmed inthe ambient alulus. As well as standard temporal modalities for desribingthe evolution of ambient proesses, the logi inludes novel spatial modalitiesfor desribing the tree struture of ambient proesses. Serendipitously, thesespatial modalities an also usefully desribe the tree struture of semistrutureddatabases (Cardelli and Ghelli 2001). Other work on the ambient logi inludesa study of the proess equivalene indued by the satisfation relation (Sangiorgi2001) and a study of the logi extended with onstruts for desribing privatenames (Cardelli and Gordon 2001).The model heking problem is to deide whether a given objet (in our ase,an ambient proess) satis�es (that is, is a model of) a given formula. Cardelliand Gordon (2000b) show deidability of the model heking problem for a �nite-state fragment of the ambient alulus against the fragment of the ambient logiwithout their parallel adjunt modality. This �nite-state ambient alulus omitsthe onstruts for unbounded repliation and dynami name generation of thefull alulus. The parallel adjunt modality is omitted beause it is de�ned as anin�nite quanti�ation over proesses. Cardelli and Gordon give no omplexityanalysis for their algorithm. Still, given the various possible appliations ofthe logi, it is of interest to analyse the omplexity of model heking mobileambients.In fat, a naive analysis of the algorithm of Cardelli and Gordon gives onlya doubly exponential bound on its use of time and spae. A more sophistiatedanalysis based on results in this paper shows that their algorithm works insingle-exponential time on single-exponential spae.In this paper we settle the omplexity bounds of the model heking prob-lem for the �nite-state ambient alulus (that is, the full alulus apart fromrepliation and name generation) against the logi without parallel adjunt.Our main result (embodied in Theorems 3.11 and 4.2) is that the problem isPSPACE-omplete. Hene, this situates model heking the ambient logi inthe same omplexity lass as model heking onurrent programs against CTLand CTL� (Kupferman, Vardi, and Wolper 2000).As we disuss in Setion 2, there are two reasons why Cardelli and Gordon'salgorithm uses exponential spae. One of them is that a proess may growexponentially during its exeution; the other is that there may be exponentiallymany proesses reahable from a given one.In Setion 3, we present a new model heking algorithm that avoids theseproblems as follows. 1



� We avoid the �rst problem by devising a new representation of proessesusing a form of losure. The main feature of this representation is that sub-stitutions that our when ommuniations take plae within an ambientare not applied diretly, but are kept expliit. These expliit substitu-tions prevent the representation blowing up exponentially in the size ofthe original proess. The idea of using losures omes from DAG represen-tations used in uni�ation for avoiding exponential blow-up. A sequentialsubstitution that we use here an be seen as a DAG representation of thesubstitution.� To avoid the seond problem, we �rst devise a non-deterministi algorithmfor testing reahability that does not have to store all the reahable pro-esses, but instead tests it on-the-y, and then remove nondeterminismusing Savith's theorem (Savith 1970). Hene we prove Theorem 3.11,that the model heking problem is solvable in PSPACE.We show this upper bound to be tight in Setion 4; Theorem 4.2 assertsthat the model heking problem is PSPACE-hard. Atually, we give PSPACE-hardness results for various fragments of the logi and of the alulus. Forinstane, by Theorem 4.4, even for a alulus of purely mobile ambients (thatis, a alulus without ommuniation or the apability to dissolve ambients)and the logi without quanti�ers, the problem is PSPACE-hard. Moreover, byTheorem 4.6, for a alulus of purely ommuniative ambients (that is, a aluluswithout the apabilities to move or to dissolve ambients) and the logi withoutquanti�ers, the problem is also PSPACE-hard. Often in the study of modelheking �xing the model or the formula makes the problem easier. Here this isnot the ase. Even if we �x the proess to be the onstant 0, the model hekingproblem remains PSPACE-hard. Although we do not prove PSPACE-hardnessfor �xed arbitrary formulas, our result is not muh weaker: Theorem 4.7 assertsthat for any level of the polynomial-time hierarhy we an �nd a �xed formulasuh that the model heking problem is hard for that level.We end the main part of the paper with onlusions in Setion 5. Ap-pendixes A and B ontain proofs of properties stated without proof in Setions 3and 4, respetively.2 Review of the Ambient Calulus and LogiWe present a �nite-state ambient alulus (that is, the full alulus (Cardelli andGordon 2000a) apart from repliation and name generation) and the ambientlogi without parallel adjunt. This is the same alulus and logi for whihCardelli and Gordon present a model heking algorithm (Cardelli and Gordon2000b).2.1 The Ambient Calulus with Publi NamesThe following table desribes the expressions and proesses of our alulus.2



Expressions and Proesses:M;N ::= expressions P;Q;R ::= proessesn name 0 inativityin M an enter M P j Q ompositionout M an exit M M [P ℄ ambientopen M an open M M:P ation� null (n):P inputM:M 0 path hMi outputA name n is said to be bound in a proess P if it ours within an input pre�x(n). A name is said to be free in a proess P if there is an ourrene of n outsidethe sope of any input (n). We write bn(P ) and fn(P ) for respetively the setof bound names and the set of free names in P . We say two proesses are �-equivalent if they are idential apart from the hoie of bound names. We writeMfn Ng and Pfn Ng for the outomes of apture-avoiding substitutionsof the expression N for the name n in the expression M and the proess P ,respetively.The semantis of the alulus is given by the relations P � Q and P ! Q.The redution relation, P ! Q, de�nes the evolution of proesses over time.The strutural ongruene relation, P � Q, is an auxiliary relation used in thede�nition of redution. When we de�ne the satisfation relation of the modallogi in the next setion, we use an auxiliary relation, the subloation relation,P # Q, whih de�nes the spatial distribution of proesses and holds when Qis the whole interior of a top-level ambient in P . We write !� and #� for thereexive and transitive losure of ! and #, respetively.Strutural Congruene P � QP , Q are �-equivalent) P � Q (Strut Re)Q � P ) P � Q (Strut Symm)P � Q;Q � R) P � R (Strut Trans)P � Q) P j R � Q j R (Strut Par)P � Q)M [P ℄ �M [Q℄ (Strut Amb)P � Q)M:P �M:Q (Strut Ation)P � Q) (n):P � (n):Q (Strut Input)P j Q � Q j P (Strut Par Comm)(P j Q) j R � P j (Q j R) (Strut Par Asso)P j 0 � P (Strut Zero Par)�:P � P (Strut �)(M:M 0):P �M:M 0:P (Strut :)Redution P ! Q and Subloation P # Q:n[in m:P j Q℄ j m[R℄! m[n[P j Q℄ j R℄ (Red In)m[n[out m:P j Q℄ j R℄! n[P j Q℄ j m[R℄ (Red Out)3



open n:P j n[Q℄! P j Q (Red Open)hMi j (n):P ! Pfn Mg (Red I/O)P ! Q) P j R! Q j R (Red Par)P ! Q) n[P ℄! n[Q℄ (Red Amb)P 0 � P; P ! Q;Q � Q0 ) P 0 ! Q0 (Red �)P � n[P 0℄ j P 00 ) P # P 0 (Lo)The following example shows that the size of reahable proesses may beexponential, and that there may be a redution path of exponential length. Thealgorithm given in (Cardelli and Gordon 2000b) may use exponential spae tohek properties of this example.Consider the family of proesses (Pk)k�0, reursively de�ned by the equa-tions P0 = (n):(p[n℄ j q[0℄) and Pk+1 = (nk+1):(hnk+1:nk+1i j Pk). Intuitively,the proess Pk+1 inputs a apability, alls it nk+1, doubles it, and outputsthe result to the proess Pk. We have the following, where M1 = M andMk+1 =M:Mk.hin q:out qi j P0 !1 p[in q:out q℄ j q[0℄hin q:out qi j P1 !2 p[(in q:out q)2℄ j q[0℄hin q:out qi j P2 !3 p[(in q:out q)4℄ j q[0℄hin q:out qi j Pk !k+1 p[(in q:out q)2k ℄ j q[0℄Sine (in q:out q)2k is a sequene of 2k opies of in q:out q, the proessp[(in q:out q)2k ℄ j q[0℄ redues in 2k+1 steps to p[0℄ j q[0℄. Therefore, we havehin q:out qi j Pk !(k+1)+2k+1 p[0℄ j q[0℄.This example points out two fats. First, using a simple representation ofproesses (suh as the one proposed in (Cardelli and Gordon 2000b)), it may bethat the size of a proess onsidered during model heking grows exponentiallybigger than the size of the initial proess. Seond, during the model hekingproedure, there may be an exponential number of reahable proesses to on-sider. Therefore, a diret implementation of the algorithm proposed in (Cardelliand Gordon 2000b) may use spae exponential in the size of the input proess.These remarks motivate the approah taken in this paper. First, we devise anew representation for ambient proesses that remains of polynomial size withrespet to to the input proess. Seond, we give a non-deterministi algorithmfor testing reahability that uses only polynomial spae in the ombined sizeof the problem; then by an appliation of Savith's theorem (Savith 1970) weremove nondeterminism and obtain a deterministi version that itself uses onlypolynomial spae.2.2 The Logi (for Publi Names)We desribe the formulas and satisfation relation of the logi.4



Logial Formulas:� a name n or a variable xA;B ::= formulaT true:A negationA _ B disjuntion0 void�[A℄ ambient mathA j B omposition mathA�� loation adjunt9x:A existential quanti�ation�A sometime modality
✧A somewhere modalityWe assume that names and variables belong to two disjoint voabularies.We write Afx mg for the outome of substituting eah free ourrene of thevariable x in the formula A with the name m. We say a formula A is losed ifand only if it has no free variables (though it may ontain free names).Intuitively, we interpret losed formulas as follows. The formulas T, :A,and A _ B embed propositional logi. The formulas 0, �[A℄, and A j B arespatial modalities. A proess satis�es 0 if it is struturally ongruent to theempty proess 0. It satis�es n[A℄ if it is struturally ongruent to an ambientn[P ℄ where P satis�es A. A proess P satis�es A j B if it an be deomposedinto two subproesses, P � Q j R, where Q satis�es A, and R satis�es B. Theformula 9x:A is an existential quanti�ation over names. The formulas �A(sometime) and ✧A (somewhere) quantify over time and spae, respetively. Aproess satis�es �A if it has a temporal suessor, that is, a proess into whihit evolves, that satis�es A. A proess satis�es ✧A if it has a spatial suessor,that is, a subloation, that satis�es A. Finally, a proess P satis�es the formulaA�n if the ambient n[P ℄ satis�es A.The satisfation relation P j= A formalizes these intuitions.Satisfation P j= A (for A losed):P j= TP j= :A �= :(P j= A)P j= A _ B �= P j= A _ P j= BP j= 0 �= P � 0P j= n[A℄ �= 9P 0:P � n[P 0℄ ^ P 0 j= AP j= A j B �= 9P 0; P 00:P � P 0 j P 00 ^ P 0 j= A ^ P 00 j= BP j= 9x:A �= 9m:P j= Afx mgP j= �A �= 9P 0:P !� P 0 ^ P 0 j= AP j= ✧A �= 9P 0:P #� P 0 ^ P 0 j= AP j= A�n �= n[P ℄ j= A 5



We use �A (everytime modality), ❏A (everywhere modality) and 8x:A (uni-versal quanti�ation) as abbreviations for :(�:A), :(✧:A) and :(9x::A),respetively.3 A Model Cheking AlgorithmWe show that the model heking problem an be deided in polynomial spae bydevising a new representation of proesses (Setion 3.1) that remains polynomialin the size of the initial proess (Setion 3.2). In Setion 3.3 we present a newmodel heking algorithm based on this representation.Sine the redution relation is de�ned up to �-equivalene, we may assumefor the purposes of omputing reahable proesses that the free and bound namesof every ambient proess are distint, and moreover that the bound names arepairwise distint.3.1 A Polynomial-Spae RepresentationWe give in this setion a new representation for ambient proesses based onnormal losures (It is di�erent from the normal form of proesses introduedin (Cardelli and Gordon 2000b)). We also present basi operations on losuresand prove that losures indeed simulate the proesses they represent. All proofsnot in this setion (in partiular, proofs of Propositions 3.1{3.4) an be foundin the appendix.Annotated Proesses, Substitutions, Closures:~P ::= annotated proessQi2I �i multiset of primes� ::= primeM [ ~P ℄ ambientM(o): ~P ation, with o�set o � 0(n): ~P inputhMi output� ::= fn1 M1g � � � fnk Mkg sequential substitution, k � 0h ~P ;�i losureIn a sequential substitution fn1 M1g � � � fnk Mkg, the expression Mi liesin the sope of the bindings for the remaining names ni+1, . . . , nk. We denote by� the empty sequene of substitutions and treat it as the identity substitution. Asequential substitution � is said to be ayli if either � = � or � = fx Mg�0,where x does not our in �0 and �0 is an ayli substitution.For an annotated proess ~P , we de�ne free and bound names in the sameway as for ambient proesses. Let names(�) be the set of all names ourringin �.We de�ne a partial mapping U from losures to the set of ambient proesses.Intuitively, it unfolds a losure to the proess it represents by applying the6



substitution and utting o� the pre�x de�ned by the o�set. Roughly speaking,the expression U( ~P ; �) is de�ned if the o�sets within the annotated proess donot exeed the length of the expression they are assoiated with. The unfoldingU( ~P ; �) is de�ned as follows.The Unfolding U( ~P ; �) of a Closure h ~P ;�i:U(Qi2I �i; �) = �U(�1; �) j : : : j U(�n; �) if I = f1; : : : ; ng 6= ?0 otherwiseU(M [ ~P ℄; �) =M�[U( ~P ; �)℄U(M(o): ~P ; �) = 8>><>>:No+1: � � � :Nl:U( ~P ; �) if M� = N1: � � � :Nl; o < l and Nibeing either a name or of the formap N 0 with ap 2 fin; out ; opengunde�ned otherwiseU((n): ~P ; �) = (n):U( ~P ; �)U(hMi; �) = hM�iWe are only interested in a partiular kind of losure, whih we refer to asnormal. Let a losure h ~P ;�i be normal if U( ~P ; �) is de�ned and if it meets sometehnial onditions about free and bound namesDe�nition 1 A losure h ~P ;�i is normal if:(1) U( ~P ; �) is de�ned,(2) bn( ~P ) \ (fn( ~P ) [ names(�)) = ?,(3) every name n in ~P ours at most one within an input,(4) every o�set o ourring in the sope of an input in ~P is equal to 0, and(5) � is ayli.The next proposition says that our representation of ambient proesses withnormal losures preserves their basi properties. We write fg and ++ for theempty multiset and the multiset union operation, respetively.Proposition 3.1 (Strutural Equivalenes) Let hQi2I �i;�i be a normallosure. Then(1) U(Qi2I �i; �) � 0 i� I = ?.(2) U(Qi2I �i; �) � M [Q℄ i� 9M 0; ~Q : I is a singleton fig, �i = M 0[ ~Q℄,M 0� =M , U( ~Q; �) � Q.(3) U(Qi2I �i; �) � P 0 j P 00 i� 9J;K : J [ K = I, J \ K = ?, P 0 �U(Qj2J �j ; �), P 00 � U(Qk2K �k; �).7



