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Abstra
tWe settle the 
omplexity bounds of the model 
he
king problem for therepli
ation-free ambient 
al
ulus with publi
 names against the ambientlogi
 without parallel adjun
t. We show that the problem is PSPACE-
omplete. For the 
omplexity upper-bound, we devise a new representa-tion of pro
esses that remains of polynomial size during pro
ess exe
ution;this allows us to keep the model 
he
king pro
edure in polynomial spa
e.Moreover, we prove PSPACE-hardness of the problem for several quitesimple fragments of the 
al
ulus and the logi
; this suggests that thereare no interesting fragments with polynomial-time model 
he
king algo-rithms.
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1 Introdu
tionThe ambient 
al
ulus of Cardelli and Gordon (1999a, 1999b, 2000a) is a formal-ism for des
ribing the mobility of both software and hardware. An ambient isa named 
luster of running pro
esses and nested sub-ambients. Ea
h 
omputa-tion state has a spatial stru
ture, the tree indu
ed by the nesting of ambients.Mobility is abstra
tly represented by re-arrangement of this tree: an ambientmay move inside or outside other ambients.The ambient logi
 (Cardelli and Gordon 2000b) is a modal logi
 designedto spe
ify properties of distributed and mobile 
omputations programmed inthe ambient 
al
ulus. As well as standard temporal modalities for des
ribingthe evolution of ambient pro
esses, the logi
 in
ludes novel spatial modalitiesfor des
ribing the tree stru
ture of ambient pro
esses. Serendipitously, thesespatial modalities 
an also usefully des
ribe the tree stru
ture of semistru
tureddatabases (Cardelli and Ghelli 2001). Other work on the ambient logi
 in
ludesa study of the pro
ess equivalen
e indu
ed by the satisfa
tion relation (Sangiorgi2001) and a study of the logi
 extended with 
onstru
ts for des
ribing privatenames (Cardelli and Gordon 2001).The model 
he
king problem is to de
ide whether a given obje
t (in our 
ase,an ambient pro
ess) satis�es (that is, is a model of) a given formula. Cardelliand Gordon (2000b) show de
idability of the model 
he
king problem for a �nite-state fragment of the ambient 
al
ulus against the fragment of the ambient logi
without their parallel adjun
t modality. This �nite-state ambient 
al
ulus omitsthe 
onstru
ts for unbounded repli
ation and dynami
 name generation of thefull 
al
ulus. The parallel adjun
t modality is omitted be
ause it is de�ned as anin�nite quanti�
ation over pro
esses. Cardelli and Gordon give no 
omplexityanalysis for their algorithm. Still, given the various possible appli
ations ofthe logi
, it is of interest to analyse the 
omplexity of model 
he
king mobileambients.In fa
t, a naive analysis of the algorithm of Cardelli and Gordon gives onlya doubly exponential bound on its use of time and spa
e. A more sophisti
atedanalysis based on results in this paper shows that their algorithm works insingle-exponential time on single-exponential spa
e.In this paper we settle the 
omplexity bounds of the model 
he
king prob-lem for the �nite-state ambient 
al
ulus (that is, the full 
al
ulus apart fromrepli
ation and name generation) against the logi
 without parallel adjun
t.Our main result (embodied in Theorems 3.11 and 4.2) is that the problem isPSPACE-
omplete. Hen
e, this situates model 
he
king the ambient logi
 inthe same 
omplexity 
lass as model 
he
king 
on
urrent programs against CTLand CTL� (Kupferman, Vardi, and Wolper 2000).As we dis
uss in Se
tion 2, there are two reasons why Cardelli and Gordon'salgorithm uses exponential spa
e. One of them is that a pro
ess may growexponentially during its exe
ution; the other is that there may be exponentiallymany pro
esses rea
hable from a given one.In Se
tion 3, we present a new model 
he
king algorithm that avoids theseproblems as follows. 1



� We avoid the �rst problem by devising a new representation of pro
essesusing a form of 
losure. The main feature of this representation is that sub-stitutions that o

ur when 
ommuni
ations take pla
e within an ambientare not applied dire
tly, but are kept expli
it. These expli
it substitu-tions prevent the representation blowing up exponentially in the size ofthe original pro
ess. The idea of using 
losures 
omes from DAG represen-tations used in uni�
ation for avoiding exponential blow-up. A sequentialsubstitution that we use here 
an be seen as a DAG representation of thesubstitution.� To avoid the se
ond problem, we �rst devise a non-deterministi
 algorithmfor testing rea
hability that does not have to store all the rea
hable pro-
esses, but instead tests it on-the-
y, and then remove nondeterminismusing Savit
h's theorem (Savit
h 1970). Hen
e we prove Theorem 3.11,that the model 
he
king problem is solvable in PSPACE.We show this upper bound to be tight in Se
tion 4; Theorem 4.2 assertsthat the model 
he
king problem is PSPACE-hard. A
tually, we give PSPACE-hardness results for various fragments of the logi
 and of the 
al
ulus. Forinstan
e, by Theorem 4.4, even for a 
al
ulus of purely mobile ambients (thatis, a 
al
ulus without 
ommuni
ation or the 
apability to dissolve ambients)and the logi
 without quanti�ers, the problem is PSPACE-hard. Moreover, byTheorem 4.6, for a 
al
ulus of purely 
ommuni
ative ambients (that is, a 
al
uluswithout the 
apabilities to move or to dissolve ambients) and the logi
 withoutquanti�ers, the problem is also PSPACE-hard. Often in the study of model
he
king �xing the model or the formula makes the problem easier. Here this isnot the 
ase. Even if we �x the pro
ess to be the 
onstant 0, the model 
he
kingproblem remains PSPACE-hard. Although we do not prove PSPACE-hardnessfor �xed arbitrary formulas, our result is not mu
h weaker: Theorem 4.7 assertsthat for any level of the polynomial-time hierar
hy we 
an �nd a �xed formulasu
h that the model 
he
king problem is hard for that level.We end the main part of the paper with 
on
lusions in Se
tion 5. Ap-pendixes A and B 
ontain proofs of properties stated without proof in Se
tions 3and 4, respe
tively.2 Review of the Ambient Cal
ulus and Logi
We present a �nite-state ambient 
al
ulus (that is, the full 
al
ulus (Cardelli andGordon 2000a) apart from repli
ation and name generation) and the ambientlogi
 without parallel adjun
t. This is the same 
al
ulus and logi
 for whi
hCardelli and Gordon present a model 
he
king algorithm (Cardelli and Gordon2000b).2.1 The Ambient Cal
ulus with Publi
 NamesThe following table des
ribes the expressions and pro
esses of our 
al
ulus.2



Expressions and Pro
esses:M;N ::= expressions P;Q;R ::= pro
essesn name 0 ina
tivityin M 
an enter M P j Q 
ompositionout M 
an exit M M [P ℄ ambientopen M 
an open M M:P a
tion� null (n):P inputM:M 0 path hMi outputA name n is said to be bound in a pro
ess P if it o

urs within an input pre�x(n). A name is said to be free in a pro
ess P if there is an o

urren
e of n outsidethe s
ope of any input (n). We write bn(P ) and fn(P ) for respe
tively the setof bound names and the set of free names in P . We say two pro
esses are �-equivalent if they are identi
al apart from the 
hoi
e of bound names. We writeMfn Ng and Pfn Ng for the out
omes of 
apture-avoiding substitutionsof the expression N for the name n in the expression M and the pro
ess P ,respe
tively.The semanti
s of the 
al
ulus is given by the relations P � Q and P ! Q.The redu
tion relation, P ! Q, de�nes the evolution of pro
esses over time.The stru
tural 
ongruen
e relation, P � Q, is an auxiliary relation used in thede�nition of redu
tion. When we de�ne the satisfa
tion relation of the modallogi
 in the next se
tion, we use an auxiliary relation, the sublo
ation relation,P # Q, whi
h de�nes the spatial distribution of pro
esses and holds when Qis the whole interior of a top-level ambient in P . We write !� and #� for there
exive and transitive 
losure of ! and #, respe
tively.Stru
tural Congruen
e P � QP , Q are �-equivalent) P � Q (Stru
t Re
)Q � P ) P � Q (Stru
t Symm)P � Q;Q � R) P � R (Stru
t Trans)P � Q) P j R � Q j R (Stru
t Par)P � Q)M [P ℄ �M [Q℄ (Stru
t Amb)P � Q)M:P �M:Q (Stru
t A
tion)P � Q) (n):P � (n):Q (Stru
t Input)P j Q � Q j P (Stru
t Par Comm)(P j Q) j R � P j (Q j R) (Stru
t Par Asso
)P j 0 � P (Stru
t Zero Par)�:P � P (Stru
t �)(M:M 0):P �M:M 0:P (Stru
t :)Redu
tion P ! Q and Sublo
ation P # Q:n[in m:P j Q℄ j m[R℄! m[n[P j Q℄ j R℄ (Red In)m[n[out m:P j Q℄ j R℄! n[P j Q℄ j m[R℄ (Red Out)3



open n:P j n[Q℄! P j Q (Red Open)hMi j (n):P ! Pfn Mg (Red I/O)P ! Q) P j R! Q j R (Red Par)P ! Q) n[P ℄! n[Q℄ (Red Amb)P 0 � P; P ! Q;Q � Q0 ) P 0 ! Q0 (Red �)P � n[P 0℄ j P 00 ) P # P 0 (Lo
)The following example shows that the size of rea
hable pro
esses may beexponential, and that there may be a redu
tion path of exponential length. Thealgorithm given in (Cardelli and Gordon 2000b) may use exponential spa
e to
he
k properties of this example.Consider the family of pro
esses (Pk)k�0, re
ursively de�ned by the equa-tions P0 = (n):(p[n℄ j q[0℄) and Pk+1 = (nk+1):(hnk+1:nk+1i j Pk). Intuitively,the pro
ess Pk+1 inputs a 
apability, 
alls it nk+1, doubles it, and outputsthe result to the pro
ess Pk. We have the following, where M1 = M andMk+1 =M:Mk.hin q:out qi j P0 !1 p[in q:out q℄ j q[0℄hin q:out qi j P1 !2 p[(in q:out q)2℄ j q[0℄hin q:out qi j P2 !3 p[(in q:out q)4℄ j q[0℄hin q:out qi j Pk !k+1 p[(in q:out q)2k ℄ j q[0℄Sin
e (in q:out q)2k is a sequen
e of 2k 
opies of in q:out q, the pro
essp[(in q:out q)2k ℄ j q[0℄ redu
es in 2k+1 steps to p[0℄ j q[0℄. Therefore, we havehin q:out qi j Pk !(k+1)+2k+1 p[0℄ j q[0℄.This example points out two fa
ts. First, using a simple representation ofpro
esses (su
h as the one proposed in (Cardelli and Gordon 2000b)), it may bethat the size of a pro
ess 
onsidered during model 
he
king grows exponentiallybigger than the size of the initial pro
ess. Se
ond, during the model 
he
kingpro
edure, there may be an exponential number of rea
hable pro
esses to 
on-sider. Therefore, a dire
t implementation of the algorithm proposed in (Cardelliand Gordon 2000b) may use spa
e exponential in the size of the input pro
ess.These remarks motivate the approa
h taken in this paper. First, we devise anew representation for ambient pro
esses that remains of polynomial size withrespe
t to to the input pro
ess. Se
ond, we give a non-deterministi
 algorithmfor testing rea
hability that uses only polynomial spa
e in the 
ombined sizeof the problem; then by an appli
ation of Savit
h's theorem (Savit
h 1970) weremove nondeterminism and obtain a deterministi
 version that itself uses onlypolynomial spa
e.2.2 The Logi
 (for Publi
 Names)We des
ribe the formulas and satisfa
tion relation of the logi
.4



Logi
al Formulas:� a name n or a variable xA;B ::= formulaT true:A negationA _ B disjun
tion0 void�[A℄ ambient mat
hA j B 
omposition mat
hA�� lo
ation adjun
t9x:A existential quanti�
ation�A sometime modality
✧A somewhere modalityWe assume that names and variables belong to two disjoint vo
abularies.We write Afx mg for the out
ome of substituting ea
h free o

urren
e of thevariable x in the formula A with the name m. We say a formula A is 
losed ifand only if it has no free variables (though it may 
ontain free names).Intuitively, we interpret 
losed formulas as follows. The formulas T, :A,and A _ B embed propositional logi
. The formulas 0, �[A℄, and A j B arespatial modalities. A pro
ess satis�es 0 if it is stru
turally 
ongruent to theempty pro
ess 0. It satis�es n[A℄ if it is stru
turally 
ongruent to an ambientn[P ℄ where P satis�es A. A pro
ess P satis�es A j B if it 
an be de
omposedinto two subpro
esses, P � Q j R, where Q satis�es A, and R satis�es B. Theformula 9x:A is an existential quanti�
ation over names. The formulas �A(sometime) and ✧A (somewhere) quantify over time and spa
e, respe
tively. Apro
ess satis�es �A if it has a temporal su

essor, that is, a pro
ess into whi
hit evolves, that satis�es A. A pro
ess satis�es ✧A if it has a spatial su

essor,that is, a sublo
ation, that satis�es A. Finally, a pro
ess P satis�es the formulaA�n if the ambient n[P ℄ satis�es A.The satisfa
tion relation P j= A formalizes these intuitions.Satisfa
tion P j= A (for A 
losed):P j= TP j= :A �= :(P j= A)P j= A _ B �= P j= A _ P j= BP j= 0 �= P � 0P j= n[A℄ �= 9P 0:P � n[P 0℄ ^ P 0 j= AP j= A j B �= 9P 0; P 00:P � P 0 j P 00 ^ P 0 j= A ^ P 00 j= BP j= 9x:A �= 9m:P j= Afx mgP j= �A �= 9P 0:P !� P 0 ^ P 0 j= AP j= ✧A �= 9P 0:P #� P 0 ^ P 0 j= AP j= A�n �= n[P ℄ j= A 5



We use �A (everytime modality), ❏A (everywhere modality) and 8x:A (uni-versal quanti�
ation) as abbreviations for :(�:A), :(✧:A) and :(9x::A),respe
tively.3 A Model Che
king AlgorithmWe show that the model 
he
king problem 
an be de
ided in polynomial spa
e bydevising a new representation of pro
esses (Se
tion 3.1) that remains polynomialin the size of the initial pro
ess (Se
tion 3.2). In Se
tion 3.3 we present a newmodel 
he
king algorithm based on this representation.Sin
e the redu
tion relation is de�ned up to �-equivalen
e, we may assumefor the purposes of 
omputing rea
hable pro
esses that the free and bound namesof every ambient pro
ess are distin
t, and moreover that the bound names arepairwise distin
t.3.1 A Polynomial-Spa
e RepresentationWe give in this se
tion a new representation for ambient pro
esses based onnormal 
losures (It is di�erent from the normal form of pro
esses introdu
edin (Cardelli and Gordon 2000b)). We also present basi
 operations on 
losuresand prove that 
losures indeed simulate the pro
esses they represent. All proofsnot in this se
tion (in parti
ular, proofs of Propositions 3.1{3.4) 
an be foundin the appendix.Annotated Pro
esses, Substitutions, Closures:~P ::= annotated pro
essQi2I �i multiset of primes� ::= primeM [ ~P ℄ ambientM(o): ~P a
tion, with o�set o � 0(n): ~P inputhMi output� ::= fn1 M1g � � � fnk Mkg sequential substitution, k � 0h ~P ;�i 
losureIn a sequential substitution fn1 M1g � � � fnk Mkg, the expression Mi liesin the s
ope of the bindings for the remaining names ni+1, . . . , nk. We denote by� the empty sequen
e of substitutions and treat it as the identity substitution. Asequential substitution � is said to be a
y
li
 if either � = � or � = fx Mg�0,where x does not o

ur in �0 and �0 is an a
y
li
 substitution.For an annotated pro
ess ~P , we de�ne free and bound names in the sameway as for ambient pro
esses. Let names(�) be the set of all names o

urringin �.We de�ne a partial mapping U from 
losures to the set of ambient pro
esses.Intuitively, it unfolds a 
losure to the pro
ess it represents by applying the6



substitution and 
utting o� the pre�x de�ned by the o�set. Roughly speaking,the expression U( ~P ; �) is de�ned if the o�sets within the annotated pro
ess donot ex
eed the length of the expression they are asso
iated with. The unfoldingU( ~P ; �) is de�ned as follows.The Unfolding U( ~P ; �) of a Closure h ~P ;�i:U(Qi2I �i; �) = �U(�1; �) j : : : j U(�n; �) if I = f1; : : : ; ng 6= ?0 otherwiseU(M [ ~P ℄; �) =M�[U( ~P ; �)℄U(M(o): ~P ; �) = 8>><>>:No+1: � � � :Nl:U( ~P ; �) if M� = N1: � � � :Nl; o < l and Nibeing either a name or of the form
ap N 0 with 
ap 2 fin; out ; opengunde�ned otherwiseU((n): ~P ; �) = (n):U( ~P ; �)U(hMi; �) = hM�iWe are only interested in a parti
ular kind of 
losure, whi
h we refer to asnormal. Let a 
losure h ~P ;�i be normal if U( ~P ; �) is de�ned and if it meets somete
hni
al 
onditions about free and bound namesDe�nition 1 A 
losure h ~P ;�i is normal if:(1) U( ~P ; �) is de�ned,(2) bn( ~P ) \ (fn( ~P ) [ names(�)) = ?,(3) every name n in ~P o

urs at most on
e within an input,(4) every o�set o o

urring in the s
ope of an input in ~P is equal to 0, and(5) � is a
y
li
.The next proposition says that our representation of ambient pro
esses withnormal 
losures preserves their basi
 properties. We write fg and ++ for theempty multiset and the multiset union operation, respe
tively.Proposition 3.1 (Stru
tural Equivalen
es) Let hQi2I �i;�i be a normal
losure. Then(1) U(Qi2I �i; �) � 0 i� I = ?.(2) U(Qi2I �i; �) � M [Q℄ i� 9M 0; ~Q : I is a singleton fig, �i = M 0[ ~Q℄,M 0� =M , U( ~Q; �) � Q.(3) U(Qi2I �i; �) � P 0 j P 00 i� 9J;K : J [ K = I, J \ K = ?, P 0 �U(Qj2J �j ; �), P 00 � U(Qk2K �k; �).7



(4) U(Qi2I �i; �) � hMi i� 9M 0 : I is a singleton fig, �i = hM 0i andM 0� =M .(5) U(Qi2I �i; �) � (n):P i� 9 ~P : I is a singleton fig, �i = (n): ~P andU( ~P ; �) � P .Next, we present how the redu
tion and sublo
ation transitions !, # 
anbe de�ned on 
losures. Due to this parti
ular representation and the fa
t thatsome part of the ambient pro
ess is 
ontained in the sequential substitution,some auxiliary subroutines are needed.One 
an see in the de�nition of U that only expressions M in the anno-tated pro
ess are a�e
ted by the sequential substitution. For the sublo
ationtransition, it is important to extra
t the name represented by the expressionMunder the substitution �. So, one of those subroutines, nam(M;�), 
onsists inre
overing from an expression M the name it e�e
tively represents within thesubstitution �.The redu
tion transition for a 
losure h ~P ;�i requires some other auxiliarysubroutines, whi
h are more spe
i�
ally dedi
ated to the 
ase where the substi-tution applied on the expression M leads to a sequen
e of 
apabilities in M 0,out M 0, open M 0. Intuitively, the out
ome of applying the substitution � to anexpressionM 
ontained within ~P is a �nite sequen
e of either 
apabilities of theform inM 0, outM 0, openM 0, or names not bound by the substitution. We needa subroutine to 
ompute the length of this sequen
e in terms of 
apabilities. Tokeep the algorithm in polynomial spa
e, we must simply be able to 
omputethis length without applying expli
itly � on M ; this is the role of len(M;�).Now, from the de�nition of the redu
tion on ambient pro
esses, one 
ansee that the redu
tion 
onsumes one 
apability: on
e the redu
tion is done,the involved 
apability disappears from the resulting pro
ess. This is slightlydi�erent for the representation we have proposed: a sequen
e of 
apabilities 
anbe partially 
ontained in a sequential substitution �. This substitution remains�xed during the exe
ution of 
apabilities and the o�set atta
hed to this sequen
eplays the role of a program 
ounter. Therefore, to perform a redu
tion step onehas to extra
t the �rst 
apability to exe
ute from a sequen
e of 
apabilities,M ,a substitution, �, and an o�set, o. This is 
omputed by fst(M; o; �).The next subroutine introdu
ed here, split(M(o): ~P ; �), 
omputes a pair froma prime, M(o): ~P , and a sequential substitution, �. The �rst 
omponent of thisresult is the �rst 
apability to be exe
uted in hfM(o): ~P g;�i (the one in headposition). The se
ond 
omponent is the remaining annotated pro
ess on
e this�rst 
apability has been exe
uted.The Auxiliary Fun
tions nam, len, fst and split:nam(n; fm Mg�) = �nam(M;�) if n = mnam(n; �) otherwisenam(n; �) = nlen(�; �) = 0 8



len(M:N; �) = len(M;�) + len(N; �)len(M;�) = 1 if M 2 fin N; out N; open Nglen(n; fm Mg�) = �len(M;�) if n = mlen(n; �) otherwiselen(n; �) = 1fst(M:N; o; �) = �fst(M; o; �) if len(M;�) > ofst(N; o� len(M;�); �) otherwisefst(
ap N; 0; �) = 
ap (nam(N; �)) for 
ap in fin; out ; opengfst(n; o; fm Mg�) = �fst(M; o; �) if n = mfst(n; o; �) otherwisesplit(M(o): ~P ; �) = �(fst(M; o; �); fM(o+ 1): ~Pg) if len(M;�) > o+ 1(fst(M; o; �); ~P ) otherwiseNoti
e that nam(M;�) is unde�ned if M is of the form �, N:N 0, in N ,out N , or open N . Therefore, the expression nam(M;�) is either unde�nedor is evaluated to a name. Moreover, we 
an 
ompute the name returned bynam(M;�), or whether it is unde�ned, in linear time. The number returnedby len(M;�) 
an be 
omputed in polynomial spa
e1. We 
an 
ompute the
apability returned by fst(M; o; �) and the pair returned by split(M(o): ~P ; �),or whether they are unde�ned, in polynomial spa
e.Suppose h ~P ;�i is a normal 
losure 
ontaining an a
tion M(o): ~Q. Fromthe de�nition of a normal 
losure, len(M;�) > o, and if the a
tion o

ursunder an input variable n, then the o�set o = 0. If n o

urs in M and getsbound to � by an I/O step, it may be that len(M; fn �g�) = 0. So, in thetransition rule for I/O, we need to re-normalize the 
losure representing theout
ome of the transition. We do so using the following subroutines, norm( ~P ; �)and norm(�; �), that return the annotated pro
ess obtained by removing from~P and �, respe
tively, any pre�x M(o) su
h that len(M;�) = 0.The Auxiliary Fun
tions norm:norm(Qi21::k �i; �) = �fg if k = 0norm(�1; �) ++ � � � ++ norm(�k ; �) otherwisenorm(M [ ~P ℄; �) = fM [norm( ~P ; �)℄gnorm(M(o): ~P ; �) = �norm( ~P ; �) if len(M;�) = 0fM(o):norm( ~P ; �)g otherwisenorm((n): ~P ; �) = f(n):norm( ~P ; �)gnorm(hMi; �) = fhMigNext, we de�ne a transition relation, h ~P ;�i ! h ~P 0;�0i, and a sublo
ation1We are not 
on
erned here with time 
omplexity; a naive algorithm for 
omputinglen(M;�), as presented here, runs in exponential time in the worst 
ase. However, it isquite easy to provide a version of this fun
tion that runs in polynomial time.9



relation, h ~P ;�i # h ~P 0;�i, on 
losures. These relations simulate the redu
tionand the sublo
ation relations on pro
esses de�ned in Se
tion 2.1.Transitions and Sublo
ations of Closures:(Trans In)split(�; �) = (in m; ~P ) nam(M;�) = m nam(N; �) = nhfN [f�g ++ ~Q℄;M [ ~R℄g;�i ! hfM [fN [ ~P ++ ~Q℄g ++ ~R℄g;�i(Trans Out)split(�; �) = (out m; ~P ) nam(M;�) = m nam(N; �) = nhfM [fN [f�g ++ ~Q℄g ++ ~R℄g;�i ! hfN [ ~P ++ ~Q℄;M [ ~R℄g;�i(Trans Open)split(�; �) = (open n; ~P ) nam(M;�) = nh�; fM [ ~Q℄g;�i ! h ~P ++ ~Q;�i(Trans I/O)~P 0 = norm( ~P ; fn Mg�)hf(n): ~P ; hMig;�i ! h ~P 0; fn Mg�i (Trans Par)h ~P ;�i ! h ~P 0;�0ih ~P ++ ~Q;�i ! h ~P 0 ++ ~Q;�0i(Trans Amb)h ~P ;�i ! h ~P 0;�0i nam(M;�) = nhfM [ ~P ℄g;�i ! hfM [ ~P 0℄g;�0i (Lo
) nam(M;�) = mh ~Q ++ fM [ ~P ℄g;�i # h ~P ;�iThe 
ondition for (Lo
) ensures simply that the expressionM together with� is a name. For two normal 
losures hP ;�i, hP 0;�0i, de
iding whether hP ;�i #hP 0;�0i 
an be a
hieved in polynomial spa
e. There is no rule 
orresponding to(Red �) sin
e we always keep 
losures in normal form. The two rules (TransPar) and (Trans Amb) 
orrespond to the 
ongruen
e rules (Red Par) and (RedAmb) for redu
tion.In the same way as for ambient pro
esses, we de�ne the relations!� and #�(on 
losures) as the re
exive and transitive 
losures of ! and #, respe
tively.Proposition 3.2(1) If h ~P ;�i is normal and h ~P ;�i #� h ~P 0;�i then h ~P 0;�i is normal.(2) If h ~P ;�i is normal and h ~P ;�i !� h ~P 0;�0i then h ~P 0;�0i is normal.The next proposition says that the representation of pro
esses as 
losurespreserves sublo
ations and redu
tions.Proposition 3.3 (Sublo
ation Equivalen
es) Assume h ~P ;�i is a normal
losure. If h ~P ;�i # h ~Q;�i then U( ~P ; �) # U( ~Q; �). If U( ~P ; �) # Q then thereexists ~Q su
h that h ~P ;�i # h ~Q;�i and U( ~Q; �) � Q.10



The following proposition is a 
ounterpart of Proposition 3.3. It refers totime in the same way as Proposition 3.3 refers to spa
e.Proposition 3.4 (Redu
tion Equivalen
es) Assume h ~P ;�i is a normal
losure. If h ~P ;�i ! h ~P 0;�0i then U( ~P ; �) ! U( ~P 0; �0). If U( ~P ; �) ! P 0 thenthere exists h ~P 0;�0i su
h that h ~P ;�i ! h ~P 0;�0i and U( ~P 0; �0) � P 0.Propositions 3.1{3.4 are enough to prove that normal 
losures indeed simu-late the pro
esses they represent.3.2 Size of the RepresentationWe show that 
losures indeed give a polynomial representation of pro
esses. Todo this, we have to bound the size of o�sets that o

ur in 
losures.For a given obje
t (a 
losure or a pro
ess) O, by jOj we mean the lengthof its string representation and by kOk the number of nodes in its tree repre-sentation. We assume that an o�set is represented by a single node in the treerepresentation.Lemma 3.5 Suppose that h ~P ;�i ! h ~P 0;�0i. Then kh ~P 0;�0ik � kh ~P ;�ik.Proof By a simple 
ase analysis on the derivation of h ~P ;�i ! h ~P 0;�0i. In
ases (Trans In), (Trans Out) and (Trans Open), the transition either doesnot 
hange or de
reases the representation's size. In 
ase (Trans I/O), the threenodes representing input, output and pro
ess 
omposition ((); hi; :) together withthe representation of x and M are repla
ed with two nodes representing assign-ment and substitution 
omposition ( ; fg) together with the representation ofx and M . Thus the tree de
reases by one node. �Proposition 3.6 Assume h ~P ;�i is normal and h ~P ;�i ! h ~P 0;�0i. Then all o�-sets used in ~P and ~P 0 
an be represented by the same number of bits, polynomialin jh ~P ;�ij and, with su
h a representation, jh ~P 0;�0ij � jh ~P ;�ij.Proof A simple indu
tion on the length of the substitution �0 proves that theo�sets in ~P 0 are bounded by the value kh ~P 0;�0ikkh ~P 0;�0ik. By Lemma 3.5, theyare also bounded by kh ~P ;�ikkh ~P ;�ik and then all o�sets used in ~P and ~P 0 arebounded by this value, whi
h 
an be represented on kh ~P ;�ik �(blog(kh ~P ;�ik)
+1) bits. With this representation of o�sets, in
rementing an o�set does notin
rease the size of its string representation. Thus no transitions 
an in
reasethe length of the string representations of 
losures. �The following proposition is a key fa
t in the proof that our model 
he
k-ing algorithm and also the algorithm of Cardelli and Gordon (2000b) terminatein exponential time. It implies that the 
omputation tree of a given pro
essmight be very deep and very narrow (as in our example in Se
tion 2) or notso deep and wider; in any 
ase the number of nodes in the tree remains ex-ponentially bounded. A naive argument (without using 
losures) gives only a11



doubly exponential bound on the number of rea
hable pro
esses: one 
an provethat the 
omputation tree of a given pro
ess is at most exponentially deep(as our example in Se
tion 2 shows, this bound is tight) and that the numberof su

essors for every node is at most polynomial. For example, the 
losurehfn[in n(0): ~P0℄; : : : ; n[in n(0): ~Pk℄g;�i has at most k2 di�erent su

essors. Thesetwo fa
ts do not give, however, the exponential bound on the number of nodesin the tree, whi
h is given by the following proposition.Proposition 3.7 Let h ~P ;�i be a normal 
losure. Then there exist at mostexponentially many h ~P 0;�0i su
h that h ~P ;�i !� h ~P 0;�0i.Proof This is a dire
t 
onsequen
e of Proposition 3.6 and the observationthat there are only exponentially many strings of polynomial length. �Proposition 3.8 The rea
hability problem for normal 
losures is de
idable inPSPACE.Proof Take any instan
e h ~P ;�i, h ~P 0;�0i of the rea
hability problem. To de-
ide whether h ~P ;�i !� h ~P 0;�0i, we �rst de�ne a nondeterministi
 algorithmthat starting from h ~P ;�i guesses an immediate su

essor of the 
urrent 
losureuntil it rea
hes h ~P 0;�0i or there are no further su

essors. By Proposition 3.6the algorithm requires only polynomial spa
e (we have to store only the 
ur-rent 
losure and its one immediate su

essor); Proposition 3.7 implies termina-tion. Finally, using the general statement of Savit
h's theorem (Savit
h 1970)(NPSPACE(S(n)) � PSPACE(S(n)2)), this non-deterministi
 algorithm 
an beturned into a deterministi
 one. �3.3 A New AlgorithmWe propose a new algorithm, Che
k ( ~P ; �;A), to 
he
k whether the ambientpro
ess simulated by h ~P ;�i satis�es the 
losed formula A. For ea
h ambientpro
ess, P , we only 
onsider the 
losure, F(P ), obtained using the folding fun
-tion de�ned as follows. We prove (Proposition 3.10), that P j= A if and only ifChe
k (F(P ); �;A) returns the Boolean value T.The Folding F(P ) of a Pro
ess P :F(0) = fgF(P j Q) = F(P ) ++ F(Q)F(M [P ℄) = fM [F(P )℄gF((n):P ) = f(n):F(P )gF(hMi) = fhMigF(M:P ) = �F(P ) if len(M; �) = 0fM(0):F(P )g otherwiseFor any pro
ess P , the 
losure hF(P ); �i is normal and U(F(P ); �) is stru
-turally 
ongruent to P . Furthermore, F(P ) 
an be 
omputed in linear time inthe size of P . 12