(4) U(Qi2I �i; �) � hMi i� 9M 0 : I is a singleton fig, �i = hM 0i andM 0� =M .(5) U(Qi2I �i; �) � (n):P i� 9 ~P : I is a singleton fig, �i = (n): ~P andU( ~P ; �) � P .Next, we present how the redution and subloation transitions !, # anbe de�ned on losures. Due to this partiular representation and the fat thatsome part of the ambient proess is ontained in the sequential substitution,some auxiliary subroutines are needed.One an see in the de�nition of U that only expressions M in the anno-tated proess are a�eted by the sequential substitution. For the subloationtransition, it is important to extrat the name represented by the expressionMunder the substitution �. So, one of those subroutines, nam(M;�), onsists inreovering from an expression M the name it e�etively represents within thesubstitution �.The redution transition for a losure h ~P ;�i requires some other auxiliarysubroutines, whih are more spei�ally dediated to the ase where the substi-tution applied on the expression M leads to a sequene of apabilities in M 0,out M 0, open M 0. Intuitively, the outome of applying the substitution � to anexpressionM ontained within ~P is a �nite sequene of either apabilities of theform inM 0, outM 0, openM 0, or names not bound by the substitution. We needa subroutine to ompute the length of this sequene in terms of apabilities. Tokeep the algorithm in polynomial spae, we must simply be able to omputethis length without applying expliitly � on M ; this is the role of len(M;�).Now, from the de�nition of the redution on ambient proesses, one ansee that the redution onsumes one apability: one the redution is done,the involved apability disappears from the resulting proess. This is slightlydi�erent for the representation we have proposed: a sequene of apabilities anbe partially ontained in a sequential substitution �. This substitution remains�xed during the exeution of apabilities and the o�set attahed to this sequeneplays the role of a program ounter. Therefore, to perform a redution step onehas to extrat the �rst apability to exeute from a sequene of apabilities,M ,a substitution, �, and an o�set, o. This is omputed by fst(M; o; �).The next subroutine introdued here, split(M(o): ~P ; �), omputes a pair froma prime, M(o): ~P , and a sequential substitution, �. The �rst omponent of thisresult is the �rst apability to be exeuted in hfM(o): ~P g;�i (the one in headposition). The seond omponent is the remaining annotated proess one this�rst apability has been exeuted.The Auxiliary Funtions nam, len, fst and split:nam(n; fm Mg�) = �nam(M;�) if n = mnam(n; �) otherwisenam(n; �) = nlen(�; �) = 0 8



len(M:N; �) = len(M;�) + len(N; �)len(M;�) = 1 if M 2 fin N; out N; open Nglen(n; fm Mg�) = �len(M;�) if n = mlen(n; �) otherwiselen(n; �) = 1fst(M:N; o; �) = �fst(M; o; �) if len(M;�) > ofst(N; o� len(M;�); �) otherwisefst(ap N; 0; �) = ap (nam(N; �)) for ap in fin; out ; opengfst(n; o; fm Mg�) = �fst(M; o; �) if n = mfst(n; o; �) otherwisesplit(M(o): ~P ; �) = �(fst(M; o; �); fM(o+ 1): ~Pg) if len(M;�) > o+ 1(fst(M; o; �); ~P ) otherwiseNotie that nam(M;�) is unde�ned if M is of the form �, N:N 0, in N ,out N , or open N . Therefore, the expression nam(M;�) is either unde�nedor is evaluated to a name. Moreover, we an ompute the name returned bynam(M;�), or whether it is unde�ned, in linear time. The number returnedby len(M;�) an be omputed in polynomial spae1. We an ompute theapability returned by fst(M; o; �) and the pair returned by split(M(o): ~P ; �),or whether they are unde�ned, in polynomial spae.Suppose h ~P ;�i is a normal losure ontaining an ation M(o): ~Q. Fromthe de�nition of a normal losure, len(M;�) > o, and if the ation oursunder an input variable n, then the o�set o = 0. If n ours in M and getsbound to � by an I/O step, it may be that len(M; fn �g�) = 0. So, in thetransition rule for I/O, we need to re-normalize the losure representing theoutome of the transition. We do so using the following subroutines, norm( ~P ; �)and norm(�; �), that return the annotated proess obtained by removing from~P and �, respetively, any pre�x M(o) suh that len(M;�) = 0.The Auxiliary Funtions norm:norm(Qi21::k �i; �) = �fg if k = 0norm(�1; �) ++ � � � ++ norm(�k ; �) otherwisenorm(M [ ~P ℄; �) = fM [norm( ~P ; �)℄gnorm(M(o): ~P ; �) = �norm( ~P ; �) if len(M;�) = 0fM(o):norm( ~P ; �)g otherwisenorm((n): ~P ; �) = f(n):norm( ~P ; �)gnorm(hMi; �) = fhMigNext, we de�ne a transition relation, h ~P ;�i ! h ~P 0;�0i, and a subloation1We are not onerned here with time omplexity; a naive algorithm for omputinglen(M;�), as presented here, runs in exponential time in the worst ase. However, it isquite easy to provide a version of this funtion that runs in polynomial time.9



relation, h ~P ;�i # h ~P 0;�i, on losures. These relations simulate the redutionand the subloation relations on proesses de�ned in Setion 2.1.Transitions and Subloations of Closures:(Trans In)split(�; �) = (in m; ~P ) nam(M;�) = m nam(N; �) = nhfN [f�g ++ ~Q℄;M [ ~R℄g;�i ! hfM [fN [ ~P ++ ~Q℄g ++ ~R℄g;�i(Trans Out)split(�; �) = (out m; ~P ) nam(M;�) = m nam(N; �) = nhfM [fN [f�g ++ ~Q℄g ++ ~R℄g;�i ! hfN [ ~P ++ ~Q℄;M [ ~R℄g;�i(Trans Open)split(�; �) = (open n; ~P ) nam(M;�) = nh�; fM [ ~Q℄g;�i ! h ~P ++ ~Q;�i(Trans I/O)~P 0 = norm( ~P ; fn Mg�)hf(n): ~P ; hMig;�i ! h ~P 0; fn Mg�i (Trans Par)h ~P ;�i ! h ~P 0;�0ih ~P ++ ~Q;�i ! h ~P 0 ++ ~Q;�0i(Trans Amb)h ~P ;�i ! h ~P 0;�0i nam(M;�) = nhfM [ ~P ℄g;�i ! hfM [ ~P 0℄g;�0i (Lo) nam(M;�) = mh ~Q ++ fM [ ~P ℄g;�i # h ~P ;�iThe ondition for (Lo) ensures simply that the expressionM together with� is a name. For two normal losures hP ;�i, hP 0;�0i, deiding whether hP ;�i #hP 0;�0i an be ahieved in polynomial spae. There is no rule orresponding to(Red �) sine we always keep losures in normal form. The two rules (TransPar) and (Trans Amb) orrespond to the ongruene rules (Red Par) and (RedAmb) for redution.In the same way as for ambient proesses, we de�ne the relations!� and #�(on losures) as the reexive and transitive losures of ! and #, respetively.Proposition 3.2(1) If h ~P ;�i is normal and h ~P ;�i #� h ~P 0;�i then h ~P 0;�i is normal.(2) If h ~P ;�i is normal and h ~P ;�i !� h ~P 0;�0i then h ~P 0;�0i is normal.The next proposition says that the representation of proesses as losurespreserves subloations and redutions.Proposition 3.3 (Subloation Equivalenes) Assume h ~P ;�i is a normallosure. If h ~P ;�i # h ~Q;�i then U( ~P ; �) # U( ~Q; �). If U( ~P ; �) # Q then thereexists ~Q suh that h ~P ;�i # h ~Q;�i and U( ~Q; �) � Q.10



The following proposition is a ounterpart of Proposition 3.3. It refers totime in the same way as Proposition 3.3 refers to spae.Proposition 3.4 (Redution Equivalenes) Assume h ~P ;�i is a normallosure. If h ~P ;�i ! h ~P 0;�0i then U( ~P ; �) ! U( ~P 0; �0). If U( ~P ; �) ! P 0 thenthere exists h ~P 0;�0i suh that h ~P ;�i ! h ~P 0;�0i and U( ~P 0; �0) � P 0.Propositions 3.1{3.4 are enough to prove that normal losures indeed simu-late the proesses they represent.3.2 Size of the RepresentationWe show that losures indeed give a polynomial representation of proesses. Todo this, we have to bound the size of o�sets that our in losures.For a given objet (a losure or a proess) O, by jOj we mean the lengthof its string representation and by kOk the number of nodes in its tree repre-sentation. We assume that an o�set is represented by a single node in the treerepresentation.Lemma 3.5 Suppose that h ~P ;�i ! h ~P 0;�0i. Then kh ~P 0;�0ik � kh ~P ;�ik.Proof By a simple ase analysis on the derivation of h ~P ;�i ! h ~P 0;�0i. Inases (Trans In), (Trans Out) and (Trans Open), the transition either doesnot hange or dereases the representation's size. In ase (Trans I/O), the threenodes representing input, output and proess omposition ((); hi; :) together withthe representation of x and M are replaed with two nodes representing assign-ment and substitution omposition ( ; fg) together with the representation ofx and M . Thus the tree dereases by one node. �Proposition 3.6 Assume h ~P ;�i is normal and h ~P ;�i ! h ~P 0;�0i. Then all o�-sets used in ~P and ~P 0 an be represented by the same number of bits, polynomialin jh ~P ;�ij and, with suh a representation, jh ~P 0;�0ij � jh ~P ;�ij.Proof A simple indution on the length of the substitution �0 proves that theo�sets in ~P 0 are bounded by the value kh ~P 0;�0ikkh ~P 0;�0ik. By Lemma 3.5, theyare also bounded by kh ~P ;�ikkh ~P ;�ik and then all o�sets used in ~P and ~P 0 arebounded by this value, whih an be represented on kh ~P ;�ik �(blog(kh ~P ;�ik)+1) bits. With this representation of o�sets, inrementing an o�set does notinrease the size of its string representation. Thus no transitions an inreasethe length of the string representations of losures. �The following proposition is a key fat in the proof that our model hek-ing algorithm and also the algorithm of Cardelli and Gordon (2000b) terminatein exponential time. It implies that the omputation tree of a given proessmight be very deep and very narrow (as in our example in Setion 2) or notso deep and wider; in any ase the number of nodes in the tree remains ex-ponentially bounded. A naive argument (without using losures) gives only a11



doubly exponential bound on the number of reahable proesses: one an provethat the omputation tree of a given proess is at most exponentially deep(as our example in Setion 2 shows, this bound is tight) and that the numberof suessors for every node is at most polynomial. For example, the losurehfn[in n(0): ~P0℄; : : : ; n[in n(0): ~Pk℄g;�i has at most k2 di�erent suessors. Thesetwo fats do not give, however, the exponential bound on the number of nodesin the tree, whih is given by the following proposition.Proposition 3.7 Let h ~P ;�i be a normal losure. Then there exist at mostexponentially many h ~P 0;�0i suh that h ~P ;�i !� h ~P 0;�0i.Proof This is a diret onsequene of Proposition 3.6 and the observationthat there are only exponentially many strings of polynomial length. �Proposition 3.8 The reahability problem for normal losures is deidable inPSPACE.Proof Take any instane h ~P ;�i, h ~P 0;�0i of the reahability problem. To de-ide whether h ~P ;�i !� h ~P 0;�0i, we �rst de�ne a nondeterministi algorithmthat starting from h ~P ;�i guesses an immediate suessor of the urrent losureuntil it reahes h ~P 0;�0i or there are no further suessors. By Proposition 3.6the algorithm requires only polynomial spae (we have to store only the ur-rent losure and its one immediate suessor); Proposition 3.7 implies termina-tion. Finally, using the general statement of Savith's theorem (Savith 1970)(NPSPACE(S(n)) � PSPACE(S(n)2)), this non-deterministi algorithm an beturned into a deterministi one. �3.3 A New AlgorithmWe propose a new algorithm, Chek ( ~P ; �;A), to hek whether the ambientproess simulated by h ~P ;�i satis�es the losed formula A. For eah ambientproess, P , we only onsider the losure, F(P ), obtained using the folding fun-tion de�ned as follows. We prove (Proposition 3.10), that P j= A if and only ifChek (F(P ); �;A) returns the Boolean value T.The Folding F(P ) of a Proess P :F(0) = fgF(P j Q) = F(P ) ++ F(Q)F(M [P ℄) = fM [F(P )℄gF((n):P ) = f(n):F(P )gF(hMi) = fhMigF(M:P ) = �F(P ) if len(M; �) = 0fM(0):F(P )g otherwiseFor any proess P , the losure hF(P ); �i is normal and U(F(P ); �) is stru-turally ongruent to P . Furthermore, F(P ) an be omputed in linear time inthe size of P . 12



For the model heking problem, P j= A, we may assume without loss ofgenerality that the free names of A are disjoint from the bound names of P . Wedenote by fn( ~P ; �) the set (fn( ~P ) [ names(�)) r dom(�).Computing Whether a Proess Satis�es a Closed Formula:Chek ( ~P ; �;T) = TChek ( ~P ; �;:A) = :Chek ( ~P ; �;A)Chek ( ~P ; �;A _ B) = Chek ( ~P ; �;A) _ Chek ( ~P ; �;B)Chek (Qi2I �i; �;0) = �T if I = ?F otherwiseChek (Qi2I �i; �; n[A℄) =�Chek ( ~Q; �;A) if I = fig; �i =M [ ~Q℄; nam(M;�) = nF otherwiseChek (Qi2I �i; �;A j B) = WJ�I(Chek (Qj2J �j ; �;A) ^Chek (Qk2I�J �k; �;B))Chek ( ~P ; �; 9x:A) = let fm1; : : : ;mkg = fn( ~P ; �) [ fn(A) inlet m0 =2 fm1; : : : ;mkg [ bn( ~P ) [ dom(�) be fresh inWi20::k Chek ( ~P ; �;Afx mig)Chek ( ~P ; �;�A) = Wh ~P ;�i!�h ~P 0;�0i Chek ( ~P 0; �0;A)Chek ( ~P ; �;✧A) = Wh ~P ;�i#�h ~P 0;�i Chek ( ~P 0; �;A)Chek ( ~P ; �;A�n) = Chek (n[ ~P ℄; �;A)An expression Chek ( ~P ; �;A) is said to be normal if and only if the losureh ~P ;�i is normal, A is a losed formula, and fn(A) \ (bn( ~P ) [ dom(�)) = ?.Hene, for the model heking problem P j= A where A is a losed formula, theexpression Chek (F(P ); �;A) is normal and moreover we have:Proposition 3.9 The model heking algorithm desribed above preserves thenormality of Chek ( ~P ; �;A).Proposition 3.10 For all proesses P and losed formulas A, we have P j= Aif and only if Chek (F(P ); �;A) = T.Theorem 3.11 Model heking the ambient alulus and logi of this paper isdeidable in PSPACE.Proof To test for a given proess P and formula A whether P j= A we simplyompute the value of Chek (F(P ); �;A). The only problem is to implementChek in suh a way that it works in polynomial spae.In the ase of T;0; n[A℄;A�n;:A, the algorithm an diretly hek whetherthe respetive onditions hold. In the ase of A _ B;A j B; 9x:A;�A;✧A, wehave to be more areful about the spae used to ompute the value of disjun-tions. In a loop we iteratively ompute the value of eah disjunt, reusing the13



same spae in every iteration. In the ase of �A the subroutine omputingWh ~P ;�i!�h ~P 0;�0i Chek ( ~P 0; �0;A) ould look as follows.result  Ffor all h ~P 0;�0i suh that h ~P ;�i !� h ~P 0;�0iif Chek ( ~P 0; �0;A) = T then result  Treturn(result)By Propositions 3.6 and 3.8, every iteration requires only polynomial spae.The ases of A_B;A j B; 9x:A;✧A are similar. Thus, the spae S(k; j ~P j+ j�j)used by the algorithm to ompute Chek ( ~P ; �;A) for formulas A of depth notexeeding k satis�es the inequalityS(k + 1; j ~P j+ j�j) � S(k; j ~P j+ + j�j) + p(j ~P j+ j�j)for some onstant  and some polynomial p (the onstant  omes from the fatthat in the ase of A = B�n the size of n[ ~P ℄ is greater than the size of ~P ; thepolynomial p estimates the spae needed for testing reahability et). Therefore,S(k; j ~P j+ j�j) � k � p(j ~P j+ k � + j�j).Finally, the fat that F(P ) is polynomial in the size of P and the statementof Proposition 3.10 omplete the proof. �4 Complexity Lower BoundsBelow we present lower bounds on the spae omplexity of model heking ourproess alulus against our modal logi, and also for two signi�ant fragments.The results given here are based on known results about the omplexity ofdeision problems for Quanti�ed Boolean Formulas (QBF). We an assume with-out loss of generality that these Boolean formulas are in prenex and onjuntivenormal form. The alternation depth of a formula is the number of alternationsbetween existential and universal quanti�ers in its prenex quanti�ation.Those known results are: (1) deiding the validity problem for a losedquanti�ed Boolean formula ' is PSPACE-omplete; (2) deiding the validityproblem for a losed quanti�ed Boolean formula ' of alternation depth k whoseoutermost quanti�er is 9 is �Pk -omplete (Stokmeyer 1976), where �Pk denotesthe k-th level of the polynomial-time hierarhy. In partiular, �P0 = P and�P1 = NP.We will use the following formula as a running example of a valid losedQBF formula: 8v1:9v2:9v3:(v1 _ v2 _ v3) ^ (v1 _ v2 _ v3) ^ v34.1 The Full Calulus and LogiWe de�ne an enoding of QBF formulas into ambient formulas. This enodingis then used to prove Theorem 4.2, that the omplexity of model heking theambient logi is PSPACE-hard. 14