For the model 
he
king problem, P j= A, we may assume without loss ofgenerality that the free names of A are disjoint from the bound names of P . Wedenote by fn( ~P ; �) the set (fn( ~P ) [ names(�)) r dom(�).Computing Whether a Pro
ess Satis�es a Closed Formula:Che
k ( ~P ; �;T) = TChe
k ( ~P ; �;:A) = :Che
k ( ~P ; �;A)Che
k ( ~P ; �;A _ B) = Che
k ( ~P ; �;A) _ Che
k ( ~P ; �;B)Che
k (Qi2I �i; �;0) = �T if I = ?F otherwiseChe
k (Qi2I �i; �; n[A℄) =�Che
k ( ~Q; �;A) if I = fig; �i =M [ ~Q℄; nam(M;�) = nF otherwiseChe
k (Qi2I �i; �;A j B) = WJ�I(Che
k (Qj2J �j ; �;A) ^Che
k (Qk2I�J �k; �;B))Che
k ( ~P ; �; 9x:A) = let fm1; : : : ;mkg = fn( ~P ; �) [ fn(A) inlet m0 =2 fm1; : : : ;mkg [ bn( ~P ) [ dom(�) be fresh inWi20::k Che
k ( ~P ; �;Afx mig)Che
k ( ~P ; �;�A) = Wh ~P ;�i!�h ~P 0;�0i Che
k ( ~P 0; �0;A)Che
k ( ~P ; �;✧A) = Wh ~P ;�i#�h ~P 0;�i Che
k ( ~P 0; �;A)Che
k ( ~P ; �;A�n) = Che
k (n[ ~P ℄; �;A)An expression Che
k ( ~P ; �;A) is said to be normal if and only if the 
losureh ~P ;�i is normal, A is a 
losed formula, and fn(A) \ (bn( ~P ) [ dom(�)) = ?.Hen
e, for the model 
he
king problem P j= A where A is a 
losed formula, theexpression Che
k (F(P ); �;A) is normal and moreover we have:Proposition 3.9 The model 
he
king algorithm des
ribed above preserves thenormality of Che
k ( ~P ; �;A).Proposition 3.10 For all pro
esses P and 
losed formulas A, we have P j= Aif and only if Che
k (F(P ); �;A) = T.Theorem 3.11 Model 
he
king the ambient 
al
ulus and logi
 of this paper isde
idable in PSPACE.Proof To test for a given pro
ess P and formula A whether P j= A we simply
ompute the value of Che
k (F(P ); �;A). The only problem is to implementChe
k in su
h a way that it works in polynomial spa
e.In the 
ase of T;0; n[A℄;A�n;:A, the algorithm 
an dire
tly 
he
k whetherthe respe
tive 
onditions hold. In the 
ase of A _ B;A j B; 9x:A;�A;✧A, wehave to be more 
areful about the spa
e used to 
ompute the value of disjun
-tions. In a loop we iteratively 
ompute the value of ea
h disjun
t, reusing the13



same spa
e in every iteration. In the 
ase of �A the subroutine 
omputingWh ~P ;�i!�h ~P 0;�0i Che
k ( ~P 0; �0;A) 
ould look as follows.result  Ffor all h ~P 0;�0i su
h that h ~P ;�i !� h ~P 0;�0iif Che
k ( ~P 0; �0;A) = T then result  Treturn(result)By Propositions 3.6 and 3.8, every iteration requires only polynomial spa
e.The 
ases of A_B;A j B; 9x:A;✧A are similar. Thus, the spa
e S(k; j ~P j+ j�j)used by the algorithm to 
ompute Che
k ( ~P ; �;A) for formulas A of depth notex
eeding k satis�es the inequalityS(k + 1; j ~P j+ j�j) � S(k; j ~P j+ 
+ j�j) + p(j ~P j+ j�j)for some 
onstant 
 and some polynomial p (the 
onstant 
 
omes from the fa
tthat in the 
ase of A = B�n the size of n[ ~P ℄ is greater than the size of ~P ; thepolynomial p estimates the spa
e needed for testing rea
hability et
). Therefore,S(k; j ~P j+ j�j) � k � p(j ~P j+ k � 
+ j�j).Finally, the fa
t that F(P ) is polynomial in the size of P and the statementof Proposition 3.10 
omplete the proof. �4 Complexity Lower BoundsBelow we present lower bounds on the spa
e 
omplexity of model 
he
king ourpro
ess 
al
ulus against our modal logi
, and also for two signi�
ant fragments.The results given here are based on known results about the 
omplexity ofde
ision problems for Quanti�ed Boolean Formulas (QBF). We 
an assume with-out loss of generality that these Boolean formulas are in prenex and 
onjun
tivenormal form. The alternation depth of a formula is the number of alternationsbetween existential and universal quanti�ers in its prenex quanti�
ation.Those known results are: (1) de
iding the validity problem for a 
losedquanti�ed Boolean formula ' is PSPACE-
omplete; (2) de
iding the validityproblem for a 
losed quanti�ed Boolean formula ' of alternation depth k whoseoutermost quanti�er is 9 is �Pk -
omplete (Sto
kmeyer 1976), where �Pk denotesthe k-th level of the polynomial-time hierar
hy. In parti
ular, �P0 = P and�P1 = NP.We will use the following formula as a running example of a valid 
losedQBF formula: 8v1:9v2:9v3:(v1 _ v2 _ v3) ^ (v1 _ v2 _ v3) ^ v34.1 The Full Cal
ulus and Logi
We de�ne an en
oding of QBF formulas into ambient formulas. This en
odingis then used to prove Theorem 4.2, that the 
omplexity of model 
he
king theambient logi
 is PSPACE-hard. 14



In our en
oding, we assume that the truth values tt and � used in thede�nition of QBF satisfa
tion are distin
t ambient 
al
ulus names.We also use a derived operator for name equality in the ambient logi
 �rstde�ned by Cardelli and Gordon (2000b):� = � �= �[T℄��Then 0 j= m = n if and only if the names m and n are equal. We en
ode the 8and 9 quanti�ers over truth values as follows.8x 2 f� ; ttg:A �= 8x:(x = � _ x = tt)) A9x 2 f� ; ttg:A �= 9x:(x = � _ x = tt) ^ AEn
oding QBF Formulas as Ambient Logi
 Formulas:[[v℄℄ �= (v = tt)[[v℄℄ �= (v = � )[[`1 _ � � � _ `k℄℄ �= [[`1℄℄ _ � � � _ [[`k℄℄[[C1 ^ � � � ^ Ck℄℄ �= [[C1℄℄ ^ � � � ^ [[Ck℄℄[[8v:'℄℄ �= 8v 2 f� ; ttg:[['℄℄[[9v:'℄℄ �= 9v 2 f� ; ttg:[['℄℄The following properties are proved in the appendix. The proof of Lemma 4.1is by indu
tion on the number of variables quanti�ed in '.Lemma 4.1 Consider a 
losed quanti�ed boolean formula ' and its en
oding[['℄℄ in the ambient logi
. The formula ' is valid if and only if the model 
he
kingproblem 0 j= [['℄℄ holds.Theorem 4.2 The 
omplexity of model 
he
king the full logi
 (in
luding namequanti�
ation) is PSPACE-hard.Proof Straightforward from Lemma 4.1 sin
e for the �xed ambient pro
ess0 solving the model 
he
king problem 0 j= ' is PSPACE-hard. So in fa
t theexpression 
omplexity, that is, the 
omplexity of 
he
king formulas against a�xed pro
ess, is PSPACE-hard. �The theorem above holds for any fragment of the logi
 in
luding boolean 
on-ne
tives, name quanti�
ation, and the lo
ation and lo
ation adjun
t modalities,and for any fragment of the 
al
ulus in
luding ambients. This might suggestthat the 
omplexity of the model 
he
king problem 
omes from the quanti�
a-tion in the logi
. Below we show that it is not the 
ase: the problem remainsso 
omplex even if we remove quanti�
ation from the logi
 and 
ommuni
ationor mobility from the 
al
ulus. This suggests there is little 
han
e of �ndinginteresting fragments of the 
al
ulus and the logi
 that would admit a fastermodel 
he
king algorithm. 15



4.2 Mobile Ambients Without I/O, No Quanti�ersIn this se
tion, we study the 
omplexity of the model 
he
king problem for thefragment of the ambient 
al
ulus without I/O and the fragment of the logi
without quanti�
ation.For every QBF variable, v, we assume that v, v0 and v00 are distin
t ambient
al
ulus names.En
oding QBF Formulas as Ambient Pro
esses and Formulas:[[v℄℄ = v[pos [0℄ j v0[0℄℄ j T[[v℄℄ = v[neg [0℄ j v0[0℄℄ j T[[`1 _ � � � _ `k℄℄ = [[`1℄℄ _ � � � _ [[`k℄℄[[C1 ^ � � � ^ Ck℄℄ = (end [0℄; [[C1℄℄ ^ � � � ^ [[Ck℄℄)[[8v:'℄℄ = (v0[in v:n[out v0:out v:P ℄℄;�((n[T℄ j T)) A)) where (n[P ℄;A) = [['℄℄[[9v:'℄℄ = (v0[in v:n[out v0:out v:P ℄℄;�((n[T℄ j T) ^ A)) where (n[P ℄;A) = [['℄℄en
(') = (v1[pos [0℄℄ j v1[neg [0℄℄ j � � � j vn[pos [0℄℄ j vn[neg [0℄℄ j P;A)where (P;A) = [['℄℄ and ' = Q1v1: : : : :Qnvn:C1 ^ � � � ^ Ckwhere ea
h Qi 2 f9;8g.Brief explanation. In the en
oding en
(') above, the parallel 
ompositionv1[pos [0℄℄ j : : : j vn[neg [0℄℄ represents the sequen
e v1; : : : vn of (uninstantiated)boolean variables and P is a pro
ess that instantiates them. An instantiatedvariable vi is represented by a subpro
ess vi[pos [0℄ j v0i[0℄℄ j vi[neg [0℄℄ (if itsvalue is tt) or vi[pos [0℄℄ j vi[neg [0℄ j v0i[0℄℄ (if its value is � ). The pro
essP �rst instantiates v1 by 
hoosing one of the ambients v1[pos [0℄℄ or v1[neg [0℄℄nondeterministi
ally, going inside it, leaving the token v01[0℄ inside the 
hosenambient and then returning to the top level. It then iteratively instantiates thevariables v2; : : : ; vn in the same way. The formula n[T℄ j T in the 
ontext of theen
oding for a quanti�ed variable vi above (where n is vi+1 or end for i = n)expresses that the instantiation of vi has �nished but that the instantiation of nhas yet to start; thus �(n[T℄ j T : : :) and �(n[T℄ j T : : :) express, respe
tively,universal and existential quanti�
ations over instantiations of vi.In the 
ase where ' is the formula de�ned previously as an example, onewould obtain en
(') = (P;A), where P is the pro
ess depi
ted in Figure 1(a)and where the formula A is of the form:�((v02[T℄ j T)) �((v03[T℄ j T) ^ �((end [T℄ j T) ^ B)))where B is the formula given by [[v1 _ v2 _ v3℄℄ ^ [[v1 _ v2 _ v3℄℄ ^ [[v3℄℄.More detailed explanation. We explain this en
oding with referen
e to theambient pro
ess depi
ted in Figure 1(a). The ambients whose names range overvi des
ribe an interpretation for the Boolean variables vi whereas the ambients16



v1pos [℄ j v1neg [℄ j v2pos [℄ j v2neg [℄ j v3pos [℄ j v3neg [℄ jv01in v1: v02out v01:out v1:in v2: v03out v02:out v2:in v3: endout v03:out v3:0(a) The pro
ess P in en
(') = (P;A)v1pos [℄ j v01[℄ j v1neg [℄ j v2pos [℄ j v02[℄ j v2neg [℄ jv3pos [℄ j v3neg [℄ j v03[℄ j end0(b) The irredu
ible pro
ess for the interpretation v1 7! tt ; v2 7! tt ; v3 7! �Figure 1: En
oding for mobile ambients without I/O, no quanti�ersnamed v0i are the \material" to extend this interpretation. In the initial ambi-ent, the ambients vi en
ode the empty interpretation and the material is in anambient named v01 marking the fa
t that v1 is the �rst variable to treat. The�rst step of redu
tion will move the ambient v01 non-deterministi
ally either in-side v1[pos [℄℄ (the Boolean variable v1 takes the value tt) or inside v1[neg [℄℄ (theBoolean variable v1 takes the value � ). The next two steps of redu
tion aredeterministi
. They aim to leave a mark in one of the ambients v1 a

ording tothe �rst non-deterministi
 
hoi
e and to rea
h a situation in whi
h the Booleanvariable v2 is 
onsidered. For instan
e, if the �rst 
hoi
e was to instantiatev1 with tt then, one would obtain a parallel 
omposition of v1[pos [℄ j v01[℄℄ andv1[neg [℄℄. The ambients named v2, v3 are kept un
hanged and the ambient 
on-taining the rest of the interpretation would be of the form v02[in v2:v03[Q℄℄ whereQ is the internal of v03 in the initial pro
ess. This 
omputation, 
onsisting ofone non-deterministi
 step followed by two deterministi
 ones, 
an be 
arriedon for the variables v2 and v3. Then, when no more redu
tion step is possible,the resulting pro
ess is a parallel 
omposition of the empty ambient end [℄ and,for ea
h i, of vi[n[℄ j v0i[℄℄ and vi[n0[℄℄ where n; n0 are distin
t elements fromfpos ;negg. For instan
e, the irredu
ible pro
ess given in Figure 1(b) representsthe interpretation v1 7! tt ; v2 7! tt ; v3 7! � .17