In our enoding, we assume that the truth values tt and � used in thede�nition of QBF satisfation are distint ambient alulus names.We also use a derived operator for name equality in the ambient logi �rstde�ned by Cardelli and Gordon (2000b):� = � �= �[T℄��Then 0 j= m = n if and only if the names m and n are equal. We enode the 8and 9 quanti�ers over truth values as follows.8x 2 f� ; ttg:A �= 8x:(x = � _ x = tt)) A9x 2 f� ; ttg:A �= 9x:(x = � _ x = tt) ^ AEnoding QBF Formulas as Ambient Logi Formulas:[[v℄℄ �= (v = tt)[[v℄℄ �= (v = � )[[`1 _ � � � _ `k℄℄ �= [[`1℄℄ _ � � � _ [[`k℄℄[[C1 ^ � � � ^ Ck℄℄ �= [[C1℄℄ ^ � � � ^ [[Ck℄℄[[8v:'℄℄ �= 8v 2 f� ; ttg:[['℄℄[[9v:'℄℄ �= 9v 2 f� ; ttg:[['℄℄The following properties are proved in the appendix. The proof of Lemma 4.1is by indution on the number of variables quanti�ed in '.Lemma 4.1 Consider a losed quanti�ed boolean formula ' and its enoding[['℄℄ in the ambient logi. The formula ' is valid if and only if the model hekingproblem 0 j= [['℄℄ holds.Theorem 4.2 The omplexity of model heking the full logi (inluding namequanti�ation) is PSPACE-hard.Proof Straightforward from Lemma 4.1 sine for the �xed ambient proess0 solving the model heking problem 0 j= ' is PSPACE-hard. So in fat theexpression omplexity, that is, the omplexity of heking formulas against a�xed proess, is PSPACE-hard. �The theorem above holds for any fragment of the logi inluding boolean on-netives, name quanti�ation, and the loation and loation adjunt modalities,and for any fragment of the alulus inluding ambients. This might suggestthat the omplexity of the model heking problem omes from the quanti�a-tion in the logi. Below we show that it is not the ase: the problem remainsso omplex even if we remove quanti�ation from the logi and ommuniationor mobility from the alulus. This suggests there is little hane of �ndinginteresting fragments of the alulus and the logi that would admit a fastermodel heking algorithm. 15



4.2 Mobile Ambients Without I/O, No Quanti�ersIn this setion, we study the omplexity of the model heking problem for thefragment of the ambient alulus without I/O and the fragment of the logiwithout quanti�ation.For every QBF variable, v, we assume that v, v0 and v00 are distint ambientalulus names.Enoding QBF Formulas as Ambient Proesses and Formulas:[[v℄℄ = v[pos [0℄ j v0[0℄℄ j T[[v℄℄ = v[neg [0℄ j v0[0℄℄ j T[[`1 _ � � � _ `k℄℄ = [[`1℄℄ _ � � � _ [[`k℄℄[[C1 ^ � � � ^ Ck℄℄ = (end [0℄; [[C1℄℄ ^ � � � ^ [[Ck℄℄)[[8v:'℄℄ = (v0[in v:n[out v0:out v:P ℄℄;�((n[T℄ j T)) A)) where (n[P ℄;A) = [['℄℄[[9v:'℄℄ = (v0[in v:n[out v0:out v:P ℄℄;�((n[T℄ j T) ^ A)) where (n[P ℄;A) = [['℄℄en(') = (v1[pos [0℄℄ j v1[neg [0℄℄ j � � � j vn[pos [0℄℄ j vn[neg [0℄℄ j P;A)where (P;A) = [['℄℄ and ' = Q1v1: : : : :Qnvn:C1 ^ � � � ^ Ckwhere eah Qi 2 f9;8g.Brief explanation. In the enoding en(') above, the parallel ompositionv1[pos [0℄℄ j : : : j vn[neg [0℄℄ represents the sequene v1; : : : vn of (uninstantiated)boolean variables and P is a proess that instantiates them. An instantiatedvariable vi is represented by a subproess vi[pos [0℄ j v0i[0℄℄ j vi[neg [0℄℄ (if itsvalue is tt) or vi[pos [0℄℄ j vi[neg [0℄ j v0i[0℄℄ (if its value is � ). The proessP �rst instantiates v1 by hoosing one of the ambients v1[pos [0℄℄ or v1[neg [0℄℄nondeterministially, going inside it, leaving the token v01[0℄ inside the hosenambient and then returning to the top level. It then iteratively instantiates thevariables v2; : : : ; vn in the same way. The formula n[T℄ j T in the ontext of theenoding for a quanti�ed variable vi above (where n is vi+1 or end for i = n)expresses that the instantiation of vi has �nished but that the instantiation of nhas yet to start; thus �(n[T℄ j T : : :) and �(n[T℄ j T : : :) express, respetively,universal and existential quanti�ations over instantiations of vi.In the ase where ' is the formula de�ned previously as an example, onewould obtain en(') = (P;A), where P is the proess depited in Figure 1(a)and where the formula A is of the form:�((v02[T℄ j T)) �((v03[T℄ j T) ^ �((end [T℄ j T) ^ B)))where B is the formula given by [[v1 _ v2 _ v3℄℄ ^ [[v1 _ v2 _ v3℄℄ ^ [[v3℄℄.More detailed explanation. We explain this enoding with referene to theambient proess depited in Figure 1(a). The ambients whose names range overvi desribe an interpretation for the Boolean variables vi whereas the ambients16



v1pos [℄ j v1neg [℄ j v2pos [℄ j v2neg [℄ j v3pos [℄ j v3neg [℄ jv01in v1: v02out v01:out v1:in v2: v03out v02:out v2:in v3: endout v03:out v3:0(a) The proess P in en(') = (P;A)v1pos [℄ j v01[℄ j v1neg [℄ j v2pos [℄ j v02[℄ j v2neg [℄ jv3pos [℄ j v3neg [℄ j v03[℄ j end0(b) The irreduible proess for the interpretation v1 7! tt ; v2 7! tt ; v3 7! �Figure 1: Enoding for mobile ambients without I/O, no quanti�ersnamed v0i are the \material" to extend this interpretation. In the initial ambi-ent, the ambients vi enode the empty interpretation and the material is in anambient named v01 marking the fat that v1 is the �rst variable to treat. The�rst step of redution will move the ambient v01 non-deterministially either in-side v1[pos [℄℄ (the Boolean variable v1 takes the value tt) or inside v1[neg [℄℄ (theBoolean variable v1 takes the value � ). The next two steps of redution aredeterministi. They aim to leave a mark in one of the ambients v1 aording tothe �rst non-deterministi hoie and to reah a situation in whih the Booleanvariable v2 is onsidered. For instane, if the �rst hoie was to instantiatev1 with tt then, one would obtain a parallel omposition of v1[pos [℄ j v01[℄℄ andv1[neg [℄℄. The ambients named v2, v3 are kept unhanged and the ambient on-taining the rest of the interpretation would be of the form v02[in v2:v03[Q℄℄ whereQ is the internal of v03 in the initial proess. This omputation, onsisting ofone non-deterministi step followed by two deterministi ones, an be arriedon for the variables v2 and v3. Then, when no more redution step is possible,the resulting proess is a parallel omposition of the empty ambient end [℄ and,for eah i, of vi[n[℄ j v0i[℄℄ and vi[n0[℄℄ where n; n0 are distint elements fromfpos ;negg. For instane, the irreduible proess given in Figure 1(b) representsthe interpretation v1 7! tt ; v2 7! tt ; v3 7! � .17



We said that the ambient proesses enode interpretations. The Booleanformula itself is enoded in the ambient formula A. One no more redutionstep is possible on the ambient proess, this latter represents an interpretationwhose domain is the set of all variables in ': this interpretation is given by theplaes where the marks v0i have been put. It is easy with an ambient formula totest whether this interpretation renders true the quanti�er-free part of '. Thisrole is played by the ambient formula B whereas the remaining part of A aimsto enode the quanti�ers of '.Let us �rst onsider the outermost quanti�er 8v1 in ': this quanti�ationstands for \for all possible interpretations of the variable v1". We have desribedabove the mehanism for the instantiation of the Boolean variable v1 in the am-bient proess. It onsists of �rst a non-deterministi step, then two determinististeps. Whatever the �rst step is, those three steps lead to a situation wherethe ambient proess is of the form R j v02[R0℄. It should be notied that thosetwo proesses (one for eah possibility of the �rst step) are the only proessesof this form reahable from the initial proess. Therefore, the statement \forall possible interpretations of the variable v1" an be translated as \for all pro-esses of the form R j v02[R0℄ reahable from the initial proess". This rephrasedstatement an be expressed in the ambient logi as �((v02[T℄ j T)) : : :).A dual reasoning an be applied then for 9v2, the following quanti�ation ofthe formula '. In that ase, the statement \there exists an interpretation forthe variable v2" is translated into \there exists an ambient proess of the formT j v03[T 0℄ reahable from the urrent proess". This urrent proess is one ofthe two proesses after the instantiation of the variable v2, that is of the formS j v03[S0℄. This statement an be expressed by means of the ambient logi bythe formula �((v03[T℄ j T) ^ : : :). Finally, the quanti�ation 9v3 is expressed by�((end [T℄ j T) ^ : : :).Lemma 4.3 Assume ' is a losed quanti�ed Boolean formula, and (P;A) =en('). Then P j= A if and only if ' is valid.Theorem 4.4 The omplexity of model heking mobile ambients without I/Oagainst the quanti�er-free logi is PSPACE-hard.Proof Straightforward from the PSPACE-ompleteness of the validity forQBF and from Lemma 4.3, taking into aount that for en(') = (P;A), bothP and A are of polynomial size with respet to '. �4.3 Immobile Ambients With I/O, No Quanti�ersIn this setion, we study the omplexity of the model heking problem for thefragment of the ambient alulus without ation pre�x.We onsider �xed names end , C, and D. For any QBF variable ambientname v0i, let Inst(v0i) �= v0i[T℄ j T Inst+(v0i) �= v0i[v00i [T℄ j T℄ j T18



and for the name end ,Inst(end) �= end [T℄ j T Inst+(end) �= end [end 0[T℄ j T℄ j TEnoding QBF Formulas as Ambient Proesses and Formulas:[[v℄℄ = v[0℄[[v℄℄ = v[0℄[[`1 _ : : : _ `k℄℄ = D[0℄ j [[`1℄℄ j : : : j [[`k℄℄en(C1 ^ : : : ^ Ck) = (end [C[ [[C1℄℄ ℄ j : : : j C[ [[Ck℄℄ ℄℄;
❏((D[0℄ j T)) (tt [0℄ j T)))en(9v:') = (v0[htti j h� i j (v):(v00[℄ j (v):n[P ℄)℄;T j v0[�( (Inst(n) ^ :Inst+(n)) ^A )℄)where en(') = (n[P ℄;A)en(8v:') = (v0[htti j h� i j (v):(v00[℄ j (v):n[P ℄)℄;T j v0[�( (Inst(n) ^ :Inst+(n)) ) A )℄)where en(') = (n[P ℄;A)Brief explanation. The idea of the enoding here is quite similar to thatfrom the previous setion. A boolean variable v is represented here by twoambients v[℄ and v[℄, whih after the instantiation are named tt [℄ and � [℄. Weexploit here the nondeterminism of ommuniation: the variable v reads eitherthe message htti or h� i; then its dual v has to read the other one. The namesv0i and v00i (similar to v0i in the previous setion) are used for distinguishingthe moment when the variable vi is already instantiated but vi+1 is not. Theformula ❏((D[0℄ j T)) (tt [0℄ j T)) requires that in the �nal state, eah ambientrepresenting a lause (that is, an ambient ontaining D[0℄) ontains at least onetrue literal (that is, an ambient tt [0℄).For the formula ' used in our example, one would have en(') = (P;A),where P is depited in Figure 2(a).More detailed explanation. The key idea of this enoding is to use (redu-tions of) ommuniations for performing the instantiation of the quanti�er-freepart of ' with respet to some interpretation. Therefore, the quanti�er-freeformula C1 ^ : : : ^ Ck is enoded in the ambient proess itself, inside an am-bient named end . For instane, in Figure 2(a) for our example, the ambientend [C[D[℄ j v1[℄ j v2[℄ j v3[℄℄ j C[D[℄ j v1[℄ j v2[℄ j v3[℄℄ j C[D[℄ j v3[℄℄℄ enodes thequanti�er-free part of ': the ambient end ontains a sub-ambient alled C foreah lause Ci in ' and the ambient orresponding to Ci ontains an ambient`j [℄ for eah literal `j from Ci.Starting from P desribed in Figure 2(a), let us inspet the behaviour ofproesses through redutions. Two redutions an be performed on P : oneestablishes a ommuniation between htti and (v1) and the other one betweenh� i and (v1). One this redution step is performed the name v1 has beenreplaed by either tt or � uniformly at every position and in partiular in the19



v01
htti j h� i j(v1):(v001 [℄ j (v1)):

v02
htti j h� i j(v2):(v002 [℄ j (v2)):

v03htti j h� i j(v3):(v003 [℄ j (v3)):
endCD[℄ j v1[℄ j v2[℄ j v3[℄ jCD[℄ j v1[℄ j v2[℄ j v3[℄ jCD[℄ j v3[℄(a) The proess P in en(') = (P;A)endCD[℄ j tt [℄ j � [℄ j � [℄ j CD[℄ j � [℄ j tt [℄ j � [℄ j CD[℄ j tt [℄(b) The proess representing the instantiation of C1 ^ C2 ^ C3 by v1 7! tt; v2 7!tt; v3 7! �Figure 2: Enoding for immobile ambients with I/O, no quanti�ersambient named end . Hene, the �rst step of omputation is non-deterministiand instantiates the literal v1. It has also a side-e�et: it reveals an ambientproess v001 [℄ within the ambient v01; this proess is a marker for the ontrolof omputations. Its preise role will be explained later on. The seond stepis deterministi: for eah �rst step, only one seond step is possible. Thisseond step aims to instantiate the literal v1 aording to the instantiation ofv1. Indeed, if the �rst ommuniation has onsumed the output htti then forthe seond one only the output h� i remains and vie-versa. So, after the seondstep, the name v1 is globally replaed by a Boolean value. Moreover, at thispoint there are no more ations pre�xing the ambient named v02 and so thisambient an be now redued using the rules (Red Par) and (Red Amb). Thenext redution steps are performed in a similar way: a non-deterministi stepfollows by a deterministi one. This leads �nally to replae in the ambient endall the names orresponding to literals by Boolean values tt and � . As anexample, in Figure 2(b), we have depited the ambient end one the redutionsorresponding to the interpretationM = v1 7! tt ; v2 7! tt ; v3 7! � have beenperformed. 20



Now, using an ambient formula it is not diÆult to test whether the inter-pretation indued from the proess in Figure 2(b) is a model for C1 ^ C2 ^ C3:as C1 ^ C2 ^ C3 is in onjuntive normal form, M is a model for it if andonly if M renders at least one literal true in every lause Ci. Aording tothe way redutions are performed and orrespond to instantiations, this isequivalent to the laim that in the proess from Figure 2(b), every ambientnamed C ontains a sub-ambient tt [℄. This an be tested with the formulaB = ❏((D[0℄ j T) ) (tt [0℄ j T)), whih is exatly the formula given byen(C1 ^ C2 ^ C3).In the enoding en(') = (P;A), one part of A aims to test whether theinterpretation orresponding to the redutions is a model of '. The other partof A is used to enode the quanti�ation of '. Let us illustrate on our examplethe ideas of this enoding: for the formula ' from our example, the formula Ais equal to T j v01[�( (Inst(v02) ^ :Inst+(v02)) )(T j v02[�( (Inst(v03) ^ :Inst+(v03)) ^(T j v03[�(Inst(end) ^ :Inst+(end) ^ B)℄) )℄) )℄where B is the result of the enoding of the quanti�er-free part of '. For thevariable vi, the intuitive reading of Inst(v0i) is \the next variable to onsideris vi", that is, the instantiation of the variable vi�1 has been ompleted. Thereading of Inst+(v0i) is \the variable vi has been partially treated", that is,the instantiation has been performed for the positive literal vi. For the ambientname end , Inst(end) refers to the ompletion of the instantiation of the variablevn. The �rst quanti�ation 8v1 stands for \for all possible interpretations of thevariable v1" and the part of ' related with this quanti�ation isT j v01[�( (Inst(v02) ^ :Inst+(v02)) ) : : :)℄This formula is model heked against the proess P given in Figure 2(a).As P � 0 j P , the model heking problem is redued to heking the interiorof v01 against the sub-formula of the form �A1: all proesses reahable fromthe interior of v01 must satisfy A1. Let us have a look at the form of thosereahable proesses: the interior of v01 is itself reahable as well as the twoproesses orresponding to the instantiation of the literal v1 (reahable in onestep). In those proesses v1 has been replaed by a Boolean value but noneof them satis�es v02[T℄ j T, that is, Inst(v02). Now, the proesses reahable intwo steps or more indeed satisfy the formula Inst(v02); but the ones reahable inexatly two steps an be distinguished from the others sine these former are theonly ones whih do not satisfy v02[v002 [T℄ j T℄ j T, that is, Inst+(v02). Indeed, stepsbeyond the seond one reveal the marker v002 [℄ inside the ambient v02. We havealready mentioned the fat that the two steps of omputation orrespond exatlyto the omplete treatment of the variable v1 whih is the intended meaning ofInst(v02)^:Inst+(v02). Therefore, model heking ontinues by heking the twoproesses (the seond step of omputation being deterministi), de�ned as the21