We said that the ambient pro
esses en
ode interpretations. The Booleanformula itself is en
oded in the ambient formula A. On
e no more redu
tionstep is possible on the ambient pro
ess, this latter represents an interpretationwhose domain is the set of all variables in ': this interpretation is given by thepla
es where the marks v0i have been put. It is easy with an ambient formula totest whether this interpretation renders true the quanti�er-free part of '. Thisrole is played by the ambient formula B whereas the remaining part of A aimsto en
ode the quanti�ers of '.Let us �rst 
onsider the outermost quanti�er 8v1 in ': this quanti�
ationstands for \for all possible interpretations of the variable v1". We have des
ribedabove the me
hanism for the instantiation of the Boolean variable v1 in the am-bient pro
ess. It 
onsists of �rst a non-deterministi
 step, then two deterministi
steps. Whatever the �rst step is, those three steps lead to a situation wherethe ambient pro
ess is of the form R j v02[R0℄. It should be noti
ed that thosetwo pro
esses (one for ea
h possibility of the �rst step) are the only pro
essesof this form rea
hable from the initial pro
ess. Therefore, the statement \forall possible interpretations of the variable v1" 
an be translated as \for all pro-
esses of the form R j v02[R0℄ rea
hable from the initial pro
ess". This rephrasedstatement 
an be expressed in the ambient logi
 as �((v02[T℄ j T)) : : :).A dual reasoning 
an be applied then for 9v2, the following quanti�
ation ofthe formula '. In that 
ase, the statement \there exists an interpretation forthe variable v2" is translated into \there exists an ambient pro
ess of the formT j v03[T 0℄ rea
hable from the 
urrent pro
ess". This 
urrent pro
ess is one ofthe two pro
esses after the instantiation of the variable v2, that is of the formS j v03[S0℄. This statement 
an be expressed by means of the ambient logi
 bythe formula �((v03[T℄ j T) ^ : : :). Finally, the quanti�
ation 9v3 is expressed by�((end [T℄ j T) ^ : : :).Lemma 4.3 Assume ' is a 
losed quanti�ed Boolean formula, and (P;A) =en
('). Then P j= A if and only if ' is valid.Theorem 4.4 The 
omplexity of model 
he
king mobile ambients without I/Oagainst the quanti�er-free logi
 is PSPACE-hard.Proof Straightforward from the PSPACE-
ompleteness of the validity forQBF and from Lemma 4.3, taking into a

ount that for en
(') = (P;A), bothP and A are of polynomial size with respe
t to '. �4.3 Immobile Ambients With I/O, No Quanti�ersIn this se
tion, we study the 
omplexity of the model 
he
king problem for thefragment of the ambient 
al
ulus without a
tion pre�x.We 
onsider �xed names end , C, and D. For any QBF variable ambientname v0i, let Inst(v0i) �= v0i[T℄ j T Inst+(v0i) �= v0i[v00i [T℄ j T℄ j T18



and for the name end ,Inst(end) �= end [T℄ j T Inst+(end) �= end [end 0[T℄ j T℄ j TEn
oding QBF Formulas as Ambient Pro
esses and Formulas:[[v℄℄ = v[0℄[[v℄℄ = v[0℄[[`1 _ : : : _ `k℄℄ = D[0℄ j [[`1℄℄ j : : : j [[`k℄℄en
(C1 ^ : : : ^ Ck) = (end [C[ [[C1℄℄ ℄ j : : : j C[ [[Ck℄℄ ℄℄;
❏((D[0℄ j T)) (tt [0℄ j T)))en
(9v:') = (v0[htti j h� i j (v):(v00[℄ j (v):n[P ℄)℄;T j v0[�( (Inst(n) ^ :Inst+(n)) ^A )℄)where en
(') = (n[P ℄;A)en
(8v:') = (v0[htti j h� i j (v):(v00[℄ j (v):n[P ℄)℄;T j v0[�( (Inst(n) ^ :Inst+(n)) ) A )℄)where en
(') = (n[P ℄;A)Brief explanation. The idea of the en
oding here is quite similar to thatfrom the previous se
tion. A boolean variable v is represented here by twoambients v[℄ and v[℄, whi
h after the instantiation are named tt [℄ and � [℄. Weexploit here the nondeterminism of 
ommuni
ation: the variable v reads eitherthe message htti or h� i; then its dual v has to read the other one. The namesv0i and v00i (similar to v0i in the previous se
tion) are used for distinguishingthe moment when the variable vi is already instantiated but vi+1 is not. Theformula ❏((D[0℄ j T)) (tt [0℄ j T)) requires that in the �nal state, ea
h ambientrepresenting a 
lause (that is, an ambient 
ontaining D[0℄) 
ontains at least onetrue literal (that is, an ambient tt [0℄).For the formula ' used in our example, one would have en
(') = (P;A),where P is depi
ted in Figure 2(a).More detailed explanation. The key idea of this en
oding is to use (redu
-tions of) 
ommuni
ations for performing the instantiation of the quanti�er-freepart of ' with respe
t to some interpretation. Therefore, the quanti�er-freeformula C1 ^ : : : ^ Ck is en
oded in the ambient pro
ess itself, inside an am-bient named end . For instan
e, in Figure 2(a) for our example, the ambientend [C[D[℄ j v1[℄ j v2[℄ j v3[℄℄ j C[D[℄ j v1[℄ j v2[℄ j v3[℄℄ j C[D[℄ j v3[℄℄℄ en
odes thequanti�er-free part of ': the ambient end 
ontains a sub-ambient 
alled C forea
h 
lause Ci in ' and the ambient 
orresponding to Ci 
ontains an ambient`j [℄ for ea
h literal `j from Ci.Starting from P des
ribed in Figure 2(a), let us inspe
t the behaviour ofpro
esses through redu
tions. Two redu
tions 
an be performed on P : oneestablishes a 
ommuni
ation between htti and (v1) and the other one betweenh� i and (v1). On
e this redu
tion step is performed the name v1 has beenrepla
ed by either tt or � uniformly at every position and in parti
ular in the19



v01
htti j h� i j(v1):(v001 [℄ j (v1)):

v02
htti j h� i j(v2):(v002 [℄ j (v2)):

v03htti j h� i j(v3):(v003 [℄ j (v3)):
endCD[℄ j v1[℄ j v2[℄ j v3[℄ jCD[℄ j v1[℄ j v2[℄ j v3[℄ jCD[℄ j v3[℄(a) The pro
ess P in en
(') = (P;A)endCD[℄ j tt [℄ j � [℄ j � [℄ j CD[℄ j � [℄ j tt [℄ j � [℄ j CD[℄ j tt [℄(b) The pro
ess representing the instantiation of C1 ^ C2 ^ C3 by v1 7! tt; v2 7!tt; v3 7! �Figure 2: En
oding for immobile ambients with I/O, no quanti�ersambient named end . Hen
e, the �rst step of 
omputation is non-deterministi
and instantiates the literal v1. It has also a side-e�e
t: it reveals an ambientpro
ess v001 [℄ within the ambient v01; this pro
ess is a marker for the 
ontrolof 
omputations. Its pre
ise role will be explained later on. The se
ond stepis deterministi
: for ea
h �rst step, only one se
ond step is possible. Thisse
ond step aims to instantiate the literal v1 a

ording to the instantiation ofv1. Indeed, if the �rst 
ommuni
ation has 
onsumed the output htti then forthe se
ond one only the output h� i remains and vi
e-versa. So, after the se
ondstep, the name v1 is globally repla
ed by a Boolean value. Moreover, at thispoint there are no more a
tions pre�xing the ambient named v02 and so thisambient 
an be now redu
ed using the rules (Red Par) and (Red Amb). Thenext redu
tion steps are performed in a similar way: a non-deterministi
 stepfollows by a deterministi
 one. This leads �nally to repla
e in the ambient endall the names 
orresponding to literals by Boolean values tt and � . As anexample, in Figure 2(b), we have depi
ted the ambient end on
e the redu
tions
orresponding to the interpretationM = v1 7! tt ; v2 7! tt ; v3 7! � have beenperformed. 20



Now, using an ambient formula it is not diÆ
ult to test whether the inter-pretation indu
ed from the pro
ess in Figure 2(b) is a model for C1 ^ C2 ^ C3:as C1 ^ C2 ^ C3 is in 
onjun
tive normal form, M is a model for it if andonly if M renders at least one literal true in every 
lause Ci. A

ording tothe way redu
tions are performed and 
orrespond to instantiations, this isequivalent to the 
laim that in the pro
ess from Figure 2(b), every ambientnamed C 
ontains a sub-ambient tt [℄. This 
an be tested with the formulaB = ❏((D[0℄ j T) ) (tt [0℄ j T)), whi
h is exa
tly the formula given byen
(C1 ^ C2 ^ C3).In the en
oding en
(') = (P;A), one part of A aims to test whether theinterpretation 
orresponding to the redu
tions is a model of '. The other partof A is used to en
ode the quanti�
ation of '. Let us illustrate on our examplethe ideas of this en
oding: for the formula ' from our example, the formula Ais equal to T j v01[�( (Inst(v02) ^ :Inst+(v02)) )(T j v02[�( (Inst(v03) ^ :Inst+(v03)) ^(T j v03[�(Inst(end) ^ :Inst+(end) ^ B)℄) )℄) )℄where B is the result of the en
oding of the quanti�er-free part of '. For thevariable vi, the intuitive reading of Inst(v0i) is \the next variable to 
onsideris vi", that is, the instantiation of the variable vi�1 has been 
ompleted. Thereading of Inst+(v0i) is \the variable vi has been partially treated", that is,the instantiation has been performed for the positive literal vi. For the ambientname end , Inst(end) refers to the 
ompletion of the instantiation of the variablevn. The �rst quanti�
ation 8v1 stands for \for all possible interpretations of thevariable v1" and the part of ' related with this quanti�
ation isT j v01[�( (Inst(v02) ^ :Inst+(v02)) ) : : :)℄This formula is model 
he
ked against the pro
ess P given in Figure 2(a).As P � 0 j P , the model 
he
king problem is redu
ed to 
he
king the interiorof v01 against the sub-formula of the form �A1: all pro
esses rea
hable fromthe interior of v01 must satisfy A1. Let us have a look at the form of thoserea
hable pro
esses: the interior of v01 is itself rea
hable as well as the twopro
esses 
orresponding to the instantiation of the literal v1 (rea
hable in onestep). In those pro
esses v1 has been repla
ed by a Boolean value but noneof them satis�es v02[T℄ j T, that is, Inst(v02). Now, the pro
esses rea
hable intwo steps or more indeed satisfy the formula Inst(v02); but the ones rea
hable inexa
tly two steps 
an be distinguished from the others sin
e these former are theonly ones whi
h do not satisfy v02[v002 [T℄ j T℄ j T, that is, Inst+(v02). Indeed, stepsbeyond the se
ond one reveal the marker v002 [℄ inside the ambient v02. We havealready mentioned the fa
t that the two steps of 
omputation 
orrespond exa
tlyto the 
omplete treatment of the variable v1 whi
h is the intended meaning ofInst(v02)^:Inst+(v02). Therefore, model 
he
king 
ontinues by 
he
king the twopro
esses (the se
ond step of 
omputation being deterministi
), de�ned as the21



interior of v01 in whi
h the literals v1 and v1 have been repla
ed by Booleanvalues, against the formulaT j v02[�( (Inst(v03) ^ :Inst+(v03)) ^ :::)℄from the en
oding of the quanti�
ation 9v2. It stands for \there exists aninterpretation for v2". The pro
ess that is 
he
ked against this formula is of theform v001 [℄ j v02[R℄. Therefore, it amounts to 
he
k whether the pro
ess R, whi
his the interior of v02 in whi
h names v1; v1 have been repla
ed with Booleanvalues, is a model for the sub-formula of the form �A2. Equivalently, theremust exist a pro
ess rea
hable from R whi
h satis�es A2. Let us inspe
t thepro
esses rea
hable from R. Of 
ourse, R itself is rea
hable as well as the twopro
esses rea
hable in one step of 
omputation performing the instantiation forthe literal v2. None of these pro
esses satis�es the formula v03[T℄ j T, thatis, Inst(v03). Pro
esses that are obtained with two steps or more from R dosatisfy Inst(v03) but only those obtained by stri
tly more than two steps revealthe marker v003 [℄ inside v03 and thus, satisfy v03[v003 [T℄ j T℄ j T, that is Inst+(v03).Those 
omputations from R of exa
tly two steps 
orrespond to the 
ompletetreatment of the variable v2 and satisfy Inst(v03) ^ :(Inst+(v03)). So, model
he
king 
arries on by 
he
king that one of these two pro
esses rea
hable fromR in two steps and de�ned as the interior of v2 in whi
h the literals v1, v1, v2,v2 have been repla
ed by Boolean values, is a model for the remaining part ofthe en
oding of the formula.Finally, the quanti�
ation 9v3 is en
oded asT j v03[�( ((T j end [T℄) ^ :(T j end [end 0[T℄ j T℄)) ^ :::)℄and its treatment is similar to that of 9v2. It leads to model 
he
king the pro
essnamed end given in Figure 2(b) against the formula B.Lemma 4.5 Assume ' is a 
losed quanti�ed Boolean formula, and (P;A) =en
('). Then P j= A if and only if ' is valid.Theorem 4.6 The 
omplexity of model 
he
king immobile ambients with I/Oagainst the quanti�er-free logi
 is PSPACE-hard.Proof This follows from the PSPACE-
ompleteness of validity for QBF, fromLemma 4.5 taking into a

ount that for en
(') = (P;A), both P and A are ofpolynomial size with respe
t to '. �We 
an strengthen this result by slightly modifying our en
oding. Our pre-vious en
oding is based on an individual treatment for the variables in thequanti�
ation. The improved en
oding will be based on the alternation of quan-ti�ers: roughly, 9v29v3 
an be grouped together by saying that \there exists aninterpretation for v2 and v3". As far as the previous en
oding is 
on
erned, theambient formula resulting from the en
oding of 9v29v3 will perform two su
-
essive tests for rea
hability; this 
an be modi�ed in su
h a way that only one22



test of rea
hability is performed. This will imply for the new en
oding that themarkers used to 
ontrol the model 
he
king (namely, the ambients v0) will nolonger be asso
iated with the variables but with the alternation of quanti�ers.Those ambient names will range over ai where i is an integer. We de�ne forthose ai's: Inst(ai) �= ai[T℄ j T Inst+(ai) �= ai[ai[℄ j T℄ j TThe Revised En
oding:en
(8v:') = en
(8v:'; 1)en
(9v:') = en
(9v:'; 1)en
(8v:'; i) = (ai[htti j h� i j (v):(ai[℄ j (v)):P;T j ai[�( Inst(ai+1) ^ Inst+(ai+1) ) A )℄)where en
8('; i) = (P;A)en
(9v:'; i) = (ai[htti j h� i j (v):(ai[℄ j (v)):P;T j ai[�( Inst(ai+1) ^ Inst+(ai+1) ^ A )℄)where en
9('; i) = (P;A)en
8(9v:'; i) = en
(9v:'; i+ 1)en
8(8v:'; i) = (htti j h� i j (v):(v):P;A) where en
8('; i) = (P;A)en
9(8v:') = en
(8v:'; i+ 1)en
9(8v:'; i) = (htti j h� i j (v):(v):P;A) where en
9('; i) = (P;A)en
(C1 ^ : : : ^ Ck; i) = (ai[C[ [[C1℄℄ ℄ j : : : j C[ [[Ck℄℄ ℄℄;❏((D[0℄ j T)) tt [0℄ j T))[[`1 _ : : : _ `k℄℄ = D[0℄ j [[`1℄℄ j : : : j [[`k℄℄[[v℄℄ = v[℄[[v℄℄ = v[℄The statement of Lemma 4.5 still holds for this new en
oding. Furthermore,in the en
oding (P;A) of the Boolean formula ', the ambient logi
 formula Adepends only on the alternation depth and the outermost quanti�er of '; forany two Boolean formulas '; '0 having the same alternation depth k and thesame outermost quanti�er Q, if en
(') = (P;A) and en
('0) = (P 0;A0) thenA = A0.Theorem 4.7 For every integer k there exists a formula A9k su
h that the 
om-plexity of model 
he
king pro
esses against A9k is �Pk -hard.Proof Let A9k be the formula su
h that for any 
losed quanti�ed Booleanformula ' of alternation depth k whose outermost quanti�er is 9, en
(') =(P';A9k). Due to the remark above, we know that this formula exists andfurthermore, is of size polynomial in k.Now, by Lemma 4.5, every instan
e of the validity problem for a 
losedquanti�ed Boolean formula ' of alternation depth k whose outermost quanti�er23