interior of v01 in whih the literals v1 and v1 have been replaed by Booleanvalues, against the formulaT j v02[�( (Inst(v03) ^ :Inst+(v03)) ^ :::)℄from the enoding of the quanti�ation 9v2. It stands for \there exists aninterpretation for v2". The proess that is heked against this formula is of theform v001 [℄ j v02[R℄. Therefore, it amounts to hek whether the proess R, whihis the interior of v02 in whih names v1; v1 have been replaed with Booleanvalues, is a model for the sub-formula of the form �A2. Equivalently, theremust exist a proess reahable from R whih satis�es A2. Let us inspet theproesses reahable from R. Of ourse, R itself is reahable as well as the twoproesses reahable in one step of omputation performing the instantiation forthe literal v2. None of these proesses satis�es the formula v03[T℄ j T, thatis, Inst(v03). Proesses that are obtained with two steps or more from R dosatisfy Inst(v03) but only those obtained by stritly more than two steps revealthe marker v003 [℄ inside v03 and thus, satisfy v03[v003 [T℄ j T℄ j T, that is Inst+(v03).Those omputations from R of exatly two steps orrespond to the ompletetreatment of the variable v2 and satisfy Inst(v03) ^ :(Inst+(v03)). So, modelheking arries on by heking that one of these two proesses reahable fromR in two steps and de�ned as the interior of v2 in whih the literals v1, v1, v2,v2 have been replaed by Boolean values, is a model for the remaining part ofthe enoding of the formula.Finally, the quanti�ation 9v3 is enoded asT j v03[�( ((T j end [T℄) ^ :(T j end [end 0[T℄ j T℄)) ^ :::)℄and its treatment is similar to that of 9v2. It leads to model heking the proessnamed end given in Figure 2(b) against the formula B.Lemma 4.5 Assume ' is a losed quanti�ed Boolean formula, and (P;A) =en('). Then P j= A if and only if ' is valid.Theorem 4.6 The omplexity of model heking immobile ambients with I/Oagainst the quanti�er-free logi is PSPACE-hard.Proof This follows from the PSPACE-ompleteness of validity for QBF, fromLemma 4.5 taking into aount that for en(') = (P;A), both P and A are ofpolynomial size with respet to '. �We an strengthen this result by slightly modifying our enoding. Our pre-vious enoding is based on an individual treatment for the variables in thequanti�ation. The improved enoding will be based on the alternation of quan-ti�ers: roughly, 9v29v3 an be grouped together by saying that \there exists aninterpretation for v2 and v3". As far as the previous enoding is onerned, theambient formula resulting from the enoding of 9v29v3 will perform two su-essive tests for reahability; this an be modi�ed in suh a way that only one22



test of reahability is performed. This will imply for the new enoding that themarkers used to ontrol the model heking (namely, the ambients v0) will nolonger be assoiated with the variables but with the alternation of quanti�ers.Those ambient names will range over ai where i is an integer. We de�ne forthose ai's: Inst(ai) �= ai[T℄ j T Inst+(ai) �= ai[ai[℄ j T℄ j TThe Revised Enoding:en(8v:') = en(8v:'; 1)en(9v:') = en(9v:'; 1)en(8v:'; i) = (ai[htti j h� i j (v):(ai[℄ j (v)):P;T j ai[�( Inst(ai+1) ^ Inst+(ai+1) ) A )℄)where en8('; i) = (P;A)en(9v:'; i) = (ai[htti j h� i j (v):(ai[℄ j (v)):P;T j ai[�( Inst(ai+1) ^ Inst+(ai+1) ^ A )℄)where en9('; i) = (P;A)en8(9v:'; i) = en(9v:'; i+ 1)en8(8v:'; i) = (htti j h� i j (v):(v):P;A) where en8('; i) = (P;A)en9(8v:') = en(8v:'; i+ 1)en9(8v:'; i) = (htti j h� i j (v):(v):P;A) where en9('; i) = (P;A)en(C1 ^ : : : ^ Ck; i) = (ai[C[ [[C1℄℄ ℄ j : : : j C[ [[Ck℄℄ ℄℄;❏((D[0℄ j T)) tt [0℄ j T))[[`1 _ : : : _ `k℄℄ = D[0℄ j [[`1℄℄ j : : : j [[`k℄℄[[v℄℄ = v[℄[[v℄℄ = v[℄The statement of Lemma 4.5 still holds for this new enoding. Furthermore,in the enoding (P;A) of the Boolean formula ', the ambient logi formula Adepends only on the alternation depth and the outermost quanti�er of '; forany two Boolean formulas '; '0 having the same alternation depth k and thesame outermost quanti�er Q, if en(') = (P;A) and en('0) = (P 0;A0) thenA = A0.Theorem 4.7 For every integer k there exists a formula A9k suh that the om-plexity of model heking proesses against A9k is �Pk -hard.Proof Let A9k be the formula suh that for any losed quanti�ed Booleanformula ' of alternation depth k whose outermost quanti�er is 9, en(') =(P';A9k). Due to the remark above, we know that this formula exists andfurthermore, is of size polynomial in k.Now, by Lemma 4.5, every instane of the validity problem for a losedquanti�ed Boolean formula ' of alternation depth k whose outermost quanti�er23



is 9 an be redued to the model heking problem P' j= A9k for en(') =(P';A9k). Thus, sine the size of P' is polynomial in the size of ', the theoremfollows. �5 ConlusionWe show in this paper that the model heking problem of the repliation-free ambient alulus with publi names against the ambient logi withoutomposition-adjunt is PSPACE-omplete. In order to prove this omplexitybound, we have proposed a new representation for proesses, alled losures,that prevents the exponential blow-up of the size. We use this representationtogether with a new algorithm to prove the PSPACE upper bound.We also have shown that there is little hane to �nd polynomial algorithmsfor interesting subproblems: model heking remains PSPACE-hard even forquite simple fragments of the alulus and the logi.Possible diretions for future work inlude investigations of the model hek-ing problem for extensions of the logi and the alulus. Reently, Cardelli andGordon (2001) have presented an extended version of the logi that allows rea-soning about restrited names; it seems that there is no diÆulty in extendingour algorithm to deal with name restrition.
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A Corretness ProofsThis appendix ontains proofs of results stated in Setion 3.A.1 Proof of Proposition 3.1Proposition 3.1 onerns the relationship between normal losures and stru-tural ongruene. In this appendix we develop enough fats about losures andstrutural ongruene to prove it.We begin with a proposition that normality is preserved by deompositionwith ambient or parallel omposition.Proposition A.1� h ~P ;�i and h ~Q;�i are normal and fn( ~P ) \ bn( ~Q) = bn( ~P ) \ fn( ~Q) =bn( ~P ) \ bn( ~Q) = ? i� h ~P ++ ~Q;�i is normal.� for all expressions M suh that M does not ontain names from bn( ~P ),hfM [ ~P ℄g;�i is normal i� h ~P ;�i is normal.Proof For the �rst point: from right to left, it is straightforward from thede�nition of U that if U( ~P ++ ~Q; �) is de�ned then both U( ~P ; �) and U( ~Q; �)are so. As fn( ~P ++ ~Q) = fn( ~P ) [ fn( ~Q) and bn( ~P ++ ~Q) = bn( ~P ) [ bn( ~Q), ifbn( ~P ++ ~Q)\(fn( ~P ++ ~Q)[names(�)) = ? then bn( ~P )\(fn( ~P )[names(�)) =bn( ~Q)\ (fn( ~Q) [ names(�)) = ?. If for ~P ++ ~Q bound variables our at mostone within an input and o�sets in the sope of an input are equal to 0, then itis so for ~P and ~Q. The last ondition for normality on sequential substitutionis obvious. The three other onditions follow diretly from the normality ofh ~P ++ ~Q;�i. From left to right, the de�nition of U implies that if h ~P ;�i andh ~Q;�i are de�ned then h ~P ++ ~Q;�i is de�ned. Now, fn( ~P ++ ~Q)\bn( ~P ++ ~Q) =(fn( ~P )[fn( ~Q))\(bn( ~P )[bn( ~Q)). We have fn( ~P )\bn( ~Q) = bn( ~P )\fn( ~Q) = ?by assumption and fn( ~P )\bn( ~P ) = fn( ~Q)\bn( ~Q) = ? as h ~P ;�i and h ~Q;�i arenormal. So, fn( ~P ++ ~Q)\ bn( ~P ++ ~Q) = ?. By normality of h ~P ;�i and h ~Q;�i,names(�)\bn( ~R) = ? for ~R 2 f ~P ; ~Qg. So, names(�)\bn( ~P ++ ~Q) = ?. h ~P ;�iand h ~Q;�i being normal and as by assumption bn( ~P )\ bn( ~Q) = ?, every inputvariable ours at most one within an input in ~P ++ ~Q. The last onditionson o�sets in the sope of an input and on sequential substitution is obvious.For the seond point: It is easy to see that U(fM [ ~P ℄g; �) is de�ned i� U( ~P ; �)is so. The set of names ourring free in M is exatly the set fn(fM [0℄g). Now,as bn(fM [ ~P ℄g) = bn( ~P ) and fn(fM [ ~P ℄g) = fn( ~P ) [ fn(fM [0℄g), fn(fM [ ~P ℄g) \bn(fM [ ~P ℄g) is empty i� fn( ~P ) \ bn( ~P ) is empty (taking into aount theassumption that bn( ~P ) \ fn(fM [0℄g) = ?) and bn(fM [ ~P ℄g) \ names(�) =bn( ~P )\ names(�) = ?. Finally, the last three statements are obvious to hek.�In the proof of Proposition 3.1 we will have to show that some proessesare equivalent if and only if some onditions hold. In partiular, we will haveto show that if these onditions do not hold, the proesses are not equivalent.26



Although it is relatively easy to prove equivalene of proesses, it is not soeasy to prove their inequivalene (whih requires showing that no equivaleneproof exists). We use Theorem A.2 and Propositions A.3{A.5 below as tools forproving inequivalenes needed in Proposition 3.1.Let us onsider � the signature used to build proesses from the ambientalulus with publi names. The signature � ontains an in�nite number ofonstants used as names. It ontains moreover 0 and � as onstant symbols, theapabilities in; out ; open and hi as unary funtion symbols. Finally, the binaryfuntion symbols j; [℄; :; () belong to �.Let us denote T� the set of all terms over �. Any ambient proess fromthe ambient alulus with publi names an be written as a term over thisvoabulary. And of ourse, some terms from T� are not ambient proess, as forinstane, h0 j 0i.The set T� indues a anonial algebra that we denote T�: the algebraT� has for arrier the set T� and eah funtion symbols from � is interpretedsyntatially in T�.The strutural ongruene relation � de�ned in Setion 2.1 over pairs ofambient proesses an be viewed as a relation de�ned over T��T�. One shouldnotie that the set of axioms de�ning � is a set of de�nite Horn lauses, andthus, (T�;�) is a Herbrand model for this set of axioms. Moreover, as weonsider the least relation satisfying these axioms, the struture (T�;�) is theleast Herbrand model for this set of axioms. This implies that two proesses P;Qare struturally equivalent if and only if P � Q belongs to the least Herbrandmodel of these axioms.Note that if � is not assumed to be the least relation satisfying the axiomsbut for instane the greatest one, then one would have P � Q whatever P;Qare.The following theorem is a diret onsequene of two well-known fats (Lloyd1987), that (1) every model of a set of Horn lauses an be translated to aHerbrand model, and (2) that every Herbrandmodel ontains the least Herbrandmodel. Essentially, the theorem says that anything that does not belong to somemodel annot belong to the least model.Theorem A.2 Let S be a set of de�nite Horn lauses de�ning a relation symbol�. Then for all algebras A, for all strutures R de�ned over A and giving aninterpretation for � suh that R j= S,R j= s � t if (T�;�) j= s � tThat is, if there exists a struture R suh that R j= S and R j= s 6� t, then(T�;�) j= s 6� t.Let us onsider now the algebra Â de�ned over �; the arrier DÂ is the leastset suh that� the onstants from � exept � and 0 belong to DÂ,� the empty string and the empty multiset belong to DÂ,27



� for any d1; d2 2 DÂ, the items in d1, out d1, open d1, hd1i, (d1)d2 andd1[d2℄ belong to DÂ,� for any d1; : : : ; dn 2 DÂ, the string d1 : : : dn and the multiset fd1; : : : ; dngbelong to DÂ.The funtion symbols from � are interpreted in Â as follows.� The onstants from � exept � and 0 are interpreted syntatially.� The onstants � and 0 are interpreted respetively as the empty string andas the empty multiset.� The funtion symbols in , out , open , hi, () and [℄ are interpreted syntati-ally.� For the funtion symbol :: d1:d2 is the string obtained by onatenation ofd1 and d2 if both d1 and d2 are strings. Otherwise, elements from fd1; d2gthat are not strings are transformed into a string of length one and then,the onatenation is performed.� For the funtion symbol j: d1 j d2 is the multiset obtained by union of d1and d2 if both d1 and d2 are multisets. Otherwise, elements from fd1; d2gthat are not multisets are transformed into a singleton multiset and then,the union is performed.The algebra Â is extended into a struture R̂ in whih � is interpreted asthe binary relation $ over DÂ � DÂ. The relation $ is de�ned reursively asfollows: d $ d0 i�� d and d0 are both the empty string.� d and d0 are both omposed strings suh that dh and d0h, the �rst twoelements of d; d0 satisfy dh $ d0h and dt and d0t the two strings obtained byremoving the �rst element in respetively d and d0 satisfy dt $ d0t.� d and d0 are both the empty multiset.� d and d0 are both non-empty multiset and there exists de and d0e respe-tively in d and d0 suh that de $ d0e and dr de $ d0 r d0e.� d and d0 are respetively of the form hd1i and hd01i and d1 $ d01.� d and d0 are respetively of the form ap d1 and ap d01 and d1 $ d01 whereap belongs to fin; out ; openg.� d and d0 are respetively of the form d1[d2℄ and d01[d02℄ and d1 $ d01, d2 $ d02.� d and d0 are respetively of the form (d1)d2 and (d01)d02 and d1 $ d01,d2 $ d02.Proposition A.3 R̂ is a model of the axioms for �.28



Proof By ase inspetion. �Proposition A.4 For any proess P , for any M , for any name n, for anyap 2 fin; out ; openg,� for any proess Q, we have 0 6�M [P ℄, 0 6� (n):P , 0 6� hMi, 0 6� apM:Pand 0 6� P j Q if P 6� 0.� if P 6� 0, then for any proesses Q;P 0 suh that Q 6� 0, we have P j Q 6�M [P 0℄, P j Q 6� (n):P 0, P j Q 6� hMi, P j Q 6� ap M:P 0.� for any proesses Q;P 0 and for any M 0, we have M [P ℄ 6� (n):Q, M [P ℄ 6�hM 0i, M [P ℄ 6� ap M 0:P 0 and M [P ℄ 6� M 0[P 0℄ if M;M 0 are two di�erentsequenes or if P 6� P 0.� for any M 0, we have hMi 6� ap M 0:P , hMi 6� (n):P and hMi 6� hM 0i ifM;M 0 are two di�erent sequenes.� for any proess Q, for any names n;m, we have (n):P 6� ap M:Q and(n):P 6� (m):Q if n;m are two di�erent names or if P 6� Q.� for any proess Q, for anyM 0 and for any apability ap 0 2 fin; out ; openg,we have apM:P 6� ap 0M 0:Q if either ap 6= ap 0 or M;M 0 are two dif-ferent sequenes or if Q 6� Q.Proof It is easy to hek that all the statements above holds for R̂. UsingProposition A.3 with Theorem A.2, those statements hold for ambient proessesand �. �Proposition A.5 For any sequential substitution �, for any prime � suh thathf�g;�i is normal, U(�; �) 6� 0.Proof Straightforward from the de�nition of U and Proposition A.3 �Restatement of Proposition 3.1 Let hQi2I �i;�i be a normal losure.Then(1) U(Qi2I �i; �) � 0 i� I = ?.(2) U(Qi2I �i; �) � M [Q℄ i� 9M 0; ~Q : I is a singleton fig, �i = M 0[ ~Q℄,M 0� =M , U( ~Q; �) � Q.(3) U(Qi2I �i; �) � P 0 j P 00 i� 9J;K : J [ K = I, J \ K = ?, P 0 �U(Qj2J �j ; �), P 00 � U(Qk2K �k; �).(4) U(Qi2I �i; �) � hMi i� 9M 0 : I is a singleton fig, �i = hM 0i andM 0� =M .(5) U(Qi2I �i; �) � (n):P i� 9 ~P : I is a singleton fig, �i = (n): ~P andU( ~P ; �) � P . 29