is 9 
an be redu
ed to the model 
he
king problem P' j= A9k for en
(') =(P';A9k). Thus, sin
e the size of P' is polynomial in the size of ', the theoremfollows. �5 Con
lusionWe show in this paper that the model 
he
king problem of the repli
ation-free ambient 
al
ulus with publi
 names against the ambient logi
 without
omposition-adjun
t is PSPACE-
omplete. In order to prove this 
omplexitybound, we have proposed a new representation for pro
esses, 
alled 
losures,that prevents the exponential blow-up of the size. We use this representationtogether with a new algorithm to prove the PSPACE upper bound.We also have shown that there is little 
han
e to �nd polynomial algorithmsfor interesting subproblems: model 
he
king remains PSPACE-hard even forquite simple fragments of the 
al
ulus and the logi
.Possible dire
tions for future work in
lude investigations of the model 
he
k-ing problem for extensions of the logi
 and the 
al
ulus. Re
ently, Cardelli andGordon (2001) have presented an extended version of the logi
 that allows rea-soning about restri
ted names; it seems that there is no diÆ
ulty in extendingour algorithm to deal with name restri
tion.
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A Corre
tness ProofsThis appendix 
ontains proofs of results stated in Se
tion 3.A.1 Proof of Proposition 3.1Proposition 3.1 
on
erns the relationship between normal 
losures and stru
-tural 
ongruen
e. In this appendix we develop enough fa
ts about 
losures andstru
tural 
ongruen
e to prove it.We begin with a proposition that normality is preserved by de
ompositionwith ambient or parallel 
omposition.Proposition A.1� h ~P ;�i and h ~Q;�i are normal and fn( ~P ) \ bn( ~Q) = bn( ~P ) \ fn( ~Q) =bn( ~P ) \ bn( ~Q) = ? i� h ~P ++ ~Q;�i is normal.� for all expressions M su
h that M does not 
ontain names from bn( ~P ),hfM [ ~P ℄g;�i is normal i� h ~P ;�i is normal.Proof For the �rst point: from right to left, it is straightforward from thede�nition of U that if U( ~P ++ ~Q; �) is de�ned then both U( ~P ; �) and U( ~Q; �)are so. As fn( ~P ++ ~Q) = fn( ~P ) [ fn( ~Q) and bn( ~P ++ ~Q) = bn( ~P ) [ bn( ~Q), ifbn( ~P ++ ~Q)\(fn( ~P ++ ~Q)[names(�)) = ? then bn( ~P )\(fn( ~P )[names(�)) =bn( ~Q)\ (fn( ~Q) [ names(�)) = ?. If for ~P ++ ~Q bound variables o

ur at moston
e within an input and o�sets in the s
ope of an input are equal to 0, then itis so for ~P and ~Q. The last 
ondition for normality on sequential substitutionis obvious. The three other 
onditions follow dire
tly from the normality ofh ~P ++ ~Q;�i. From left to right, the de�nition of U implies that if h ~P ;�i andh ~Q;�i are de�ned then h ~P ++ ~Q;�i is de�ned. Now, fn( ~P ++ ~Q)\bn( ~P ++ ~Q) =(fn( ~P )[fn( ~Q))\(bn( ~P )[bn( ~Q)). We have fn( ~P )\bn( ~Q) = bn( ~P )\fn( ~Q) = ?by assumption and fn( ~P )\bn( ~P ) = fn( ~Q)\bn( ~Q) = ? as h ~P ;�i and h ~Q;�i arenormal. So, fn( ~P ++ ~Q)\ bn( ~P ++ ~Q) = ?. By normality of h ~P ;�i and h ~Q;�i,names(�)\bn( ~R) = ? for ~R 2 f ~P ; ~Qg. So, names(�)\bn( ~P ++ ~Q) = ?. h ~P ;�iand h ~Q;�i being normal and as by assumption bn( ~P )\ bn( ~Q) = ?, every inputvariable o

urs at most on
e within an input in ~P ++ ~Q. The last 
onditionson o�sets in the s
ope of an input and on sequential substitution is obvious.For the se
ond point: It is easy to see that U(fM [ ~P ℄g; �) is de�ned i� U( ~P ; �)is so. The set of names o

urring free in M is exa
tly the set fn(fM [0℄g). Now,as bn(fM [ ~P ℄g) = bn( ~P ) and fn(fM [ ~P ℄g) = fn( ~P ) [ fn(fM [0℄g), fn(fM [ ~P ℄g) \bn(fM [ ~P ℄g) is empty i� fn( ~P ) \ bn( ~P ) is empty (taking into a

ount theassumption that bn( ~P ) \ fn(fM [0℄g) = ?) and bn(fM [ ~P ℄g) \ names(�) =bn( ~P )\ names(�) = ?. Finally, the last three statements are obvious to 
he
k.�In the proof of Proposition 3.1 we will have to show that some pro
essesare equivalent if and only if some 
onditions hold. In parti
ular, we will haveto show that if these 
onditions do not hold, the pro
esses are not equivalent.26



Although it is relatively easy to prove equivalen
e of pro
esses, it is not soeasy to prove their inequivalen
e (whi
h requires showing that no equivalen
eproof exists). We use Theorem A.2 and Propositions A.3{A.5 below as tools forproving inequivalen
es needed in Proposition 3.1.Let us 
onsider � the signature used to build pro
esses from the ambient
al
ulus with publi
 names. The signature � 
ontains an in�nite number of
onstants used as names. It 
ontains moreover 0 and � as 
onstant symbols, the
apabilities in; out ; open and hi as unary fun
tion symbols. Finally, the binaryfun
tion symbols j; [℄; :; () belong to �.Let us denote T� the set of all terms over �. Any ambient pro
ess fromthe ambient 
al
ulus with publi
 names 
an be written as a term over thisvo
abulary. And of 
ourse, some terms from T� are not ambient pro
ess, as forinstan
e, h0 j 0i.The set T� indu
es a 
anoni
al algebra that we denote T�: the algebraT� has for 
arrier the set T� and ea
h fun
tion symbols from � is interpretedsynta
ti
ally in T�.The stru
tural 
ongruen
e relation � de�ned in Se
tion 2.1 over pairs ofambient pro
esses 
an be viewed as a relation de�ned over T��T�. One shouldnoti
e that the set of axioms de�ning � is a set of de�nite Horn 
lauses, andthus, (T�;�) is a Herbrand model for this set of axioms. Moreover, as we
onsider the least relation satisfying these axioms, the stru
ture (T�;�) is theleast Herbrand model for this set of axioms. This implies that two pro
esses P;Qare stru
turally equivalent if and only if P � Q belongs to the least Herbrandmodel of these axioms.Note that if � is not assumed to be the least relation satisfying the axiomsbut for instan
e the greatest one, then one would have P � Q whatever P;Qare.The following theorem is a dire
t 
onsequen
e of two well-known fa
ts (Lloyd1987), that (1) every model of a set of Horn 
lauses 
an be translated to aHerbrand model, and (2) that every Herbrandmodel 
ontains the least Herbrandmodel. Essentially, the theorem says that anything that does not belong to somemodel 
annot belong to the least model.Theorem A.2 Let S be a set of de�nite Horn 
lauses de�ning a relation symbol�. Then for all algebras A, for all stru
tures R de�ned over A and giving aninterpretation for � su
h that R j= S,R j= s � t if (T�;�) j= s � tThat is, if there exists a stru
ture R su
h that R j= S and R j= s 6� t, then(T�;�) j= s 6� t.Let us 
onsider now the algebra Â de�ned over �; the 
arrier DÂ is the leastset su
h that� the 
onstants from � ex
ept � and 0 belong to DÂ,� the empty string and the empty multiset belong to DÂ,27



� for any d1; d2 2 DÂ, the items in d1, out d1, open d1, hd1i, (d1)d2 andd1[d2℄ belong to DÂ,� for any d1; : : : ; dn 2 DÂ, the string d1 : : : dn and the multiset fd1; : : : ; dngbelong to DÂ.The fun
tion symbols from � are interpreted in Â as follows.� The 
onstants from � ex
ept � and 0 are interpreted synta
ti
ally.� The 
onstants � and 0 are interpreted respe
tively as the empty string andas the empty multiset.� The fun
tion symbols in , out , open , hi, () and [℄ are interpreted synta
ti-
ally.� For the fun
tion symbol :: d1:d2 is the string obtained by 
on
atenation ofd1 and d2 if both d1 and d2 are strings. Otherwise, elements from fd1; d2gthat are not strings are transformed into a string of length one and then,the 
on
atenation is performed.� For the fun
tion symbol j: d1 j d2 is the multiset obtained by union of d1and d2 if both d1 and d2 are multisets. Otherwise, elements from fd1; d2gthat are not multisets are transformed into a singleton multiset and then,the union is performed.The algebra Â is extended into a stru
ture R̂ in whi
h � is interpreted asthe binary relation $ over DÂ � DÂ. The relation $ is de�ned re
ursively asfollows: d $ d0 i�� d and d0 are both the empty string.� d and d0 are both 
omposed strings su
h that dh and d0h, the �rst twoelements of d; d0 satisfy dh $ d0h and dt and d0t the two strings obtained byremoving the �rst element in respe
tively d and d0 satisfy dt $ d0t.� d and d0 are both the empty multiset.� d and d0 are both non-empty multiset and there exists de and d0e respe
-tively in d and d0 su
h that de $ d0e and dr de $ d0 r d0e.� d and d0 are respe
tively of the form hd1i and hd01i and d1 $ d01.� d and d0 are respe
tively of the form 
ap d1 and 
ap d01 and d1 $ d01 where
ap belongs to fin; out ; openg.� d and d0 are respe
tively of the form d1[d2℄ and d01[d02℄ and d1 $ d01, d2 $ d02.� d and d0 are respe
tively of the form (d1)d2 and (d01)d02 and d1 $ d01,d2 $ d02.Proposition A.3 R̂ is a model of the axioms for �.28



Proof By 
ase inspe
tion. �Proposition A.4 For any pro
ess P , for any M , for any name n, for any
ap 2 fin; out ; openg,� for any pro
ess Q, we have 0 6�M [P ℄, 0 6� (n):P , 0 6� hMi, 0 6� 
apM:Pand 0 6� P j Q if P 6� 0.� if P 6� 0, then for any pro
esses Q;P 0 su
h that Q 6� 0, we have P j Q 6�M [P 0℄, P j Q 6� (n):P 0, P j Q 6� hMi, P j Q 6� 
ap M:P 0.� for any pro
esses Q;P 0 and for any M 0, we have M [P ℄ 6� (n):Q, M [P ℄ 6�hM 0i, M [P ℄ 6� 
ap M 0:P 0 and M [P ℄ 6� M 0[P 0℄ if M;M 0 are two di�erentsequen
es or if P 6� P 0.� for any M 0, we have hMi 6� 
ap M 0:P , hMi 6� (n):P and hMi 6� hM 0i ifM;M 0 are two di�erent sequen
es.� for any pro
ess Q, for any names n;m, we have (n):P 6� 
ap M:Q and(n):P 6� (m):Q if n;m are two di�erent names or if P 6� Q.� for any pro
ess Q, for anyM 0 and for any 
apability 
ap 0 2 fin; out ; openg,we have 
apM:P 6� 
ap 0M 0:Q if either 
ap 6= 
ap 0 or M;M 0 are two dif-ferent sequen
es or if Q 6� Q.Proof It is easy to 
he
k that all the statements above holds for R̂. UsingProposition A.3 with Theorem A.2, those statements hold for ambient pro
essesand �. �Proposition A.5 For any sequential substitution �, for any prime � su
h thathf�g;�i is normal, U(�; �) 6� 0.Proof Straightforward from the de�nition of U and Proposition A.3 �Restatement of Proposition 3.1 Let hQi2I �i;�i be a normal 
losure.Then(1) U(Qi2I �i; �) � 0 i� I = ?.(2) U(Qi2I �i; �) � M [Q℄ i� 9M 0; ~Q : I is a singleton fig, �i = M 0[ ~Q℄,M 0� =M , U( ~Q; �) � Q.(3) U(Qi2I �i; �) � P 0 j P 00 i� 9J;K : J [ K = I, J \ K = ?, P 0 �U(Qj2J �j ; �), P 00 � U(Qk2K �k; �).(4) U(Qi2I �i; �) � hMi i� 9M 0 : I is a singleton fig, �i = hM 0i andM 0� =M .(5) U(Qi2I �i; �) � (n):P i� 9 ~P : I is a singleton fig, �i = (n): ~P andU( ~P ; �) � P . 29



Proof For the �rst point, if I = ? then ~P = fg; so, by de�nition for U ,U( ~P ; �) � 0. Now for the other dire
tion, the 
losure h ~P ;�i being normal, if Iis not empty, then by Proposition A.4 and the de�nition for U , U(Q2I �; �) 6� 0.For the se
ond point, for the dire
tion from right to left: U(Qi2I �i; �) �U(f�ig; �) � U(fM 0[ ~Q℄g; �) sin
e I is a singleton fig and �i =M 0[ ~Q℄. Now, byde�nition for U , U(Qi2I �i; �) � M 0�[U( ~Q; �)℄ � M [U( ~Q; �)℄ sin
e M 0� = M .So, U(Qi2I �i; �) � M [Q℄. From left to right: let us assume that I is not asingleton. For I = ?, a

ording to the �rst point, U(Qi2I �i; �) � 0 and thus,by Proposition A.4, U(Qi2I �i; �) 6� M [Q℄ for any M;Q. Now, the 
losureh ~P ;�i being normal, if I 
ontains at least two elements then by de�nition ofU , U( ~P ; �) � R0 j R00 for some R;R0 6� 0 by Propositions A.5 and A.4 .Thus, still by Proposition A.4, U( ~P ; �) 6� M [Q℄ whatever M , Q are. So, I isa singleton. Now, if �i 6= M 0[ ~Q℄ or M 0�;M are two di�erent sequen
es, on
eagain from the de�nition of U and Proposition A.4, U( ~P ; �) 6� M [Q℄. Finally,sin
e U(Qi2I �i; �) =M [U( ~Q; �)℄, we have U( ~Q; �) � Q.For the third point, from right to left: we have P 0 j P 00 � U(Qj2J �j ; �) jU(Qk2K �k; �). By de�nition of U , sin
e J;K are disjoint and J [ K = I ,P 0 j P 00 � U(Qi2I �i; �). From left to right: by de�nition, U(Qi2I �i; �) =U(�1; �) j : : : j U(�k; �) where I is assumed to be f1; : : : ; kg and the �i's areprimes. Sin
e U(Qi2I �i; �) = P 0 j P 00, there must exist I; J two disjoint sets ofindi
es su
h that I [ J = 1::k, P 0 � U(Qi2I �i; �) and P 00 � U(Qj2J �j ; �).For the fourth point, from right to left: from the de�nition of U , we haveU(Qi2I �i; �) = U(�i; �) = hM 0�i. So, using the hypothesis, U(Qi2I �i; �) �hMi. From left to right: similar to the se
ond point.For the �fth point, from right to left: from the de�nition of U , we haveU(Qi2I �i; �) = U(�i; �) = (n):U( ~P ; �). Using the hypothesis, U(Qi2I �i; �) �(n):P . From left to right: similar to the se
ond point. �A.2 Properties of the Auxiliary Fun
tionsHere, we state and prove 
orre
tness properties needed in subsequent se
tionsof the auxiliary fun
tions nam , len , fst , and split .First, the fun
tion nam is 
orre
t in the following sense.Proposition A.6 nam(M;�) = n i� M� = n.Proof Straightforward by indu
tion over the length of the sequential substi-tution �. �Se
ond, the fun
tion len has the following property.Proposition A.7 len(M;�) = l i� M� = N1: : : : :Nl with Ni being either aname or of the form 
ap N 0 with 
ap 2 fin; out ; openg.Proof The proof goes by indu
tion on the length of the sequential substitu-tion �. 30