Proof For the �rst point, if I = ? then ~P = fg; so, by de�nition for U ,U( ~P ; �) � 0. Now for the other diretion, the losure h ~P ;�i being normal, if Iis not empty, then by Proposition A.4 and the de�nition for U , U(Q2I �; �) 6� 0.For the seond point, for the diretion from right to left: U(Qi2I �i; �) �U(f�ig; �) � U(fM 0[ ~Q℄g; �) sine I is a singleton fig and �i =M 0[ ~Q℄. Now, byde�nition for U , U(Qi2I �i; �) � M 0�[U( ~Q; �)℄ � M [U( ~Q; �)℄ sine M 0� = M .So, U(Qi2I �i; �) � M [Q℄. From left to right: let us assume that I is not asingleton. For I = ?, aording to the �rst point, U(Qi2I �i; �) � 0 and thus,by Proposition A.4, U(Qi2I �i; �) 6� M [Q℄ for any M;Q. Now, the losureh ~P ;�i being normal, if I ontains at least two elements then by de�nition ofU , U( ~P ; �) � R0 j R00 for some R;R0 6� 0 by Propositions A.5 and A.4 .Thus, still by Proposition A.4, U( ~P ; �) 6� M [Q℄ whatever M , Q are. So, I isa singleton. Now, if �i 6= M 0[ ~Q℄ or M 0�;M are two di�erent sequenes, oneagain from the de�nition of U and Proposition A.4, U( ~P ; �) 6� M [Q℄. Finally,sine U(Qi2I �i; �) =M [U( ~Q; �)℄, we have U( ~Q; �) � Q.For the third point, from right to left: we have P 0 j P 00 � U(Qj2J �j ; �) jU(Qk2K �k; �). By de�nition of U , sine J;K are disjoint and J [ K = I ,P 0 j P 00 � U(Qi2I �i; �). From left to right: by de�nition, U(Qi2I �i; �) =U(�1; �) j : : : j U(�k; �) where I is assumed to be f1; : : : ; kg and the �i's areprimes. Sine U(Qi2I �i; �) = P 0 j P 00, there must exist I; J two disjoint sets ofindies suh that I [ J = 1::k, P 0 � U(Qi2I �i; �) and P 00 � U(Qj2J �j ; �).For the fourth point, from right to left: from the de�nition of U , we haveU(Qi2I �i; �) = U(�i; �) = hM 0�i. So, using the hypothesis, U(Qi2I �i; �) �hMi. From left to right: similar to the seond point.For the �fth point, from right to left: from the de�nition of U , we haveU(Qi2I �i; �) = U(�i; �) = (n):U( ~P ; �). Using the hypothesis, U(Qi2I �i; �) �(n):P . From left to right: similar to the seond point. �A.2 Properties of the Auxiliary FuntionsHere, we state and prove orretness properties needed in subsequent setionsof the auxiliary funtions nam , len , fst , and split .First, the funtion nam is orret in the following sense.Proposition A.6 nam(M;�) = n i� M� = n.Proof Straightforward by indution over the length of the sequential substi-tution �. �Seond, the funtion len has the following property.Proposition A.7 len(M;�) = l i� M� = N1: : : : :Nl with Ni being either aname or of the form ap N 0 with ap 2 fin; out ; openg.Proof The proof goes by indution on the length of the sequential substitu-tion �. 30



For � being the empty sequene �: M� = M = N1: : : : :Nl. By de�nition,len(N1: : : : :Nl; �) =Pli=1 len(Ni; �). Sine eah Ni is either a name n or of theform in N 0, out N 0 or open N 0, we have len(Ni; �) = 1. This is equivalent tolen(N1: : : : :Nl; �) = l.For � being the sequene fx M 0g�0 of length at least 1:let M = N 01: : : : :N 0k. By indution over k:- k = 0: in this ase, M = � and Mfx M 0g� = �. So, l = 0 and by de�nitionlen(M;�) = 0.- k = 1: in this ase M = N 01 and we have three ases� N 01 is of the form ap N 0 for some ap 2 fin ; out ; openg: in this ase,Mfx M 0g� is of the form apN 00 and by de�nition, len(M;�fx Mg) =1.� N 01 is a name di�erent from x: in this ase, Mfx M 0g� = M� andlen(M; fx M 0g�) = len(M;�). Using the indution hypothesis, M� =N 001 : : : : :N 00l i� len(M;�) = l, therefore Mfx M 0g� = N 001 : : : : :N 00l i�len(M; fx M 0g�) = l.� N 01 = x: in this ase, Mfx M 0g� = M 0� and len(M; fx M 0g�) =len(M 0; �). By indution hypothesis M 0� = N 001 : : : : :N 00l i� len(M 0; �) =l, so Mfx M 0g� = N 001 : : : : :N 00l i� len(M; fx M 0g�) = l.- k > 1: using the indution hypothesis, len(N 01: : : : :N 0k�1; fx M 0g�) = l0 i�N 01fx M 0g�: : : : :N 0k�1fx M 0g� = N 001 : : : : :N 00l0 and for the expression Nk,len(Nk; fx M 0g�) = l00 i� N 0kfx M 0g� = N 00l0+1: : : : :N 00l0+l00 . By de�ni-tion, len(M; fx M 0g�) is the sum of len(N 01: : : : :N 0k�1; fx M 0g�) and oflen(N 0k; fx M 0g�). So, we an onlude that Mfx M 0g� = N 001 : : : : :N 00l0+l00i� len(M; fx M 0g�) = l0 + l00. �Third, we state the orretness of fst in Proposition A.9. To prove it, weneed the following lemma.Lemma A.8 Let h ~P ; fx Ng�i be a normal losure. Then h ~P fx Ng;�i isnormal and U( ~P ; fx Ng�) � U( ~P fx Ng; �).Proof For the normality of h ~Pfx Ng;�i: we an show that U( ~Pfx Ng; �)is de�ned by indution over the struture of proesses and primes. The only non-trivial ase is for ~P = M(o): ~P 0: then, ~Pfx Ng = Mfx Ng(o): ~P 0fx Ng.Sine U( ~P ; fx Ng�) by assumption and U( ~P 0fx Ng; �) by indution hypoth-esis are de�ned and (Mfx Ng)� = M(fx Ng�), U( ~Pfx Ng; �) is de�ned.For the seond statement, sine h ~P ; fx Ng�i is normal, x and names fromN are not bound in ~P , so bn( ~Pfx Ng) = bn( ~P ) and fn( ~Pfx Ng) on-tains fn( ~P ) and some possibly other names that do not belong to bn( ~P ). So,fn( ~Pfx Ng) \ bn( ~Pfx Ng) = ?. Moreover, as the bound names from ~P donot our in fx Ng� and bn( ~Pfx Ng) = bn( ~P ), bn( ~Pfx Ng)\names(�) =?. Sine x is not bound in ~P , ourrenes of bound variables in ~P are not31



a�eted by the substitution fx Ng. The requirement on o�sets is triviallypreserved and �nally, as fx Ng� is ayli, � is so.We show that U( ~P ; fx Ng�) � U( ~P fx Ng; �) by indution over the stru-tures of proesses and primes taking into aount that x in not a bound variablein ~P . �Proposition A.9 Let N be a apability of the form inn, out n or openn. Thenfor all normal losures h ~Q;�i, there exists Q suh that U(M(o): ~Q; �) � N:Q i�fst(M; o; �) = N .Proof Let us assume that M = N1: : : : Nl and that N = ap n where apranges over in; out ; open . The proof goes by indution over the o�set o.Case where o = 0: we have fst(M; 0; �) = ap n. We follow by indutionover the length of the sequential substitution �.- ase where the length of � is 0: � = � and fst(M; 0; �) = apn. By de�nition offst , this is equivalent to fst(N1; 0; �) = apn and toN1 = apn. Furthermore, asU(M(0): ~Q; �) = N1: : : : :Nl:U( ~Q), this is equivalent to U(M(0): ~Q; �) � ap n:Qfor some Q.- ase where � is of the form fx M 0g�0 and the proposition holds for �0: byde�nition of fst , fst(M; 0; �) = fst(N1; 0; �) = ap n. Now, aording to thevalue of N1:� N1 is of the form ap L: so, nam(L; �) = n whih is equivalent due toProposition A.6, to L� = n. As U(M(0): ~Q; �) = N1�: : : : :Nl�:U( ~Q; �),U(M(0): ~Q; �) = ap n:N2� : : : :Nl�:U( ~Q; �). Therefore, this is equivalentto that U(M(0): ~Q; �) � ap n:Q for some Q.� N1 is a name m: for eah of the two ases in the de�nition of fst .Case where m = x: we have fst(N1; 0; �) = fst(m; 0; fx M 0g�0) =fst(M 0; 0; �0) = apn. By indution hypothesis, it is equivalent to that forany ~Q, U(M 0(0): ~Q; �0) � ap n:Q for some Q. In partiular for some P ,ap n:P � U(M 0(0):N2fx M 0g: : : : :Nlfx M 0g(0): ~Pfx N 0g; �0), thatis ap n:P �M 0�0:N2fx M 0g�0: : : : :Nlfx M 0g�0:U( ~Pfx N 0g; �0). Soap n:P � mfx M 0g�0:N2�: : : : :Nl�:U( ~P ; fx N 0g�0) by Lemma A.8.And thus, by de�nition of U , this is equivalent to that for some P ,ap n:P � U(M(0): ~P ; �).Case where m 6= x: in this ase, fst(M; 0; �) = fst(m; 0; �0) = ap n. Byindution hypothesis, this is equivalent to that for any ~Q, U(m(0): ~Q; �0) �ap n:Q for some Q. The rest of the proof is similar to the previous ase,using the fat that m�0 = mfx M 0g�0 sine m 6= x.Case where the proposition holds for any o0 < o: we have fst(M; o; �) = apn.By indution over the length of the sequential substitution �.- ase where the length of � is 0: � = � and fst(M; o; �) = ap n. Sinelen(N1: : : : :No; �) = o, ap n = fst(No+1: : : : :Nl; 0; �). Using the base ase,32



this latter is equivalent to that for any ~P , U(No+1: : : : :Nl(0): ~P ; �) � ap n:Pfor some P . Now, this is equivalent to ap n:P � No+1: : : : :Nl:U( ~P ; �) by de�-nition of U . Finally, as M� = N1: : : : :Nl, by de�nition of U , it is equivalent tothat ap n:P � U(M(o): ~P ; �) for some P .- ase where � is of the form fx M 0g�0 and the proposition holds for �0:sine fst(M; o; �) is de�ned, o < len(M;�). Let i be the unique integersuh that len(N1: : : : :Ni�1; �) � o and len(N1: : : : :Ni; �) > o and p be o �len(N1: : : : :Ni�1; �). Then we have ap n = fst(M; o; �) = fst(Ni: : : : :Nl; p; �).Now, aording to the value of Ni:� Ni is of the form ap L: so, nam(L; �) = n whih is equivalent dueto Proposition A.6, to L� = n. Furthermore, sine len(Ni; �) = 1,we have o = len(N1: : : : :Ni�1; �) and thus, p = 0. Hene, ap n =fst(Ni: : : : :Nl; 0; �). Aording to the base ase, this is equivalent to thatfor any ~P , U(Ni: : : : :Nl(0): ~P ; �) � ap n:P for some P . Let M� beN 01: : : : :N 0k. So by de�nition of U , U(M(o): ~P ; �) = N 0o+1: : : : :N 0k:U( ~P ; �).Now, as o = len(N1: : : : :Ni�1; �), Ni�: : : : :Nl� = N 0o+1: : : : :N 0k. Hene,U(M(o): ~P ; �) = Ni�: : : : :Nl�:U( ~P ; �). Equivalently, U(M(o): ~P ; �) =U(Ni: : : : :Nl(0): ~P ; �) and so, U(M(o): ~P ; �) � ap n:P for some P .� Ni is a name m: in this ase, we have len(Ni; �) > p. Hene, by de�nitionof fst , ap n = fst(M; o; �) = fst(Ni; p; fx M 0g�0). For eah of the twoases in the de�nition of fst :Case where m = x: we have ap n = fst(M 0; p; �0). By indution hy-pothesis, this is equivalent to that for any ~Q, U(M 0(p): ~Q; �0) � ap n:Qfor some Q. As a partiular ase, this latter holds for Q = P and for~Q = Ni+1fx M 0g: : : : :Nlfx M 0g(0): ~Pfx M 0g. Now, from the de�-nition of U and using that M 0 = Nifx M 0g, this is equivalent to thatU(Nifx M 0g: : : : :Nlfx M 0g(p): ~Pfx M 0g; �0) = ap n:P for some P .Let N 01: : : : :N 0k be Ni�. Then, still by de�nition of U , it is equivalentto that N 0p+1: : : : :N 0k:Ni+1�: : : : :Nl�:U(Pfx M 0g; �0) = ap n:P . ByLemma A.8, it is equivalent to N 0p+1: : : : :N 0k:Ni+1�: : : : :Nl�:U(P; �) =ap n:P . One again, by de�nition of U , we have U(Ni: : : : :Nl(p): ~P ; �) =ap n:P . Let p0 be len(N1: : : : :Ni�1; �). By de�nition of U , we haveU(N1: : : : Ni�1(p0):Ni: : : : :Nl(p): ~P ; �) = ap n:P . By de�nition of U ,U(N1: : : : Ni�1:Ni: : : : :Nl(p+ p0): ~P ; �) = ap n:P . Finally, as p+ p0 = o,this latter is equivalent to that U(M(o): ~P ; �) = ap n:P for some P .Case where m 6= x: by de�nition of fst , ap n = fst(m; p; fx M 0g�0)=fst(m; p; �0). By indution hypothesis, this is equivalent to that for all ~Q,there exists ~Q suh that U(m(p): ~Q; �) � ap n: ~Q. The rest of the proofis similar to the previous ase, using the fat that m�0 = mfx M 0g�0sine m 6= x. �Fourth, we prove that split is orret in the following sense.33



Proposition A.10 Let hQi2I �i;�i be a normal losure, and let L be of theform in n, out n or open n. Then U(Qi2I �i; �) � L:P i� 9L0; o; ~P ; ~P 0 : I is asingleton fig, �i = L0(o): ~P 0, split(�i; �) = (L; ~P ) and U( ~P ; �) � P .Proof From right to left: we have U(Qi2I �i; �) = U(�i; �), �i = L0(o): ~P 0,split(�i; �) = (L; ~P ). By Proposition A.9, U(�i; �) � L:P for some P . Moreover,for L0� being of the form L01: : : : :L0l, U(�i; �) = L0o+1: : : : :L0l:U( ~P ; �) and L0o+1 =L. Note that U(�i; �) being de�ned, we have o < len(L0; �) = l. Now, by thede�nition of split , aording to the values of o and len(L0; �):- len(L0; �) > o + 1: in this ase, ~P = fL0(o+ 1): ~P 0g. So, by de�nition ofU , U(fL0(o+ 1): ~P 0g; �) = L0o+2: : : : :L0l:U( ~P 0; �) and thus, U(Qi2I �i; �) �L0o+1:U(fL0(o+ 1): ~P 0g; �) � L:P for P � U(fL0(o+ 1): ~P 0g; �) � U( ~P ; �).- len(L0; �) = o + 1: in this ase, ~P = ~P 0. Therefore, U(fL0(o+ 1): ~P 0g; �) =L0l:U( ~P 0; �) = L0o+1:U( ~P 0; �) = L:U( ~P 0; �). Thus, U(Qi2I �i; �) � L:P forP � U( ~P 0; �) � U( ~P ; �).From left to right: let us assume that U(Qi2I �i; �) � L:P . Using Proposi-tion A.4, the set I has to be a singleton and �i has to be of the form L0(o): ~P 0.Now, by Proposition A.9, we know that fst(L0; o; �) = L. Thus, it is suÆient toprove that P � U( ~P ; �) for split(�i; �) = (L; ~P ). From the de�nitions of U andsplit and from Proposition A.4, it is straightforward to see that P 6� U( ~P ; �)implies U(Qi2I �i; �) 6� L:P . �A.3 Proof of Proposition 3.2Using Lemma A.11 below, we show Proposition 3.2(1), that #�, the reexive andtransitive losure of the subloation relation #, preserves normality of losures.Lemma A.11 If h ~P ;�i is normal, then for any h ~P 0;�i suh that h ~P ;�i #h ~P 0;�i, the losure h ~P 0;�i is normal.Proof From the de�nition of #, we have ~P = ~Q ++ fM [ ~P 0℄g for some ~Q, M .Thus, by the �rst point of Proposition A.1, the losure hfM [ ~P 0℄g;�i is normal.Now, the names fromM our freely in fM [ ~P 0℄g. So, hfM [ ~P 0℄g;�i being normal,none of the names from M is in bn(fM [ ~P 0℄g) and thus, in bn( ~P 0). Therefore,by the seond point of Proposition A.1, h ~P 0;�i is normal. �Restatement of Proposition 3.2(1) If h ~P ;�i is normal and h ~P ;�i #�h ~P 0;�i then h ~P 0;�i is normal.Proof A simple indution using Lemma A.11. �Using Lemmas A.12 and A.13 below, we show Proposition 3.2(2), that !�,the reexive and transitive losure of the redution relation !, preserves nor-mality of losures. 34