For � being the empty sequen
e �: M� = M = N1: : : : :Nl. By de�nition,len(N1: : : : :Nl; �) =Pli=1 len(Ni; �). Sin
e ea
h Ni is either a name n or of theform in N 0, out N 0 or open N 0, we have len(Ni; �) = 1. This is equivalent tolen(N1: : : : :Nl; �) = l.For � being the sequen
e fx M 0g�0 of length at least 1:let M = N 01: : : : :N 0k. By indu
tion over k:- k = 0: in this 
ase, M = � and Mfx M 0g� = �. So, l = 0 and by de�nitionlen(M;�) = 0.- k = 1: in this 
ase M = N 01 and we have three 
ases� N 01 is of the form 
ap N 0 for some 
ap 2 fin ; out ; openg: in this 
ase,Mfx M 0g� is of the form 
apN 00 and by de�nition, len(M;�fx Mg) =1.� N 01 is a name di�erent from x: in this 
ase, Mfx M 0g� = M� andlen(M; fx M 0g�) = len(M;�). Using the indu
tion hypothesis, M� =N 001 : : : : :N 00l i� len(M;�) = l, therefore Mfx M 0g� = N 001 : : : : :N 00l i�len(M; fx M 0g�) = l.� N 01 = x: in this 
ase, Mfx M 0g� = M 0� and len(M; fx M 0g�) =len(M 0; �). By indu
tion hypothesis M 0� = N 001 : : : : :N 00l i� len(M 0; �) =l, so Mfx M 0g� = N 001 : : : : :N 00l i� len(M; fx M 0g�) = l.- k > 1: using the indu
tion hypothesis, len(N 01: : : : :N 0k�1; fx M 0g�) = l0 i�N 01fx M 0g�: : : : :N 0k�1fx M 0g� = N 001 : : : : :N 00l0 and for the expression Nk,len(Nk; fx M 0g�) = l00 i� N 0kfx M 0g� = N 00l0+1: : : : :N 00l0+l00 . By de�ni-tion, len(M; fx M 0g�) is the sum of len(N 01: : : : :N 0k�1; fx M 0g�) and oflen(N 0k; fx M 0g�). So, we 
an 
on
lude that Mfx M 0g� = N 001 : : : : :N 00l0+l00i� len(M; fx M 0g�) = l0 + l00. �Third, we state the 
orre
tness of fst in Proposition A.9. To prove it, weneed the following lemma.Lemma A.8 Let h ~P ; fx Ng�i be a normal 
losure. Then h ~P fx Ng;�i isnormal and U( ~P ; fx Ng�) � U( ~P fx Ng; �).Proof For the normality of h ~Pfx Ng;�i: we 
an show that U( ~Pfx Ng; �)is de�ned by indu
tion over the stru
ture of pro
esses and primes. The only non-trivial 
ase is for ~P = M(o): ~P 0: then, ~Pfx Ng = Mfx Ng(o): ~P 0fx Ng.Sin
e U( ~P ; fx Ng�) by assumption and U( ~P 0fx Ng; �) by indu
tion hypoth-esis are de�ned and (Mfx Ng)� = M(fx Ng�), U( ~Pfx Ng; �) is de�ned.For the se
ond statement, sin
e h ~P ; fx Ng�i is normal, x and names fromN are not bound in ~P , so bn( ~Pfx Ng) = bn( ~P ) and fn( ~Pfx Ng) 
on-tains fn( ~P ) and some possibly other names that do not belong to bn( ~P ). So,fn( ~Pfx Ng) \ bn( ~Pfx Ng) = ?. Moreover, as the bound names from ~P donot o

ur in fx Ng� and bn( ~Pfx Ng) = bn( ~P ), bn( ~Pfx Ng)\names(�) =?. Sin
e x is not bound in ~P , o

urren
es of bound variables in ~P are not31



a�e
ted by the substitution fx Ng. The requirement on o�sets is triviallypreserved and �nally, as fx Ng� is a
y
li
, � is so.We show that U( ~P ; fx Ng�) � U( ~P fx Ng; �) by indu
tion over the stru
-tures of pro
esses and primes taking into a

ount that x in not a bound variablein ~P . �Proposition A.9 Let N be a 
apability of the form inn, out n or openn. Thenfor all normal 
losures h ~Q;�i, there exists Q su
h that U(M(o): ~Q; �) � N:Q i�fst(M; o; �) = N .Proof Let us assume that M = N1: : : : Nl and that N = 
ap n where 
apranges over in; out ; open . The proof goes by indu
tion over the o�set o.Case where o = 0: we have fst(M; 0; �) = 
ap n. We follow by indu
tionover the length of the sequential substitution �.- 
ase where the length of � is 0: � = � and fst(M; 0; �) = 
apn. By de�nition offst , this is equivalent to fst(N1; 0; �) = 
apn and toN1 = 
apn. Furthermore, asU(M(0): ~Q; �) = N1: : : : :Nl:U( ~Q), this is equivalent to U(M(0): ~Q; �) � 
ap n:Qfor some Q.- 
ase where � is of the form fx M 0g�0 and the proposition holds for �0: byde�nition of fst , fst(M; 0; �) = fst(N1; 0; �) = 
ap n. Now, a

ording to thevalue of N1:� N1 is of the form 
ap L: so, nam(L; �) = n whi
h is equivalent due toProposition A.6, to L� = n. As U(M(0): ~Q; �) = N1�: : : : :Nl�:U( ~Q; �),U(M(0): ~Q; �) = 
ap n:N2� : : : :Nl�:U( ~Q; �). Therefore, this is equivalentto that U(M(0): ~Q; �) � 
ap n:Q for some Q.� N1 is a name m: for ea
h of the two 
ases in the de�nition of fst .Case where m = x: we have fst(N1; 0; �) = fst(m; 0; fx M 0g�0) =fst(M 0; 0; �0) = 
apn. By indu
tion hypothesis, it is equivalent to that forany ~Q, U(M 0(0): ~Q; �0) � 
ap n:Q for some Q. In parti
ular for some P ,
ap n:P � U(M 0(0):N2fx M 0g: : : : :Nlfx M 0g(0): ~Pfx N 0g; �0), thatis 
ap n:P �M 0�0:N2fx M 0g�0: : : : :Nlfx M 0g�0:U( ~Pfx N 0g; �0). So
ap n:P � mfx M 0g�0:N2�: : : : :Nl�:U( ~P ; fx N 0g�0) by Lemma A.8.And thus, by de�nition of U , this is equivalent to that for some P ,
ap n:P � U(M(0): ~P ; �).Case where m 6= x: in this 
ase, fst(M; 0; �) = fst(m; 0; �0) = 
ap n. Byindu
tion hypothesis, this is equivalent to that for any ~Q, U(m(0): ~Q; �0) �
ap n:Q for some Q. The rest of the proof is similar to the previous 
ase,using the fa
t that m�0 = mfx M 0g�0 sin
e m 6= x.Case where the proposition holds for any o0 < o: we have fst(M; o; �) = 
apn.By indu
tion over the length of the sequential substitution �.- 
ase where the length of � is 0: � = � and fst(M; o; �) = 
ap n. Sin
elen(N1: : : : :No; �) = o, 
ap n = fst(No+1: : : : :Nl; 0; �). Using the base 
ase,32



this latter is equivalent to that for any ~P , U(No+1: : : : :Nl(0): ~P ; �) � 
ap n:Pfor some P . Now, this is equivalent to 
ap n:P � No+1: : : : :Nl:U( ~P ; �) by de�-nition of U . Finally, as M� = N1: : : : :Nl, by de�nition of U , it is equivalent tothat 
ap n:P � U(M(o): ~P ; �) for some P .- 
ase where � is of the form fx M 0g�0 and the proposition holds for �0:sin
e fst(M; o; �) is de�ned, o < len(M;�). Let i be the unique integersu
h that len(N1: : : : :Ni�1; �) � o and len(N1: : : : :Ni; �) > o and p be o �len(N1: : : : :Ni�1; �). Then we have 
ap n = fst(M; o; �) = fst(Ni: : : : :Nl; p; �).Now, a

ording to the value of Ni:� Ni is of the form 
ap L: so, nam(L; �) = n whi
h is equivalent dueto Proposition A.6, to L� = n. Furthermore, sin
e len(Ni; �) = 1,we have o = len(N1: : : : :Ni�1; �) and thus, p = 0. Hen
e, 
ap n =fst(Ni: : : : :Nl; 0; �). A

ording to the base 
ase, this is equivalent to thatfor any ~P , U(Ni: : : : :Nl(0): ~P ; �) � 
ap n:P for some P . Let M� beN 01: : : : :N 0k. So by de�nition of U , U(M(o): ~P ; �) = N 0o+1: : : : :N 0k:U( ~P ; �).Now, as o = len(N1: : : : :Ni�1; �), Ni�: : : : :Nl� = N 0o+1: : : : :N 0k. Hen
e,U(M(o): ~P ; �) = Ni�: : : : :Nl�:U( ~P ; �). Equivalently, U(M(o): ~P ; �) =U(Ni: : : : :Nl(0): ~P ; �) and so, U(M(o): ~P ; �) � 
ap n:P for some P .� Ni is a name m: in this 
ase, we have len(Ni; �) > p. Hen
e, by de�nitionof fst , 
ap n = fst(M; o; �) = fst(Ni; p; fx M 0g�0). For ea
h of the two
ases in the de�nition of fst :Case where m = x: we have 
ap n = fst(M 0; p; �0). By indu
tion hy-pothesis, this is equivalent to that for any ~Q, U(M 0(p): ~Q; �0) � 
ap n:Qfor some Q. As a parti
ular 
ase, this latter holds for Q = P and for~Q = Ni+1fx M 0g: : : : :Nlfx M 0g(0): ~Pfx M 0g. Now, from the de�-nition of U and using that M 0 = Nifx M 0g, this is equivalent to thatU(Nifx M 0g: : : : :Nlfx M 0g(p): ~Pfx M 0g; �0) = 
ap n:P for some P .Let N 01: : : : :N 0k be Ni�. Then, still by de�nition of U , it is equivalentto that N 0p+1: : : : :N 0k:Ni+1�: : : : :Nl�:U(Pfx M 0g; �0) = 
ap n:P . ByLemma A.8, it is equivalent to N 0p+1: : : : :N 0k:Ni+1�: : : : :Nl�:U(P; �) =
ap n:P . On
e again, by de�nition of U , we have U(Ni: : : : :Nl(p): ~P ; �) =
ap n:P . Let p0 be len(N1: : : : :Ni�1; �). By de�nition of U , we haveU(N1: : : : Ni�1(p0):Ni: : : : :Nl(p): ~P ; �) = 
ap n:P . By de�nition of U ,U(N1: : : : Ni�1:Ni: : : : :Nl(p+ p0): ~P ; �) = 
ap n:P . Finally, as p+ p0 = o,this latter is equivalent to that U(M(o): ~P ; �) = 
ap n:P for some P .Case where m 6= x: by de�nition of fst , 
ap n = fst(m; p; fx M 0g�0)=fst(m; p; �0). By indu
tion hypothesis, this is equivalent to that for all ~Q,there exists ~Q su
h that U(m(p): ~Q; �) � 
ap n: ~Q. The rest of the proofis similar to the previous 
ase, using the fa
t that m�0 = mfx M 0g�0sin
e m 6= x. �Fourth, we prove that split is 
orre
t in the following sense.33



Proposition A.10 Let hQi2I �i;�i be a normal 
losure, and let L be of theform in n, out n or open n. Then U(Qi2I �i; �) � L:P i� 9L0; o; ~P ; ~P 0 : I is asingleton fig, �i = L0(o): ~P 0, split(�i; �) = (L; ~P ) and U( ~P ; �) � P .Proof From right to left: we have U(Qi2I �i; �) = U(�i; �), �i = L0(o): ~P 0,split(�i; �) = (L; ~P ). By Proposition A.9, U(�i; �) � L:P for some P . Moreover,for L0� being of the form L01: : : : :L0l, U(�i; �) = L0o+1: : : : :L0l:U( ~P ; �) and L0o+1 =L. Note that U(�i; �) being de�ned, we have o < len(L0; �) = l. Now, by thede�nition of split , a

ording to the values of o and len(L0; �):- len(L0; �) > o + 1: in this 
ase, ~P = fL0(o+ 1): ~P 0g. So, by de�nition ofU , U(fL0(o+ 1): ~P 0g; �) = L0o+2: : : : :L0l:U( ~P 0; �) and thus, U(Qi2I �i; �) �L0o+1:U(fL0(o+ 1): ~P 0g; �) � L:P for P � U(fL0(o+ 1): ~P 0g; �) � U( ~P ; �).- len(L0; �) = o + 1: in this 
ase, ~P = ~P 0. Therefore, U(fL0(o+ 1): ~P 0g; �) =L0l:U( ~P 0; �) = L0o+1:U( ~P 0; �) = L:U( ~P 0; �). Thus, U(Qi2I �i; �) � L:P forP � U( ~P 0; �) � U( ~P ; �).From left to right: let us assume that U(Qi2I �i; �) � L:P . Using Proposi-tion A.4, the set I has to be a singleton and �i has to be of the form L0(o): ~P 0.Now, by Proposition A.9, we know that fst(L0; o; �) = L. Thus, it is suÆ
ient toprove that P � U( ~P ; �) for split(�i; �) = (L; ~P ). From the de�nitions of U andsplit and from Proposition A.4, it is straightforward to see that P 6� U( ~P ; �)implies U(Qi2I �i; �) 6� L:P . �A.3 Proof of Proposition 3.2Using Lemma A.11 below, we show Proposition 3.2(1), that #�, the re
exive andtransitive 
losure of the sublo
ation relation #, preserves normality of 
losures.Lemma A.11 If h ~P ;�i is normal, then for any h ~P 0;�i su
h that h ~P ;�i #h ~P 0;�i, the 
losure h ~P 0;�i is normal.Proof From the de�nition of #, we have ~P = ~Q ++ fM [ ~P 0℄g for some ~Q, M .Thus, by the �rst point of Proposition A.1, the 
losure hfM [ ~P 0℄g;�i is normal.Now, the names fromM o

ur freely in fM [ ~P 0℄g. So, hfM [ ~P 0℄g;�i being normal,none of the names from M is in bn(fM [ ~P 0℄g) and thus, in bn( ~P 0). Therefore,by the se
ond point of Proposition A.1, h ~P 0;�i is normal. �Restatement of Proposition 3.2(1) If h ~P ;�i is normal and h ~P ;�i #�h ~P 0;�i then h ~P 0;�i is normal.Proof A simple indu
tion using Lemma A.11. �Using Lemmas A.12 and A.13 below, we show Proposition 3.2(2), that !�,the re
exive and transitive 
losure of the redu
tion relation !, preserves nor-mality of 
losures. 34



Lemma A.12 If hf�g;�i is normal and split(�; �) = (N; ~S) then h ~S;�i isnormal.Proof Sin
e split(�; �) = (N; ~S), � = M(o): ~S0 for some expression M andsome annotated pro
ess ~S0. Furthermore, U(f�g; �) being de�ned, U( ~S0; �) isde�ned. Now, a

ording to the value of ~S: if ~S = M(o + 1): ~S0 then, from thede�nition of split , o + 1 < len(M;�). So, from the de�nition of U , U( ~S0; �)being de�ned, U(M(o+ 1): ~S0; �)= U( ~S; �) is de�ned. If ~S = ~S0 then U( ~S; �) isde�ned.Let us �rst noti
e that bn(f�g) = bn(fM(o+ 1): ~S0g) = bn( ~S0) and thatfn(f�g) = fn(fM(o+ 1): ~S0g) � fn( ~S0). Therefore, sin
e by normality bn(f�g)\(fn(f�g) [ names(�)) = ?, we have bn( ~S) \ (fn( ~S) [ names(�) = ?.The last three statements are obvious to 
he
k. �Lemma A.13 If h ~P ;�i is normal, then for any h ~P 0;�i su
h that h ~P ;�i !h ~P 0;�i, the 
losure h ~P 0;�i is normal, and moreover� either �0 = �, bn( ~P ) = bn( ~P 0) and fn( ~P 0) � fn( ~P ),� or for some x;M , �0 = fx Mg�, bn( ~P ) = bn( ~P 0) [ fxg and fn( ~P 0) �fn( ~P ) [ fxg.Proof The proof goes by indu
tion over the stru
ture of the 
ontext underwhi
h the redu
tion takes pla
e.If the 
ontext is empty, then the applied redu
tion 
orresponds to one ofthe rules (Trans In), (Trans Out), (Trans Open) and (Trans I/O). For (TransIn), (Trans Out) and (Trans Open) respe
tively, hfN [ ~Q ++ f�g℄;M [ ~R℄g;�i,hfM [fN [ ~Q ++ �℄g ++ ~R℄g;�i and hfM [ ~P ℄; �g;�i are normal by assumption.Con
erning the se
ond 
laim of the lemma: obviously, �0 = �, bn( ~P ) =bn( ~P 0). For the rules (Trans In) and (Trans Out), fn( ~P ) = fn( ~P 0) and for(Trans Open) fn( ~P 0) � fn( ~P ) (the exe
ution of open may let an ambient namedisappeared).Now for the �rst 
laim, by using Proposition A.1, h�;�i is normal. Then,from Lemma A.12 together with the transition rules on 
losures, h ~P ;�i is normal(where split(�; �) = (N; ~P ) and N being respe
tively inm, out m and open m).Finally, using the fa
t that bn(f�g) = bn( ~P ) and that fn(f�g) � fn( ~P ) and byapplying on
e more Proposition A.1, the 
losures hfM [fN [ ~Q ++ �℄g ++ ~R℄g;�i,hfN [ ~Q ++ f�g℄;M [ ~R℄g;�i and h ~P ++ ~Q;�i are normal.For (Trans I/O), hfhMi; (x): ~Pg;�i is normal by assumption. Let us startwith the se
ond 
laim of the lemma. We have �0 = fx Mg�. Due to theassumption of normality, x o

urs at most on
e within an input in ~P andbound and free names are disjoint in ~P . So, bn(fhMi; (x): ~P g) = bn( ~P ) [ fxgand fn( ~P ) � fn(fhMi; (x): ~P g) [ fxg. Now, for the �rst 
laim, let us �rstprove that U(norm( ~P ; fx Mg�); fx Mg�) is de�ned by indu
tion over thestru
ture of ~P : this is obvious for ~P being the empty multiset or the single-ton fhM 0ig. For the indu
tion step, this is also straightforward for ~P be-ing a multiset of primes or a singleton f(x0): ~Qg or fM 0[ ~Q℄g. Now, for ~P =35



fM 0(o): ~Qg. By hypothesis, U(M 0(o): ~Q; �) is de�ned. So, o < len(M 0; �). Iflen(M 0; fx Mg�) = 0, then norm( ~P ; fx Mg�) = norm( ~Q; fx Mg�) and soU(norm( ~P ; fx Mg�); fx Mg�) is de�ned by indu
tion hypothesis. Other-wise, len(M 0; �) � len(M 0; fx Mg�). So U(norm( ~P ; fx Mg�); fx Mg�)=U(M 0(o):norm( ~Q; fx Mg�); fx Mg�) is de�ned. Sin
e every variable o

ursat most on
e within an input in the annotated pro
ess of a normal 
losure,bn( ~P ) = bn(f(x): ~P ; hMig) r fxg; Moreover, sin
e fn( ~P ) � fn(fhMi; (x): ~Pg) [fxg, bn(fhMi; (x): ~P g) \ fn(fhMi; (x): ~P g) = ?. Let us show that names frombn( ~P ) do not o

ur in �0 = fx Mg�. As bn( ~P ) � bn(fhMi; (x): ~Pg), be
auseof the hypothesis of normality, names from bn( ~P ) do not o

ur in �. Moreover,we know that x 62 bn( ~P ) and names o

urring inM are free in fhMi; (x): ~Pg andso, in ~P . It is straightforward that the property of the uniqueness of variablewithin an input and the fa
t that o�sets are equal to 0 in the s
ope of an inputare preserved. Finally, sin
e hfhMi; (x): ~P g;�i is normal, � is a
y
li
 and as xis bound, x does not o

ur in �; so the last point holds for h ~P ; fx Mg�i.Now, we investigate the 
ase where the 
ontext of redu
tion is non-empty,that is the rule used for redu
tion is either (Trans Par) or (Trans Amb). We showin this 
ase that the se
ond 
laim of the lemma holds and then that normalityis preserved.For (Trans Amb): we assume the 
losure hM [ ~P ℄;�i to be normal. For any ~S,we have bn(M [ ~S℄) = bn( ~S), fn(M [ ~S℄) = fn( ~S)[ fn(M [0℄). Let us �rst 
onsiderthe 
ase where � = �0: by indu
tion hypothesis bn( ~P ) = bn( ~P 0), fn( ~P 0) �fn( ~P ). So, bn(M [ ~P ℄) = bn(M [ ~P 0℄) and fn(M [ ~P 0℄) � fn(M [ ~P ℄). Now, for the
ase where �0 = fx Mg�: By indu
tion hypothesis, bn( ~P ) = bn( ~P 0) [ fxg,fn( ~P 0) = fn( ~P ) [ fxg. So, bn(M [ ~P ℄) = bn(M [ ~P 0℄) [ fxg and fn(M [ ~P 0℄) =fn(M [ ~P ℄) [ fxg.Let us show now that hM [ ~P 0℄;�0i is normal: sin
e hM [ ~P ℄;�i is normal, byProposition A.1, h ~P ;�i is normal. Then, sin
e h ~P ;�i ! h ~P 0;�0i, by indu
tionhypothesis, h ~P 0;�0i is normal. So, as bn( ~P 0) � bn( ~P ), by Proposition A.1,hM [ ~P 0℄;�0i is normal.For (Trans Par): we assume the 
losure h ~P ++ ~Q;�i to be normal. Forany ~S; ~S0, we have bn( ~S ++ ~S0) = bn( ~S) [ bn( ~S0) and fn( ~S ++ ~S0) = fn( ~S) [fn( ~S0). Let us �rst 
onsider the 
ase where � = �0: as by indu
tion hypothesisbn( ~P ) = bn( ~P 0) and fn( ~P 0) � fn( ~P ), we have bn( ~P ++ ~Q) = bn( ~P 0 ++ ~Q) andfn( ~P 0 ++ ~Q) � fn( ~P ++ ~Q). Now, for the 
ase where �0 = fx Mg�: as byindu
tion hypothesis bn( ~P ) = bn( ~P 0) [ fxg and fn( ~P 0) � fn( ~P ) [ fxg, we havebn( ~P ++ ~Q) = bn( ~P 0 ++ ~Q) [ fxg and fn( ~P 0 ++ ~Q) � fn( ~P ++ ~Q) [ fxg.Let us show now that h ~P ++ ~Q;�0i is normal: h ~P ++ ~Q;�0i being normal,by Proposition A.1, both h ~P ;�i and h ~Q;�i are normal. Now, sin
e h ~P ;�i !h ~P 0;�0i, by indu
tion hypothesis, h ~P 0;�0i is normal. Let us now prove thath ~Q;�0i is normal: we know that x 2 bn( ~P ); so, by normality of h ~P ++ ~Q;�i, xdoes not o

ur in ~Q, so U( ~Q; �0) � U( ~Q; �) and thus, U( ~Q; �0) is de�ned. Theother points are obviously implied by the normality of h ~Q;�i and h ~P 0;�0i. Fi-nally, the fa
t that h ~P ++ ~Q;�i and h ~Q;�0i are normal together with PropositionA.1 implies that h ~P 0 ++ ~Q;�0i is normal. �36



Restatement of Proposition 3.2(2) If h ~P ;�i is normal and h ~P ;�i !�h ~P 0;�0i then h ~P 0;�0i is normal.Proof An indu
tion with appeal to Lemma A.13. �A.4 Proof of Proposition 3.3We prove now that the sublo
ation relation de�ned on 
losures simulates thesublo
ation relation de�ned on pro
esses.Restatement of Proposition 3.3 Assume h ~P ;�i is a normal 
losure. Ifh ~P ;�i # h ~Q;�i then U( ~P ; �) # U( ~Q; �). If U( ~P ; �) # Q then there exists ~Q su
hthat h ~P ;�i # h ~Q;�i and U( ~Q; �) � Q.Proof For the �rst point, by de�nition for # on 
losures, we have ~P = ~Q ++fM [ ~P 0℄g for some ~Q, M , n su
h that nam(M;�) = n. Therefore, by de�nitionof U , U( ~P ; �) = U( ~Q; �) j M�[U( ~P 0; �)℄. Note that h ~P ;�i being normal, bothh ~Q;�i, h ~P 0;�i are de�ned and thus, pro
esses. Now, for the two pro
essesU( ~P ; �), U( ~P 0; �), there exists a pro
ess Q (namely U( ~Q; �)) and a name n (n =M� by Proposition A.6) su
h that U( ~P ; �) � Q j n[U( ~P 0; �)℄. So, U( ~P ; �) #U( ~P 0; �).For the se
ond point, by de�nition of # on pro
esses, U( ~P ; �) # P 0 i� thereexists Q;n su
h that U( ~P ; �) � Q j n[P 0℄. The annotated pro
ess ~P being ofthe formQk2K �k, by Proposition 3.1, there exists I; J su
h that I[J = K, I\J = ? and U(Qi2I �i; �) � Q, U(Qj2J �j ; �) � n[P 0℄. From U(Qj2J �j ; �) �n[P 0℄, by Proposition 3.1, there exists M 0; ~P 0 su
h that J is a singleton fjg,�j = M 0[ ~P 0℄, M 0� = n and U( ~P 0; �) � P 0. Sin
e M 0� = n, by PropositionA.6, nam(M 0; �) = n. Furthermore, ~P is equal to Qi2I �i ++ fM 0[ ~P 0℄g. So,h ~P ;�i # h ~P 0;�i and U( ~P 0; �) � P 0. �A.5 Proof of Proposition 3.4Given Lemmas A.14, A.15, and A.16 below, we prove Proposition 3.4, that theredu
tion relation de�ned on 
losures simulates the redu
tion relation de�nedon pro
esses.Lemma A.14 Let h ~P ;�fx Mgi be a normal 
losure su
h that all the o�setso o

urring in ~P are set to 0. Then U( ~P ; �fx Mg) � U( ~P ; �)fx Mg.Proof The proof goes by indu
tion over the stru
tures of pro
esses andprimes. Most of the 
ases simply uses the de�nition of U and the appli
ation ofa substitution. We detail here the only two 
ases that are not straightforward.For primes �:- 
ase where � = (y): ~P 0: 37



U((y): ~P 0; �)fx Mg � ((y):U( ~P 0; �))fx Mg� ((y)fx Mg):(U( ~P 0; �)fx Mg)� (y):(U( ~P 0; �)fx Mg)� (y):(U( ~P 0; �fx Mg))� U((y): ~P 0; �fx Mg)The �rst and the last equivalen
es follow from the de�nition of U ; the se
ondone 
orresponds simply to the appli
ation of the substitution fx Mg. Forthe third one, the 
losure h ~P ;�fx Mgi being normal, by Proposition A.1,the 
losure hf�g;�fx Mgi is normal too. Therefore, as y is a bound variableand bn( ~P ) \ dom(�fx Mg) = ?, x and y are di�erent. So, yfx Mg = y.The fourth equivalen
e appeals to the indu
tion hypothesis.- 
ase where � =M 0(o): ~P 0:U(M 0(o): ~P 0; �)fx Mg � (M 0�:U( ~P 0; �))fx Mg� M 0�fx Mg:U( ~P 0; �)fx Mg� M 0�fx Mg:U( ~P 0; �fx Mg)� U(M 0(o): ~P 0; �fx Mg)The �rst equivalen
e uses the de�nition of U and the fa
t that by hypothesis,o is equal to 0; the se
ond one is simply the appli
ation of the substitutionfx Mg. The third equivalen
e is due to the indu
tion hypothesis. Finally,the last equivalen
e is a dire
t 
onsequen
e of the de�nition of U and of o = 0.�Lemma A.15 Let h ~P ; fx Mg�i be a normal 
losure su
h that all the o�setso o

urring in ~P are set to 0. Then U( ~P ; fx Mg�) � U( ~P ; �)fx M�g.Proof The proof goes by indu
tion on the length of the sequential substitu-tion �.For � being the empty substitution �: U( ~P ; fx Mg�) � U( ~P ; �fx Mg)sin
e � 
orresponds to the identity. So, by Lemma A.14, U( ~P ; fx Mg�) �U( ~P ; �)fx Mg.For � being of the form �0fy M 0g:U( ~P ; fx Mg�0fy M 0g) � U( ~P ; fx Mg�0)fy M 0g� (U( ~P ; �0)fx M�0g)fy M 0gThe �rst equivalen
e follows from Lemma A.14 and the se
ond one from theindu
tion hypothesis.Now, the fa
t that h ~P ; fx Mg�0fy M 0gi is normal implies that x 6= y andthat x does not o

ur inM 0. Let us 
onsider now the pro
ess U( ~P ; �0)fx M�0g.As x 6= y, the o

urren
es of y in U( ~P ; �0) are preserved in U( ~P ; �0)fx M�0gand some new o

urren
es of y may appear in this latter, due to the possibleo

urren
es of y inM�0. As x does not o

ur inM 0, we 
an �rst repla
e U( ~P ; �0)the o

urren
es of y with M 0 and then, repla
e the o

urren
es of x with an38



expression L; this expression L is the expression M� in whi
h the o

urren
esof y are repla
ed by M 0. Hen
e,(U( ~P ; �0)fx M�0g)fy M 0g � (U( ~P ; �0)fy M 0g)fx M�0fy M 0ggBy Lemma A.14, this latter is equivalent to U( ~P ; �0fy M 0g)fx M�0fy M 0ggand so, to U( ~P ; �)fx M�g. �Lemma A.16 Suppose h ~P ;�i is a normal 
losure su
h that all the o�sets oo

urring in ~P are set to 0 and x o

urs neither in � nor in bn( ~P ). ThenU(norm( ~P ; fx Mg�); fx Mg�) � U( ~P ; �)fx M�g.Proof First, observe that normality of h ~P ;�i and the assumption about x im-ply normality of hnorm( ~P ; fx Mg�); fx Mg�i. Therefore, by Lemma A.15,U(norm( ~P ; fx Mg�); fx Mg�) � U(norm( ~P ; fx Mg�); �)fx M�g. So,it is enough to prove thatU(norm( ~P ; fx Mg�); �)fx M�g � U( ~P ; �)fx M�g:Let us 
onsider two 
ases: len(M;�) 6= 0 and len(M;�) = 0. In the �rst 
ase,norm( ~P ; fx Mg�) = ~P and there is nothing to prove. In the se
ond 
ase, nor-mality of h ~P ;�i implies that norm( ~P ; fx Mg�) di�ers from ~P only by someo

urren
es of x(0). The equivalen
e U(norm( ~P ; fx Mg�); �)fx M�g �U( ~P ; �)fx M�g follows then by indu
tion on the stru
ture of M� using the
ongruen
e rule (Stru
t �). �Restatement of Proposition 3.4 Assume h ~P ;�i is a normal 
losure. Ifh ~P ;�i ! h ~P 0;�0i then U( ~P ; �) ! U( ~P 0; �0). If U( ~P ; �) ! P 0 then there existsh ~P 0;�0i su
h that h ~P ;�i ! h ~P 0;�0i and U( ~P 0; �0) � P 0.Proof The proof goes by indu
tion over the stru
ture of the 
ontext underwhi
h the redu
tion takes pla
e.If the 
ontext is empty, then for the �rst point, the redu
tion applied 
or-responds to one of the rules (Trans In), (Trans Out), (Trans Open) and (TransI/O).For the �rst point and the rule (Trans In):U(fN [ ~Q ++ f�g℄;M [ ~R℄g; �) � N�[U( ~Q; �) j U(f�g; �)℄ jM�[U( ~R; �)℄� n[U( ~Q; �) j U(f�g; �)℄ j m[U( ~R; �)℄� n[U( ~Q; �) j in m:U( ~P ; �)℄ j m[U( ~R; �)℄The �rst equivalen
e follows from the de�nition of U . The se
ond one isa 
onsequen
e of the 
onditions of the rule (Trans In) and of Proposition A.6.The third equivalen
e follows from the 
onditions of the rule (Trans In) andfrom Proposition A.10.On the other hand, 39