Lemma A.12 If hf�g;�i is normal and split(�; �) = (N; ~S) then h ~S;�i isnormal.Proof Sine split(�; �) = (N; ~S), � = M(o): ~S0 for some expression M andsome annotated proess ~S0. Furthermore, U(f�g; �) being de�ned, U( ~S0; �) isde�ned. Now, aording to the value of ~S: if ~S = M(o + 1): ~S0 then, from thede�nition of split , o + 1 < len(M;�). So, from the de�nition of U , U( ~S0; �)being de�ned, U(M(o+ 1): ~S0; �)= U( ~S; �) is de�ned. If ~S = ~S0 then U( ~S; �) isde�ned.Let us �rst notie that bn(f�g) = bn(fM(o+ 1): ~S0g) = bn( ~S0) and thatfn(f�g) = fn(fM(o+ 1): ~S0g) � fn( ~S0). Therefore, sine by normality bn(f�g)\(fn(f�g) [ names(�)) = ?, we have bn( ~S) \ (fn( ~S) [ names(�) = ?.The last three statements are obvious to hek. �Lemma A.13 If h ~P ;�i is normal, then for any h ~P 0;�i suh that h ~P ;�i !h ~P 0;�i, the losure h ~P 0;�i is normal, and moreover� either �0 = �, bn( ~P ) = bn( ~P 0) and fn( ~P 0) � fn( ~P ),� or for some x;M , �0 = fx Mg�, bn( ~P ) = bn( ~P 0) [ fxg and fn( ~P 0) �fn( ~P ) [ fxg.Proof The proof goes by indution over the struture of the ontext underwhih the redution takes plae.If the ontext is empty, then the applied redution orresponds to one ofthe rules (Trans In), (Trans Out), (Trans Open) and (Trans I/O). For (TransIn), (Trans Out) and (Trans Open) respetively, hfN [ ~Q ++ f�g℄;M [ ~R℄g;�i,hfM [fN [ ~Q ++ �℄g ++ ~R℄g;�i and hfM [ ~P ℄; �g;�i are normal by assumption.Conerning the seond laim of the lemma: obviously, �0 = �, bn( ~P ) =bn( ~P 0). For the rules (Trans In) and (Trans Out), fn( ~P ) = fn( ~P 0) and for(Trans Open) fn( ~P 0) � fn( ~P ) (the exeution of open may let an ambient namedisappeared).Now for the �rst laim, by using Proposition A.1, h�;�i is normal. Then,from Lemma A.12 together with the transition rules on losures, h ~P ;�i is normal(where split(�; �) = (N; ~P ) and N being respetively inm, out m and open m).Finally, using the fat that bn(f�g) = bn( ~P ) and that fn(f�g) � fn( ~P ) and byapplying one more Proposition A.1, the losures hfM [fN [ ~Q ++ �℄g ++ ~R℄g;�i,hfN [ ~Q ++ f�g℄;M [ ~R℄g;�i and h ~P ++ ~Q;�i are normal.For (Trans I/O), hfhMi; (x): ~Pg;�i is normal by assumption. Let us startwith the seond laim of the lemma. We have �0 = fx Mg�. Due to theassumption of normality, x ours at most one within an input in ~P andbound and free names are disjoint in ~P . So, bn(fhMi; (x): ~P g) = bn( ~P ) [ fxgand fn( ~P ) � fn(fhMi; (x): ~P g) [ fxg. Now, for the �rst laim, let us �rstprove that U(norm( ~P ; fx Mg�); fx Mg�) is de�ned by indution over thestruture of ~P : this is obvious for ~P being the empty multiset or the single-ton fhM 0ig. For the indution step, this is also straightforward for ~P be-ing a multiset of primes or a singleton f(x0): ~Qg or fM 0[ ~Q℄g. Now, for ~P =35



fM 0(o): ~Qg. By hypothesis, U(M 0(o): ~Q; �) is de�ned. So, o < len(M 0; �). Iflen(M 0; fx Mg�) = 0, then norm( ~P ; fx Mg�) = norm( ~Q; fx Mg�) and soU(norm( ~P ; fx Mg�); fx Mg�) is de�ned by indution hypothesis. Other-wise, len(M 0; �) � len(M 0; fx Mg�). So U(norm( ~P ; fx Mg�); fx Mg�)=U(M 0(o):norm( ~Q; fx Mg�); fx Mg�) is de�ned. Sine every variable oursat most one within an input in the annotated proess of a normal losure,bn( ~P ) = bn(f(x): ~P ; hMig) r fxg; Moreover, sine fn( ~P ) � fn(fhMi; (x): ~Pg) [fxg, bn(fhMi; (x): ~P g) \ fn(fhMi; (x): ~P g) = ?. Let us show that names frombn( ~P ) do not our in �0 = fx Mg�. As bn( ~P ) � bn(fhMi; (x): ~Pg), beauseof the hypothesis of normality, names from bn( ~P ) do not our in �. Moreover,we know that x 62 bn( ~P ) and names ourring inM are free in fhMi; (x): ~Pg andso, in ~P . It is straightforward that the property of the uniqueness of variablewithin an input and the fat that o�sets are equal to 0 in the sope of an inputare preserved. Finally, sine hfhMi; (x): ~P g;�i is normal, � is ayli and as xis bound, x does not our in �; so the last point holds for h ~P ; fx Mg�i.Now, we investigate the ase where the ontext of redution is non-empty,that is the rule used for redution is either (Trans Par) or (Trans Amb). We showin this ase that the seond laim of the lemma holds and then that normalityis preserved.For (Trans Amb): we assume the losure hM [ ~P ℄;�i to be normal. For any ~S,we have bn(M [ ~S℄) = bn( ~S), fn(M [ ~S℄) = fn( ~S)[ fn(M [0℄). Let us �rst onsiderthe ase where � = �0: by indution hypothesis bn( ~P ) = bn( ~P 0), fn( ~P 0) �fn( ~P ). So, bn(M [ ~P ℄) = bn(M [ ~P 0℄) and fn(M [ ~P 0℄) � fn(M [ ~P ℄). Now, for thease where �0 = fx Mg�: By indution hypothesis, bn( ~P ) = bn( ~P 0) [ fxg,fn( ~P 0) = fn( ~P ) [ fxg. So, bn(M [ ~P ℄) = bn(M [ ~P 0℄) [ fxg and fn(M [ ~P 0℄) =fn(M [ ~P ℄) [ fxg.Let us show now that hM [ ~P 0℄;�0i is normal: sine hM [ ~P ℄;�i is normal, byProposition A.1, h ~P ;�i is normal. Then, sine h ~P ;�i ! h ~P 0;�0i, by indutionhypothesis, h ~P 0;�0i is normal. So, as bn( ~P 0) � bn( ~P ), by Proposition A.1,hM [ ~P 0℄;�0i is normal.For (Trans Par): we assume the losure h ~P ++ ~Q;�i to be normal. Forany ~S; ~S0, we have bn( ~S ++ ~S0) = bn( ~S) [ bn( ~S0) and fn( ~S ++ ~S0) = fn( ~S) [fn( ~S0). Let us �rst onsider the ase where � = �0: as by indution hypothesisbn( ~P ) = bn( ~P 0) and fn( ~P 0) � fn( ~P ), we have bn( ~P ++ ~Q) = bn( ~P 0 ++ ~Q) andfn( ~P 0 ++ ~Q) � fn( ~P ++ ~Q). Now, for the ase where �0 = fx Mg�: as byindution hypothesis bn( ~P ) = bn( ~P 0) [ fxg and fn( ~P 0) � fn( ~P ) [ fxg, we havebn( ~P ++ ~Q) = bn( ~P 0 ++ ~Q) [ fxg and fn( ~P 0 ++ ~Q) � fn( ~P ++ ~Q) [ fxg.Let us show now that h ~P ++ ~Q;�0i is normal: h ~P ++ ~Q;�0i being normal,by Proposition A.1, both h ~P ;�i and h ~Q;�i are normal. Now, sine h ~P ;�i !h ~P 0;�0i, by indution hypothesis, h ~P 0;�0i is normal. Let us now prove thath ~Q;�0i is normal: we know that x 2 bn( ~P ); so, by normality of h ~P ++ ~Q;�i, xdoes not our in ~Q, so U( ~Q; �0) � U( ~Q; �) and thus, U( ~Q; �0) is de�ned. Theother points are obviously implied by the normality of h ~Q;�i and h ~P 0;�0i. Fi-nally, the fat that h ~P ++ ~Q;�i and h ~Q;�0i are normal together with PropositionA.1 implies that h ~P 0 ++ ~Q;�0i is normal. �36



Restatement of Proposition 3.2(2) If h ~P ;�i is normal and h ~P ;�i !�h ~P 0;�0i then h ~P 0;�0i is normal.Proof An indution with appeal to Lemma A.13. �A.4 Proof of Proposition 3.3We prove now that the subloation relation de�ned on losures simulates thesubloation relation de�ned on proesses.Restatement of Proposition 3.3 Assume h ~P ;�i is a normal losure. Ifh ~P ;�i # h ~Q;�i then U( ~P ; �) # U( ~Q; �). If U( ~P ; �) # Q then there exists ~Q suhthat h ~P ;�i # h ~Q;�i and U( ~Q; �) � Q.Proof For the �rst point, by de�nition for # on losures, we have ~P = ~Q ++fM [ ~P 0℄g for some ~Q, M , n suh that nam(M;�) = n. Therefore, by de�nitionof U , U( ~P ; �) = U( ~Q; �) j M�[U( ~P 0; �)℄. Note that h ~P ;�i being normal, bothh ~Q;�i, h ~P 0;�i are de�ned and thus, proesses. Now, for the two proessesU( ~P ; �), U( ~P 0; �), there exists a proess Q (namely U( ~Q; �)) and a name n (n =M� by Proposition A.6) suh that U( ~P ; �) � Q j n[U( ~P 0; �)℄. So, U( ~P ; �) #U( ~P 0; �).For the seond point, by de�nition of # on proesses, U( ~P ; �) # P 0 i� thereexists Q;n suh that U( ~P ; �) � Q j n[P 0℄. The annotated proess ~P being ofthe formQk2K �k, by Proposition 3.1, there exists I; J suh that I[J = K, I\J = ? and U(Qi2I �i; �) � Q, U(Qj2J �j ; �) � n[P 0℄. From U(Qj2J �j ; �) �n[P 0℄, by Proposition 3.1, there exists M 0; ~P 0 suh that J is a singleton fjg,�j = M 0[ ~P 0℄, M 0� = n and U( ~P 0; �) � P 0. Sine M 0� = n, by PropositionA.6, nam(M 0; �) = n. Furthermore, ~P is equal to Qi2I �i ++ fM 0[ ~P 0℄g. So,h ~P ;�i # h ~P 0;�i and U( ~P 0; �) � P 0. �A.5 Proof of Proposition 3.4Given Lemmas A.14, A.15, and A.16 below, we prove Proposition 3.4, that theredution relation de�ned on losures simulates the redution relation de�nedon proesses.Lemma A.14 Let h ~P ;�fx Mgi be a normal losure suh that all the o�setso ourring in ~P are set to 0. Then U( ~P ; �fx Mg) � U( ~P ; �)fx Mg.Proof The proof goes by indution over the strutures of proesses andprimes. Most of the ases simply uses the de�nition of U and the appliation ofa substitution. We detail here the only two ases that are not straightforward.For primes �:- ase where � = (y): ~P 0: 37



U((y): ~P 0; �)fx Mg � ((y):U( ~P 0; �))fx Mg� ((y)fx Mg):(U( ~P 0; �)fx Mg)� (y):(U( ~P 0; �)fx Mg)� (y):(U( ~P 0; �fx Mg))� U((y): ~P 0; �fx Mg)The �rst and the last equivalenes follow from the de�nition of U ; the seondone orresponds simply to the appliation of the substitution fx Mg. Forthe third one, the losure h ~P ;�fx Mgi being normal, by Proposition A.1,the losure hf�g;�fx Mgi is normal too. Therefore, as y is a bound variableand bn( ~P ) \ dom(�fx Mg) = ?, x and y are di�erent. So, yfx Mg = y.The fourth equivalene appeals to the indution hypothesis.- ase where � =M 0(o): ~P 0:U(M 0(o): ~P 0; �)fx Mg � (M 0�:U( ~P 0; �))fx Mg� M 0�fx Mg:U( ~P 0; �)fx Mg� M 0�fx Mg:U( ~P 0; �fx Mg)� U(M 0(o): ~P 0; �fx Mg)The �rst equivalene uses the de�nition of U and the fat that by hypothesis,o is equal to 0; the seond one is simply the appliation of the substitutionfx Mg. The third equivalene is due to the indution hypothesis. Finally,the last equivalene is a diret onsequene of the de�nition of U and of o = 0.�Lemma A.15 Let h ~P ; fx Mg�i be a normal losure suh that all the o�setso ourring in ~P are set to 0. Then U( ~P ; fx Mg�) � U( ~P ; �)fx M�g.Proof The proof goes by indution on the length of the sequential substitu-tion �.For � being the empty substitution �: U( ~P ; fx Mg�) � U( ~P ; �fx Mg)sine � orresponds to the identity. So, by Lemma A.14, U( ~P ; fx Mg�) �U( ~P ; �)fx Mg.For � being of the form �0fy M 0g:U( ~P ; fx Mg�0fy M 0g) � U( ~P ; fx Mg�0)fy M 0g� (U( ~P ; �0)fx M�0g)fy M 0gThe �rst equivalene follows from Lemma A.14 and the seond one from theindution hypothesis.Now, the fat that h ~P ; fx Mg�0fy M 0gi is normal implies that x 6= y andthat x does not our inM 0. Let us onsider now the proess U( ~P ; �0)fx M�0g.As x 6= y, the ourrenes of y in U( ~P ; �0) are preserved in U( ~P ; �0)fx M�0gand some new ourrenes of y may appear in this latter, due to the possibleourrenes of y inM�0. As x does not our inM 0, we an �rst replae U( ~P ; �0)the ourrenes of y with M 0 and then, replae the ourrenes of x with an38



expression L; this expression L is the expression M� in whih the ourrenesof y are replaed by M 0. Hene,(U( ~P ; �0)fx M�0g)fy M 0g � (U( ~P ; �0)fy M 0g)fx M�0fy M 0ggBy Lemma A.14, this latter is equivalent to U( ~P ; �0fy M 0g)fx M�0fy M 0ggand so, to U( ~P ; �)fx M�g. �Lemma A.16 Suppose h ~P ;�i is a normal losure suh that all the o�sets oourring in ~P are set to 0 and x ours neither in � nor in bn( ~P ). ThenU(norm( ~P ; fx Mg�); fx Mg�) � U( ~P ; �)fx M�g.Proof First, observe that normality of h ~P ;�i and the assumption about x im-ply normality of hnorm( ~P ; fx Mg�); fx Mg�i. Therefore, by Lemma A.15,U(norm( ~P ; fx Mg�); fx Mg�) � U(norm( ~P ; fx Mg�); �)fx M�g. So,it is enough to prove thatU(norm( ~P ; fx Mg�); �)fx M�g � U( ~P ; �)fx M�g:Let us onsider two ases: len(M;�) 6= 0 and len(M;�) = 0. In the �rst ase,norm( ~P ; fx Mg�) = ~P and there is nothing to prove. In the seond ase, nor-mality of h ~P ;�i implies that norm( ~P ; fx Mg�) di�ers from ~P only by someourrenes of x(0). The equivalene U(norm( ~P ; fx Mg�); �)fx M�g �U( ~P ; �)fx M�g follows then by indution on the struture of M� using theongruene rule (Strut �). �Restatement of Proposition 3.4 Assume h ~P ;�i is a normal losure. Ifh ~P ;�i ! h ~P 0;�0i then U( ~P ; �) ! U( ~P 0; �0). If U( ~P ; �) ! P 0 then there existsh ~P 0;�0i suh that h ~P ;�i ! h ~P 0;�0i and U( ~P 0; �0) � P 0.Proof The proof goes by indution over the struture of the ontext underwhih the redution takes plae.If the ontext is empty, then for the �rst point, the redution applied or-responds to one of the rules (Trans In), (Trans Out), (Trans Open) and (TransI/O).For the �rst point and the rule (Trans In):U(fN [ ~Q ++ f�g℄;M [ ~R℄g; �) � N�[U( ~Q; �) j U(f�g; �)℄ jM�[U( ~R; �)℄� n[U( ~Q; �) j U(f�g; �)℄ j m[U( ~R; �)℄� n[U( ~Q; �) j in m:U( ~P ; �)℄ j m[U( ~R; �)℄The �rst equivalene follows from the de�nition of U . The seond one isa onsequene of the onditions of the rule (Trans In) and of Proposition A.6.The third equivalene follows from the onditions of the rule (Trans In) andfrom Proposition A.10.On the other hand, 39



U(M [N [ ~Q ++ ~P ℄ ++ ~R℄; �) � M�[N�[U( ~Q; �) j U( ~P ; �)℄ j U( ~R; �)℄� m[n[U( ~Q; �) j U( ~P ; �)℄ j U( ~R; �)℄The �rst equivalene follows from the de�nition of U and the seond onefrom the onditions of the rule (Trans In) and from Proposition A.6. Therefore,U(N [ ~Q ++ f�g℄ ++M [ ~R℄; �)! U(M [N [ ~Q ++ ~P ℄ ++ ~R℄; �).The proof is similar for the rules (Trans Out) and (Trans Open). Now,for the �rst point and the rule (Trans I/O): by the de�nition of U , we haveU(fhMi; (x): ~P g; �) � hM�i j (x):U( ~P ; �): Let ~P 0 be norm( ~P ; fx Mg�). ByLemma A.15, the losure hfhMi; (x): ~P g;�i being normal, U( ~P 0; fx Mg�) �U( ~P 0; �)fx M�g. Therefore, U(fhMi; (x): ~P g; �)! U( ~P 0; fx Mg�).Let us onsider now the seond point with the assumption that the ontextis empty, that is the redution is made by (Red In), (Red Out), (Red Open) or(Red I/O).For the seond point and the rule (Red In): let us assume that U( ~S; �)! S0by the rule (Red In). Therefore, S0 � m[n[Q j P ℄ j R℄ for some m;n; P;Q;R andU( ~S; �) � n[Q j in m:P ℄ j m[R℄. So, by Proposition 3.1 and Proposition A.10,there exists N;M;L0, ~P ; ~P 0; ~Q; ~R suh that ~S = fN [ ~Q ++ fL0(o): ~P 0g℄;M [ ~R℄g,N� = n, M� = m, U( ~Q; �) � Q, U( ~R; �) � R, split(L0(o): ~P 0) = (in m; ~P )and U( ~P ; �) � P . Using Proposition A.6, we have nam(M;�) = m andnam(N; �) = n. So, by de�nition for (Red In),h ~S;�i ! hfM [fN [ ~P ++ ~Q℄g ++ ~R℄g;�iand furthermore,U(M [N [ ~Q ++ ~P ℄ ++ ~R℄; �) � m[n[U( ~Q; �) j U( ~P ; �)℄ j U( ~R; �)℄� m[n[Q j P ℄ j R℄ � S0The proof is similar for the rules (Red Out) and (Red Open). Now, forthe seond point and the rule (Red I/O): let us assume that U( ~S; �) ! S0by the rule (Red I/O). Therefore, S0 � Pfx Mg and U( ~S; �) � (x):P jhMi. So, by Proposition 3.1, there exists M 0; ~P suh that ~S = fhM 0i; (x): ~P g,M 0� = M and U( ~P ; �) � P . Therefore, h ~S;�i ! h ~P 0; fx M 0g�i where~P 0 = norm( ~P ; fx Mg�). Furthermore, hfhM 0i; (x): ~P g;�i being normal, byLemma A.16 U( ~P 0; fx M 0g�) � U( ~P ; �)fx M 0�g� Pfx Mg:Now, we investigate the ase where the ontext of redution is non-empty:for the �rst point, the rule used for redution is either (Trans Par) or (TransAmb).For the rule (Trans Amb): if h ~P ;�i ! h ~P 0;�0i then hM [ ~P ℄;�i ! hM [ ~P 0℄;�0i.In this ase, U(M [ ~P ℄; �) =M�[U( ~P ; �)℄ and U(M [ ~P 0℄; �0) =M�0[U( ~P 0; �0)℄. By40



A.13, either �0 = � or �0 = fx Lg�. In this last ase, x is bound in ~P and thus,by normality, x does not our in M . So in both ases, M�0 =M�. Moreover,by the rule (Red Amb), M�[U( ~P ; �)℄ ! M�[U( ~P 0; �0)℄. So, U(M [ ~P ℄; �) !U(M [ ~P 0℄; �0)For the rule (Trans Par): if h ~P ;�i ! h ~P 0;�0i then h ~P ++ ~Q;�i ! h ~P 0 ++~Q;�0i. In this ase, U( ~P ++ ~Q; �) � U( ~P ; �) j U( ~Q; �) and U( ~P 0 ++ ~Q; �0) �U( ~P 0; �0) j U( ~Q; �0). By A.13, either �0 = � or �0 = fx Mg�. In this lastase, x is bound in ~P and thus, by normality does not our in ~Q. So, inboth ases, we have U( ~Q; �0) � U( ~Q; �). Moreover, by the rule (Red Par),U( ~P ; �) j U( ~Q; �)! U( ~P 0; �0) j U( ~Q; �). So, U( ~P ++ ~Q; �)! U( ~P 0 ++ ~Q; �).For the seond point, the rule used for redution is either (Red Par) or (RedAmb).For (Red Amb): let us assume that U( ~S; �) ! S0 by (Red Amb). Wehave S0 = n[P 0℄ and U( ~S; �) � n[P ℄. So, by Proposition 3.1, there existsN; � suh that ~S is a singleton f�g, � = N [ ~P ℄, N� = n and U( ~P ; �) � P .By hypothesis P ! P 0, so U( ~P ; �) ! P 0. By indution hypothesis, thereexists ~P 0; �0 suh that h ~P ;�i ! h ~P 0;�0i and U( ~P 0; �0) � P 0. Then by therule (Trans Amb), hfN [ ~P ℄g;�i ! hfN [ ~P 0℄g;�0i; so, h ~S;�i ! hfN [ ~P 0℄g;�0i.Finally, U(fN [ ~P 0℄g; �0) � N�0[U( ~P 0; �0)℄. By Lemma A.13, either � = �0 or�0 = fx Mg� with x a bound variable in ~P . By normality x does not belongtoN , soN�0 = N� = n. Therefore,N�0[U( ~P 0; �0)℄ � n[U( ~P 0; �0)℄ � n[P 0℄ � S0.For (Red Par): let us assume that U( ~S; �) ! S0 by (Red Par). We haveS0 = P 0 j Q and U( ~S; �) � P j Q. So, by Proposition 3.1, there exists ~P; ~Qsuh that ~S = ~P ++ ~Q, U( ~P ; �) � P and U( ~Q; �) � Q. By hypothesis,P ! P 0, so U( ~P ; �) ! P 0. By indution hypothesis, there exists ~P 0; �0 suhthat h ~P ;�i ! h ~P 0;�0i and U( ~P 0; �0) � P 0. Then by the rule (Trans Par),h ~P ++ ~Q;�i ! h ~P 0 ++ ~Q;�0i; so, h ~S;�i ! h ~P 0 ++ ~Q;�0i. Finally, U( ~P 0 ++~Q; �0) � U( ~P 0; �0) j U( ~Q; �0). Now, by Lemma A.13, either � = �0 or �0 =fx Mg� with x a bound variable in ~P . By normality x does not our in ~Q;so, U( ~Q; �0) � U( ~Q; �). Therefore, U( ~P 0 ++ ~Q; �0) � P 0 j Q � S0. �A.6 Proof of Proposition 3.9Restatement of Proposition 3.9 The model heking algorithm desribedin Setion 3.3 preserves the normality of Chek ( ~P ; �;A).Proof By ase inspetion of the algorithm, we show that if Chek ( ~P ; �;A)is normal in the left-hand side of equality then any expression Chek ( ~P 0; �0;A0)ourring in the right-hand side is also normal.- for the Boolean onnetives :;_: sine in any ase, ~P 0 = ~P and � = �0 andA0 is a losed formula suh that and fn(A0) � fn(A), this is straightforward.- for the ambient math A = n[A0℄: in this ase, ~P = fn[ ~Q℄g and � = �0.By Proposition A.1 the losure h ~Q;�i is normal. The remaining onditionsare ful�lled sine bn(P 0) = bn(P ), �0 = � and for the losed formula A0fn(A0) � fn(A). 41



- for the omposition math A = A0 j A00: this proof is similar to the previousase.- for the existential quanti�ation 9x:A: in this ase, ~P 0 = ~P and � = �0 and thefat that Afx mig is losed is straightforward. So, it is suÆient to show thatwhatever the ambient name mi is, fn(Afx mig)\ (bn( ~P )[dom(�)) = ?. Bynotiing that fn(Afx mig) is either equal to fn(9x:A) or to fn(9x:A)[fmigand using the normality for Chek ( ~P ; �; 9x:A), this amounts to prove thatmi =2 bn( ~P ) [ dom(�). Aording to the value of mi:� for mi = m0: straightforward.� mi 2 fn( ~P ; �) [ fn(A): let us assume that mi 2 fn(A). Then, mi 2fn(9x:A). So, by normality of Chek ( ~P ; �; 9x:A), mi =2 bn( ~P ) [ dom(�).Let us assume now that mi 2 fn( ~P ; �): by de�nition, mi =2 dom(�). Now,by normality of h ~P ;�i, sine mi 2 fn( ~P ) or mi 2 names(�), mi =2 bn( ~P ).- for the sometime modality �A:� ase where Chek ( ~P 0; �0;A0) = Chek ( ~P ; �;A): obvious sine fn(�A) =fn(A).� ase where Chek ( ~P 0; �0;A0) = Chek ( ~P 0; �0;�A) with h ~P ;�i ! h ~P 0;�0i:by Proposition 3.2(2), h ~P 0;�0i is normal. Now, aording to Lemma A.13:{ � = �0, bn( ~P ) = bn( ~P 0) and fn(�A) = fn(A): in this ase, therequirement is trivially satis�ed.{ �0 = fx Mg�, bn( ~P ) = bn( ~P 0) [ fxg: by hypothesis, fn(�A) \(bn( ~P ) [ dom(�)) = ?. So, fn(�A) \ (bn( ~P 0) [ dom(�0)) = ?.- for the somewhere modality ✧A:� ase where Chek ( ~P 0; �0;A0) = Chek ( ~P ; �;A): obvious sine fn(�A) =fn(A).� ase where Chek ( ~P 0; �0;A0) = Chek ( ~P 0; �0;�A) with h ~P ;�i # h ~P 0;�0i:by Proposition 3.2, h ~P 0;�0i is normal. The last ondition holds sine�0 = � and fn( ~P 0) � fn( ~P ).- for the loation adjunt modality A�n: from the hypothesis of normality forChek ( ~P ; �;A�n), sine n 2 fn(A), n =2 bn( ~P ). Therefore, by Proposition A.1,hn[P ℄;�i is normal. Moreover, A is a losed formula. Finally, by hypothesis,fn(A�n) \ (bn( ~P ) [ dom(�)) = ?, and bn( ~P ) = bn(n[ ~P ℄), fn(A) � fn(A�n).So, fn(A) \ (bn(n[ ~P ℄) [ dom(�)) = ?. �A.7 Proof of Proposition 3.10The orretness of our algorithm, Proposition 3.10, is a orollary of Lemma A.18below, whih itself depends on the following fat.42



Lemma A.17 (Cardelli and Gordon (2000b)) For any ambient proess Pand any ambient formula A, let fm1; : : : ;mkg = fn(P ) [ fn(A) and supposem0 62 fm1; : : : ;mkg. Then P j= 9x:A i� P j= Afx mig for some i in 0 : : : k.Lemma A.18 For any normal losure h ~P ;�i, U( ~P ; �) j= A if and only ifChek ( ~P ; �;A) = T.Proof The proof goes by indution on the struture of the ambient formulaA:- the base ase A = T is trivial. The other base ase A = 0 is a onsequeneof Proposition 3.1.- for Boolean onnetives :;^, this is obvious from the indution hypothesisand the algorithm.- for the ambient math A = n[A0℄: aording to the algorithm, we haveChek (Qi21:::k �i; �; n[A0℄) = T i� there exists ~Q andM suh that k = 1, �1 =M [ ~Q℄, nam(M;�) = n and Chek ( ~Q; �;A0) = T. Then, by Proposition 3.1,U(Qi21:::k �i; �) � n[U( ~Q; �)℄. By indution hypothesis, Chek ( ~Q; �;A0) = Tis equivalent to U( ~Q; �) j= A0. So, it is equivalent to U(Qi21:::k �i; �) j= n[A0℄.- for the omposition math A = A0 j A00: aording to the algorithm, wehave Chek (Qi21:::k �i; �;A0 j A00) = T i� there exists I; J suh that I [ J =1 : : : k, I \ J = ?, Chek (Qi2I �i; �;A0) = T and Chek (Qj2J �j ; �;A00) =T. Now, using the indution hypothesis, Chek (Qi2I �i; �;A0) = T andChek (Qj2J �j ; �;A00) = T are equivalent respetively to U(Qi2I �i; �) j= A0and to U(Qj2J �j ; �) j= A00. Finally, by Proposition 3.1, it is equivalent toU(Qi21:::k �i; �) j= A0 j A00.- for the existential quanti�ation 9x:A: let us assume Chek ( ~P ; �; 9x:A) = T.Let fm1; : : : ;mkg = fn( ~P ; �) [ fn(A) and m0, an ambient name suh thatm0 =2 fm1; : : : ;mkg [ bn( ~P ) [ dom(�). From the algorithm, this implies thatthere exists i suh that Chek ( ~P ; �;Afx mig) = T. So, by the indutionhypothesis, U( ~P ; �) j= Afx mig. Now, aording to the value of mi:� mi 2 fm1; : : : ;mkg \ (fn(A) [ fn(U( ~P ; �))): by Lemma A.17, we haveU( ~P ; �) j= 9x:A.� mi 2 fm1; : : : ;mkg and mi =2 (fn(A)[ fn(U( ~P ; �))): by Lemma A.17, wehave U( ~P ; �) j= 9x:A.� mi =2 fm1; : : : ;mkg: it is obvious then that mi =2 fn(A) [ fn(U( ~P ; �)).So, by Lemma A.17, we have U( ~P ; �) j= 9x:A.Conversely, let us assume that U( ~P ; �) j= 9x:A. From Lemma A.17, thisis equivalent to that for fm1; : : : ;mkg = fn(U( ~P ; �)) [ fn(A) and for anyarbitrary m0 suh that m0 =2 fm1; : : : ;mkg, there exists i suh that U( ~P ; �) j=Afx mig. This latter is equivalent to that Chek ( ~P ; �;Afx mig) = T byindution hypothesis. Now aording to the value of mi:43



� mi 2 fn(U( ~P ; �)) [ fn(A): in this ase mi 2 fn( ~P ; �) [ fn(A). So, by thealgorithm, Chek ( ~P ; �; 9x:A) = T.� mi =2 fn(U( ~P ; �)) [ fn(A) and mi 2 fn( ~P ; �) [ fn(A): one again, by thealgorithm, Chek ( ~P ; �; 9x:A) = T.� mi =2 fn( ~P ; �) [ fn(A): so, mi = m0. Sine m0 an be hosen arbitrar-ily, one an assume moreover that mi =2 bn( ~P ) [ dom(�). So, by thealgorithm, Chek ( ~P ; �; 9x:A) = T.- for the Sometime modality �A: U( ~P ; �) j= �A is by de�nition equivalentto the fat that there exists P 0; n suh that U( ~P ; �) !n P 0 and P 0 j= A. ByProposition 3.4, this latter implies that there exists ~P 0; �0 suh that U( ~P ; �)!nU( ~P 0; �0) and U( ~P 0; �0) � P 0 and thus, U( ~P 0; �0) j= A. Therefore, by in-dution hypothesis, this implies Chek ( ~P 0; �0;A) = T. Now, let us showby indution over n that U( ~P ; �) !n U( ~P 0; �0) and U( ~P 0; �0) j= A impliesChek ( ~P ; �;�A) = T.For n = 0: h ~P ;�i = h ~P 0;�0i and Chek ( ~P ; �;�A) = Chek ( ~P ; �;A) = T.For 0 < n: in this ase, by Proposition 3.4, there exists ~P 00; �00 suh thath ~P ;�i ! h ~P 00;�00i !n�1 h ~P 0;�0i. So, by indution hypothesis using thatChek ( ~P 0; �0;A) = T, Chek ( ~P 00; �00;�A) = T. Sine h ~P ;�i ! h ~P 00;�00i, bythe algorithm we have Chek ( ~P ; �;�A) = T.Conversely, let us assume that Chek ( ~P ; �;�A) = T and let us show thatthere exists P 0; n suh that U( ~P ; �) !n P 0 and P 0 j= A. The proof goes byindution on m the number of reursive alls of Chek ( ~P 0; �0;�A) = T.Form = 0: in this ase, Chek ( ~P ; �;�A) = T sine Chek ( ~P ; �;A) = T. Thenby indution hypothesis on the struture of the formula, U( ~P ; �) j= A. So, wean hoose P 0 = U( ~P ; �) and n = 0.For m > 0: in this ase, Chek ( ~P ; �;�A) = T due to the fat that for someh ~P 0;�0i suh that h ~P ;�i ! h ~P 0;�0i, Chek ( ~P 0; �0;A) = T. By the indu-tion hypothesis, on the number of reursive alls, we have that there existsP 0; n suh that U( ~P 0; �0) !n P 0 and P 0 j= A. By Proposition 3.4, we haveU( ~P ; �)! U( ~P 0; �0). So, U( ~P ; �)!n+1 P 0 and P 0 j= A.- for the Somewhere modality ✧A: the proof is similar to the previous aseusing Proposition 3.3 instead of Proposition 3.4.- for the loation adjunt modality A�n: by de�nition, U( ~P ; �) j= A�n i�n[U( ~P ; �)℄ j= A. By assumption n does not belong to dom(�). So, from thede�nition for U , n[U( ~P ; �)℄ = U(n[ ~P ℄; �). So, n[U( ~P ; �)℄ j= A is equivalent tothat U(n[ ~P ℄; �) j= A. Using the indution hypothesis, this latter is equivalentto Chek (n[ ~P ℄; �;A) = T, and thus by the algorithm to Chek ( ~P ; �;A�n) =T. �Restatement of Proposition 3.10 For all proesses P and losed formulasA, we have P j= A if and only if Chek (F(P ); �;A) = T.Proof As the losure hF(P ); �i is normal, this follows from Lemma A.18. �44



B Hardness ProofsThis appendix ontains proofs of results stated in Setion 4.B.1 Proof of Lemma 4.1Lemma 4.1 is the rux of orretness for the enoding from Setion 4.1 of QBFsatisfation in the full alulus and logi.Restatement of Lemma 4.1 Consider a losed quanti�ed boolean formula' and its enoding [['℄℄ in the ambient logi. The formula ' is valid if and onlyif the model heking problem 0 j= [['℄℄ holds.Proof Let us denote C1 ^ : : : ^Ck by  . We onsider a losed QBF formulaQ1v1 : : : Qnvn . We are going to show that for any 0 � m � n, denoting '0 theformula Qm+1vm+1 : : : Qnvn  ,v1 7! t1; : : : ; vm 7! tm j= '0 i� 0 j= [['0℄℄fv1 t1; : : : ; vm tmgNote that this statement obviously implies Lemma 4.1.The proof of this statement goes by indution on the number l of variablesthat are quanti�ed in '0.For the base ase l = 0: v1 7! t1; : : : ; vn 7! tn j=  i� for eah Ci, thereexists `j in Ci suh that tj = tt i� lj = vj and tj = � i� `j = vj . Thisis equivalent to saying that for eah Ci, there exists `j in Ci suh that 0 j=[[lj ℄℄fv1 t1; : : : ; vn tng, whih is equivalent to 0 j=  fv1 t1; : : : ; vn tng.For the indution step 0 < l � n: let us denoteM the interpretation v1 7!t1; : : : ; vn�l 7! tn�l, � the orresponding substitution fv1 t1; : : : ; vn�l tn�lgand '0 the formula Qn�l+2vn�l+2 : : : Qnvn  . Assuming that the statementholds for l � 1, let us onsiderM j= Qn�l+1vn�l+1'0.By ase distintion over Qn�l+1:Case where Qn�l+1 = 9: in this ase, either M; vn�l+1 7! tt j= '0 orM; vn�l+1 7! � j= '0. By indution hypothesis, this is equivalent to that either0 j= [['0℄℄�fvn�l+1 ttg or 0 j= [['0℄℄�fvn�l+1 � g. This latter is equivalent to0 j= 9vn�l+1 2 ftt ;� g:[['0℄℄� whih is equivalent by de�nition of the enodingto 0 j= [[Qn�l+1vn�l+1'0℄℄�.Case where Qn�l+1 = 8: this ase is similar to the previous one. �B.2 Proof of Lemma 4.3Lemma 4.3 is the rux of orretness for the enoding from Setion 4.2 of QBFsatisfation in the alulus of mobile ambients without I/O.To prove Lemma 4.3, let us �rst �x some notations and prove some auxiliarylemmas.
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For a given losed QBF formula ' = Q1v1 : : :Qnvn in prenex and onjun-tive normal form, we denote  by C1 ^ : : : ^ Ck and de�ne for all 0 � i � nVi �= vi[pos [℄℄ j vi[neg [℄℄V tti �= vi[pos [℄ j v0i[℄℄ j vi[neg [℄℄V �i �= vi[pos [℄℄ j vi[neg [℄ j v0i[℄℄For all 0 � m � n,M being equal to v1 7! t1; : : : ; vm 7! tm,'m �= Qm+1vm+1 : : : Qnvn PM �= V t11 j : : : j V tmm j Vm+1 j : : : j Vn j P'massuming that [['m℄℄ = (P'm ;A'm).It should be notied that due to the de�nition of [[ ℄℄, for all 0 � m < n,P'm j= v0m+1[T℄ and P'n j= end [T℄.Lemma B.1 For all 0 � m < n,PM !3 PM;vm+1 7!ttPM !3 PM;vm+1 7!�and there does not exist P 0 suh that P 0 6� PM;vm+1 7!tt , P 0 6� PM;vm+1 7!� andPM !3 P 0.Proof For m < n � 1, we onsiderM to be v1 7! t1; : : : ; vm 7! tm and wehave 'm = Qm+1vm+1 : : : Qnvn . Whatever Qm+1 is, by de�nition of en,P'm = v0m+1[in vm+1:vm+2[out v0m+1:out vm+1:R'm+1 ℄℄for P'm+1 = v0m+1[R'm+1 ℄. Now from the proess PM equal toV t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[pos [℄℄ j vm+1[neg [℄℄ jv0m+1[in vm+1:v0m+2[out v0m+1:out vm+1:R'm+1 ℄℄only two redution steps are possible leading either toP posM � V t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[pos [℄℄ jvm+1[neg [℄ j v0m+1[v0m+2[out v0m+1:out vm+1:R'm+1 ℄℄℄or to P negM � V t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[neg [℄℄ jvm+1[pos [℄ j v0m+1[v0m+2[out v0m+1:out vm+1:R'm+1 ℄℄℄Now, we have from eah of P posM and P negM two deterministi redution steps:P posM ! V t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[neg [℄℄ jvm+1[pos [℄ j v0m+1[℄ j v0m+2[out vm+1:R'm+1 ℄℄46



! V t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[neg [℄℄ jvm+1[pos [℄ j v0m+1[℄℄ j v0m+2[R'm+1 ℄� PM;vm+1 7!ttand P negM ! V t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[pos [℄℄ jvm+1[neg [℄ j v0m+1[℄ j v0m+2[out vm+1:R'm+1 ℄℄! V t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[pos [℄℄ jvm+1[neg [℄ j v0m+1[℄℄ j v0m+2[R'm+1 ℄� PM;vm+1 7!�The proof goes in a similar way for the ase where m = n� 1. �Lemma B.2 For all m in f0; : : : ; n � 1g, M being the interpretation v1 7!t1; : : : ; vm 7! tm, we have� for 0 � m < n � 1, PM;vm+1 7!tt and PM;vm+1 7!� are the two uniqueproesses reahable from PM that satisfy the ambient formula v0m+2[T℄ j T.� for m = n� 1, PM;vm+1 7!tt and PM;vm+1 7!� are the two unique proessesreahable from PM that satisfy the ambient formula end [T℄ j T.Proof For 0 � m < n� 1, we know from the proof of Lemma B.1 that bothPM;vm+1 7!tt and PM;vm+1 7!� satisfy the ambient formula v0m+2[T℄ j T and donot satisfy formulas v0[T℄ j T where v0 is a primed ambient name di�erent fromv0m+2. Now, still from the proof of Lemma B.1, we know that any reahableproess from PM is either PM0 for some extensionM0 ofM or an \intermediate"proess reahable from PM0 in one or two steps. It is easy to see that none ofthese \intermediate" proesses satis�es an ambient formula v0[T℄ j T whateverthe primed name v0 is. Finally, asM0 is di�erent from M, PM0 will satisfy aformula v0[T℄ j T for some v0 6= v0m+2, but not the formula v0m+2[T℄ j T.The proof goes in a similar way for the ase where m = n� 1. �Restatement of Lemma 4.3 Assume ' is a losed quanti�ed Boolean for-mula, and that (P;A) = en('). Then P j= A if and only if ' is valid.Proof We are going to show for any 0 � m � n that for the interpretationM equal to v1 7! t1; : : : ; vm 7! tmM j= 'm i� PM j= A'mNote that for m = 0,M is the empty interpretation, 'm = ', PM = P andA'm = A, so this statement obviously implies Lemma 4.3. The proof of thisstatement goes by indution on the number l = n�m of quanti�ers in 'm.For the base ase l = 0: 'm = C1 ^ : : : ^ Ck is an unquanti�ed formula andM = v1 7! t1; : : : vn 7! tn. The interpretation M is a model for the formula'm if and only ifM renders true at least one literal `i in eah of the lauses Ci.Now, depending on whether `i ours positively or negatively in Ci, we havetwo ases: 47



� `i = vi: by the enoding and the de�nition of PM, this is equivalent tothat [[`i℄℄ = vi[pos [0℄ j v0i[0℄℄ j T and PM = vi[pos [0℄ j v0i[0℄℄ j P 0 forsome ambient proess P 0 whih does not ontain the ambient name v0i.Therefore, it is equivalent to that PM j= [[`i℄℄.� `i = vi: this ase is dual to the previous one.Now, in both ases we have PM j= [[`i℄℄, whih means that PM is a modelfor at least one literal in eah of the [[Ci℄℄'s, and thus it is equivalent to thatPM j= A'm .For the indution step 1 < l � n (the partiular base ase where l = 1 di�ersonly in the use of the ambient name end instead of v0n+1 and an be proved inthe same way) we assume that the statement holds for l�1 (that is, it holds form+1). The formula 'm has the form Qm+1vm+1'm+1, so we have to onsidertwo ases depending on whether Qm+1 is 9 or 8.In the ase of 9, we have that M j= 'm is equivalent to the disjuntionM; vm+1 7! tt j= 'm+1 or M; vm+1 7! � j= 'm+1. By indution hypothesis,this is equivalent to that either PM;vm+1 7!tt j= A'm+1 or PM;vm+1 7!� j= A'm+1 .By Lemma B.2, we know that PM;vm+1 7!tt and PM;vm+1 7!� are the two uniqueproesses reahable from PM satisfying the ambient formula v0m+2[T℄ j T.Therefore, the last statement is equivalent to thatPM j= �(v0m+2[T℄ j T) ^ A'm+1 :The ase where Qn�l+1 = 8 is dual to the previous one and leads to theequivalene with PM j= �(vm+2[T℄ j T) ) A'm+1 :In both ases, by de�nition of en, we have the equivalene with PM j= A'm .�B.3 Proof of Lemma 4.5Lemma 4.5 is the rux of orretness for the enoding from Setion 4.3 of QBFsatisfation in the alulus of immobile ambients with I/O. To prove it, let us�rst �x some notations and then prove some auxiliary lemmas.We use notations similar to the previous setion. For a given losed QBFformula ' = Q1v1 : : : Qnvn in prenex and onjuntive normal form, we denote by C1 ^ : : : ^ Ck. Let M be an interpretation v1 7! t1; : : : ; vm 7! tm. Wedenote �M the substitution fv1 t1; v1 t1; : : : ; vm tm; vm tmg where ti isthe negated value of ti. IfM is the empty interpretation, we let �M to be theidentity.For 0 � m � n, let 'm be the formula Qm+1vm+1 : : :Qnvn and en('m) =(P'm ;A'm). For M = v1 7! t1; : : : ; vm 7! tm, let us denote PM the proessQ'm�M suh that P'm � v0m+1[Q'm ℄. Note that in this notation P'm�M =v0m+1[PM℄. By M+ and M� we denote respetively M; vm+1 tt ; vm+1 �andM; vm+1 � ; vm+1 tt . 48



Lemma B.3 For all 0 � m < n,PM ! (h� i j v00m+1[℄ j (vm+1):P'm+1)�M;vm+1 ttand PM ! (htti j v00m+1[℄ j (vm+1):P'm+1)�M;vm+1 �and there is no other P 0 suh that P ! P 0.Proof Straightforward from the enoding. �Lemma B.4 For all 0 � m < n, PM !2 (v00m+1[℄ j P'm+1)�M+ and PM !2(v00m+1[℄ j P'm+1)�M� and there is no other P 0 suh that P !2 P 0.Proof Straightforward from the enoding, Lemma B.3 and the de�nition ofPM. �Restatement of Lemma 4.5 Assume ' is a losed quanti�ed Boolean for-mula, and that (P;A) = en('). Then P j= A if and only if ' is valid.Proof Let V0 = 0 and for all 1 � m � n let Vm = v00m[℄. We are going to showfor any 0 � m � n that for the interpretationM equal to v1 7! t1; : : : ; vm 7! tm,M j= 'm i� Vm j P'm�M j= A'm :The partiular ase of this statement withm = 0 is equivalent to Lemma 4.5.Its proof goes by indution over the number l = n �m of quanti�ed variablesin 'm.Case where l = 0: the formula 'm is equal to C1 ^ : : :^Ck ,M has the formv1 7! t1; : : : ; vn 7! tn andM j= C1 ^ : : :^Ck. As C1 ^ : : :^Ck is in onjuntivenormal form, for at least one literal `i in eah Ci,M(`i) = tt . This is equivalentto that for eah Ci, there exists at least one literal `i in Ci suh that� vj tt ; vj � belongs to �M if `i = vj and� vj � ; vj tt belongs to �M if `i = vj .By the de�nition of en(C1 ^ : : : ^Ck), this is equivalent to that the interior ofeah C ambient (eah marked by a D ambient) in the proess P'm�M ontainsa tt sub-ambient. This again is equivalent to P'm�M j= ❏((D[0℄ j T)) (tt [0℄ jT)) that is, to P'm�M j= A'm . Sine Vm does not ontain any subambientD[0℄, the statement follows.Case where l = 1 (that is, m = n� 1): the formula 'm is equal to Qnvn ,M is a the form v1 7! t1; : : : ; vn�1 7! tn�1. We follow aording to the value ofQn:� ase where Qn = 9: M j= 'm is equivalent to either M; vn tt j=  orM; vn � j=  . Using the ase where l = 0, this is equivalent to thateither P'n�M+ j= A'n or P'n�M� j= A'n .49



By Lemma B.4, the proesses v00n[℄ j P'n�M+ and v00n[℄ j P'n�M� arethe two unique ones reahable from PM in two steps. Moreover, as P'nan not be redued, there is no proess reahable from PM in stritlymore than two steps. It should be notied that P'n�M+ and P'n�M�both satisfy the formula Inst(end)^:Inst+(end) whereas by Lemma B.3the two unique suessors of PM as well as PM itself do not satisfy theformula Inst(end). Therefore, P'n�M+ j= A'n or P'n�M� j= A'n holdsi� PM j= �((Inst(end)^:Inst+(end))^A'n). And thus, this is equivalentto v00n�1[℄ j vn[PM℄ j= T j vn[�((Inst(end) ^ :Inst+(end)) ^ A'n)℄, that isv00n�1[℄ j P'n�1 j= A'n�1 .� ase where Qn = 8: this ase is dual to the previous one.Case where 1 < l � n: the formula 'm is equal to Qm+1vm+1'm+1,M hasthe form v1 7! t1; : : : ; vm 7! tm and we assume that the statement holds forl � 1 (that is, it holds for m+ 1). We follow aording to the value of Qm+1:� ase where Qm+1 = 9: M j= 'm is equivalent to either M; vm+1 tt j='m+1 orM; vm+1 � j= 'm+1. By indution hypothesis, this is equiva-lent to that either v00m+1[℄ j P'm+1�M+ j= A'm+1 or v00m+1[℄ j P'm+1�M� j=A'm+1 .Let us have a look now at proesses reahable from PM: of ourse,PM itself is reahable, but by onstrution it does not satisfy the for-mula Inst(v0m+2). By Lemma B.3, two proesses are reahable in onestep from PM, but they do not satisfy the formula Inst(v0m+2). ByLemma B.4, two proesses are reahable from PM in two steps, namely(v00m+1[℄ j P'm+1)�M+ and (v00m+1[℄ j P'm+1)�M� and they both satisfythe formulas Inst(v0m+2) and :Inst+(v0m+2) (by onstrution). Now, byusing one again Lemma B.3 for the internal of v0m+2 in P'm+1�M+ andP'm+1�M� , all the proesses reahable from one of those latter satisfyInst+(v0m+2).Therefore, the last statement is equivalent to that PM j= �(Inst(v0m+2) ^:Inst+(v0m+2)) ^A'm+1 . Thus, it is equivalent to Vm[℄ j v0m+1[PM℄ j= T jv0m+1[�(Inst(v0m+2)^:Inst+(v0m+2))^A'm+1 ℄, that is Vm[℄ j P'm j= A'm .� the ase where Qm+1 = 8 is dual to the previous one. �
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