U(M [N [ ~Q ++ ~P ℄ ++ ~R℄; �) � M�[N�[U( ~Q; �) j U( ~P ; �)℄ j U( ~R; �)℄� m[n[U( ~Q; �) j U( ~P ; �)℄ j U( ~R; �)℄The �rst equivalen
e follows from the de�nition of U and the se
ond onefrom the 
onditions of the rule (Trans In) and from Proposition A.6. Therefore,U(N [ ~Q ++ f�g℄ ++M [ ~R℄; �)! U(M [N [ ~Q ++ ~P ℄ ++ ~R℄; �).The proof is similar for the rules (Trans Out) and (Trans Open). Now,for the �rst point and the rule (Trans I/O): by the de�nition of U , we haveU(fhMi; (x): ~P g; �) � hM�i j (x):U( ~P ; �): Let ~P 0 be norm( ~P ; fx Mg�). ByLemma A.15, the 
losure hfhMi; (x): ~P g;�i being normal, U( ~P 0; fx Mg�) �U( ~P 0; �)fx M�g. Therefore, U(fhMi; (x): ~P g; �)! U( ~P 0; fx Mg�).Let us 
onsider now the se
ond point with the assumption that the 
ontextis empty, that is the redu
tion is made by (Red In), (Red Out), (Red Open) or(Red I/O).For the se
ond point and the rule (Red In): let us assume that U( ~S; �)! S0by the rule (Red In). Therefore, S0 � m[n[Q j P ℄ j R℄ for some m;n; P;Q;R andU( ~S; �) � n[Q j in m:P ℄ j m[R℄. So, by Proposition 3.1 and Proposition A.10,there exists N;M;L0, ~P ; ~P 0; ~Q; ~R su
h that ~S = fN [ ~Q ++ fL0(o): ~P 0g℄;M [ ~R℄g,N� = n, M� = m, U( ~Q; �) � Q, U( ~R; �) � R, split(L0(o): ~P 0) = (in m; ~P )and U( ~P ; �) � P . Using Proposition A.6, we have nam(M;�) = m andnam(N; �) = n. So, by de�nition for (Red In),h ~S;�i ! hfM [fN [ ~P ++ ~Q℄g ++ ~R℄g;�iand furthermore,U(M [N [ ~Q ++ ~P ℄ ++ ~R℄; �) � m[n[U( ~Q; �) j U( ~P ; �)℄ j U( ~R; �)℄� m[n[Q j P ℄ j R℄ � S0The proof is similar for the rules (Red Out) and (Red Open). Now, forthe se
ond point and the rule (Red I/O): let us assume that U( ~S; �) ! S0by the rule (Red I/O). Therefore, S0 � Pfx Mg and U( ~S; �) � (x):P jhMi. So, by Proposition 3.1, there exists M 0; ~P su
h that ~S = fhM 0i; (x): ~P g,M 0� = M and U( ~P ; �) � P . Therefore, h ~S;�i ! h ~P 0; fx M 0g�i where~P 0 = norm( ~P ; fx Mg�). Furthermore, hfhM 0i; (x): ~P g;�i being normal, byLemma A.16 U( ~P 0; fx M 0g�) � U( ~P ; �)fx M 0�g� Pfx Mg:Now, we investigate the 
ase where the 
ontext of redu
tion is non-empty:for the �rst point, the rule used for redu
tion is either (Trans Par) or (TransAmb).For the rule (Trans Amb): if h ~P ;�i ! h ~P 0;�0i then hM [ ~P ℄;�i ! hM [ ~P 0℄;�0i.In this 
ase, U(M [ ~P ℄; �) =M�[U( ~P ; �)℄ and U(M [ ~P 0℄; �0) =M�0[U( ~P 0; �0)℄. By40



A.13, either �0 = � or �0 = fx Lg�. In this last 
ase, x is bound in ~P and thus,by normality, x does not o

ur in M . So in both 
ases, M�0 =M�. Moreover,by the rule (Red Amb), M�[U( ~P ; �)℄ ! M�[U( ~P 0; �0)℄. So, U(M [ ~P ℄; �) !U(M [ ~P 0℄; �0)For the rule (Trans Par): if h ~P ;�i ! h ~P 0;�0i then h ~P ++ ~Q;�i ! h ~P 0 ++~Q;�0i. In this 
ase, U( ~P ++ ~Q; �) � U( ~P ; �) j U( ~Q; �) and U( ~P 0 ++ ~Q; �0) �U( ~P 0; �0) j U( ~Q; �0). By A.13, either �0 = � or �0 = fx Mg�. In this last
ase, x is bound in ~P and thus, by normality does not o

ur in ~Q. So, inboth 
ases, we have U( ~Q; �0) � U( ~Q; �). Moreover, by the rule (Red Par),U( ~P ; �) j U( ~Q; �)! U( ~P 0; �0) j U( ~Q; �). So, U( ~P ++ ~Q; �)! U( ~P 0 ++ ~Q; �).For the se
ond point, the rule used for redu
tion is either (Red Par) or (RedAmb).For (Red Amb): let us assume that U( ~S; �) ! S0 by (Red Amb). Wehave S0 = n[P 0℄ and U( ~S; �) � n[P ℄. So, by Proposition 3.1, there existsN; � su
h that ~S is a singleton f�g, � = N [ ~P ℄, N� = n and U( ~P ; �) � P .By hypothesis P ! P 0, so U( ~P ; �) ! P 0. By indu
tion hypothesis, thereexists ~P 0; �0 su
h that h ~P ;�i ! h ~P 0;�0i and U( ~P 0; �0) � P 0. Then by therule (Trans Amb), hfN [ ~P ℄g;�i ! hfN [ ~P 0℄g;�0i; so, h ~S;�i ! hfN [ ~P 0℄g;�0i.Finally, U(fN [ ~P 0℄g; �0) � N�0[U( ~P 0; �0)℄. By Lemma A.13, either � = �0 or�0 = fx Mg� with x a bound variable in ~P . By normality x does not belongtoN , soN�0 = N� = n. Therefore,N�0[U( ~P 0; �0)℄ � n[U( ~P 0; �0)℄ � n[P 0℄ � S0.For (Red Par): let us assume that U( ~S; �) ! S0 by (Red Par). We haveS0 = P 0 j Q and U( ~S; �) � P j Q. So, by Proposition 3.1, there exists ~P; ~Qsu
h that ~S = ~P ++ ~Q, U( ~P ; �) � P and U( ~Q; �) � Q. By hypothesis,P ! P 0, so U( ~P ; �) ! P 0. By indu
tion hypothesis, there exists ~P 0; �0 su
hthat h ~P ;�i ! h ~P 0;�0i and U( ~P 0; �0) � P 0. Then by the rule (Trans Par),h ~P ++ ~Q;�i ! h ~P 0 ++ ~Q;�0i; so, h ~S;�i ! h ~P 0 ++ ~Q;�0i. Finally, U( ~P 0 ++~Q; �0) � U( ~P 0; �0) j U( ~Q; �0). Now, by Lemma A.13, either � = �0 or �0 =fx Mg� with x a bound variable in ~P . By normality x does not o

ur in ~Q;so, U( ~Q; �0) � U( ~Q; �). Therefore, U( ~P 0 ++ ~Q; �0) � P 0 j Q � S0. �A.6 Proof of Proposition 3.9Restatement of Proposition 3.9 The model 
he
king algorithm des
ribedin Se
tion 3.3 preserves the normality of Che
k ( ~P ; �;A).Proof By 
ase inspe
tion of the algorithm, we show that if Che
k ( ~P ; �;A)is normal in the left-hand side of equality then any expression Che
k ( ~P 0; �0;A0)o

urring in the right-hand side is also normal.- for the Boolean 
onne
tives :;_: sin
e in any 
ase, ~P 0 = ~P and � = �0 andA0 is a 
losed formula su
h that and fn(A0) � fn(A), this is straightforward.- for the ambient mat
h A = n[A0℄: in this 
ase, ~P = fn[ ~Q℄g and � = �0.By Proposition A.1 the 
losure h ~Q;�i is normal. The remaining 
onditionsare ful�lled sin
e bn(P 0) = bn(P ), �0 = � and for the 
losed formula A0fn(A0) � fn(A). 41



- for the 
omposition mat
h A = A0 j A00: this proof is similar to the previous
ase.- for the existential quanti�
ation 9x:A: in this 
ase, ~P 0 = ~P and � = �0 and thefa
t that Afx mig is 
losed is straightforward. So, it is suÆ
ient to show thatwhatever the ambient name mi is, fn(Afx mig)\ (bn( ~P )[dom(�)) = ?. Bynoti
ing that fn(Afx mig) is either equal to fn(9x:A) or to fn(9x:A)[fmigand using the normality for Che
k ( ~P ; �; 9x:A), this amounts to prove thatmi =2 bn( ~P ) [ dom(�). A

ording to the value of mi:� for mi = m0: straightforward.� mi 2 fn( ~P ; �) [ fn(A): let us assume that mi 2 fn(A). Then, mi 2fn(9x:A). So, by normality of Che
k ( ~P ; �; 9x:A), mi =2 bn( ~P ) [ dom(�).Let us assume now that mi 2 fn( ~P ; �): by de�nition, mi =2 dom(�). Now,by normality of h ~P ;�i, sin
e mi 2 fn( ~P ) or mi 2 names(�), mi =2 bn( ~P ).- for the sometime modality �A:� 
ase where Che
k ( ~P 0; �0;A0) = Che
k ( ~P ; �;A): obvious sin
e fn(�A) =fn(A).� 
ase where Che
k ( ~P 0; �0;A0) = Che
k ( ~P 0; �0;�A) with h ~P ;�i ! h ~P 0;�0i:by Proposition 3.2(2), h ~P 0;�0i is normal. Now, a

ording to Lemma A.13:{ � = �0, bn( ~P ) = bn( ~P 0) and fn(�A) = fn(A): in this 
ase, therequirement is trivially satis�ed.{ �0 = fx Mg�, bn( ~P ) = bn( ~P 0) [ fxg: by hypothesis, fn(�A) \(bn( ~P ) [ dom(�)) = ?. So, fn(�A) \ (bn( ~P 0) [ dom(�0)) = ?.- for the somewhere modality ✧A:� 
ase where Che
k ( ~P 0; �0;A0) = Che
k ( ~P ; �;A): obvious sin
e fn(�A) =fn(A).� 
ase where Che
k ( ~P 0; �0;A0) = Che
k ( ~P 0; �0;�A) with h ~P ;�i # h ~P 0;�0i:by Proposition 3.2, h ~P 0;�0i is normal. The last 
ondition holds sin
e�0 = � and fn( ~P 0) � fn( ~P ).- for the lo
ation adjun
t modality A�n: from the hypothesis of normality forChe
k ( ~P ; �;A�n), sin
e n 2 fn(A), n =2 bn( ~P ). Therefore, by Proposition A.1,hn[P ℄;�i is normal. Moreover, A is a 
losed formula. Finally, by hypothesis,fn(A�n) \ (bn( ~P ) [ dom(�)) = ?, and bn( ~P ) = bn(n[ ~P ℄), fn(A) � fn(A�n).So, fn(A) \ (bn(n[ ~P ℄) [ dom(�)) = ?. �A.7 Proof of Proposition 3.10The 
orre
tness of our algorithm, Proposition 3.10, is a 
orollary of Lemma A.18below, whi
h itself depends on the following fa
t.42



Lemma A.17 (Cardelli and Gordon (2000b)) For any ambient pro
ess Pand any ambient formula A, let fm1; : : : ;mkg = fn(P ) [ fn(A) and supposem0 62 fm1; : : : ;mkg. Then P j= 9x:A i� P j= Afx mig for some i in 0 : : : k.Lemma A.18 For any normal 
losure h ~P ;�i, U( ~P ; �) j= A if and only ifChe
k ( ~P ; �;A) = T.Proof The proof goes by indu
tion on the stru
ture of the ambient formulaA:- the base 
ase A = T is trivial. The other base 
ase A = 0 is a 
onsequen
eof Proposition 3.1.- for Boolean 
onne
tives :;^, this is obvious from the indu
tion hypothesisand the algorithm.- for the ambient mat
h A = n[A0℄: a

ording to the algorithm, we haveChe
k (Qi21:::k �i; �; n[A0℄) = T i� there exists ~Q andM su
h that k = 1, �1 =M [ ~Q℄, nam(M;�) = n and Che
k ( ~Q; �;A0) = T. Then, by Proposition 3.1,U(Qi21:::k �i; �) � n[U( ~Q; �)℄. By indu
tion hypothesis, Che
k ( ~Q; �;A0) = Tis equivalent to U( ~Q; �) j= A0. So, it is equivalent to U(Qi21:::k �i; �) j= n[A0℄.- for the 
omposition mat
h A = A0 j A00: a

ording to the algorithm, wehave Che
k (Qi21:::k �i; �;A0 j A00) = T i� there exists I; J su
h that I [ J =1 : : : k, I \ J = ?, Che
k (Qi2I �i; �;A0) = T and Che
k (Qj2J �j ; �;A00) =T. Now, using the indu
tion hypothesis, Che
k (Qi2I �i; �;A0) = T andChe
k (Qj2J �j ; �;A00) = T are equivalent respe
tively to U(Qi2I �i; �) j= A0and to U(Qj2J �j ; �) j= A00. Finally, by Proposition 3.1, it is equivalent toU(Qi21:::k �i; �) j= A0 j A00.- for the existential quanti�
ation 9x:A: let us assume Che
k ( ~P ; �; 9x:A) = T.Let fm1; : : : ;mkg = fn( ~P ; �) [ fn(A) and m0, an ambient name su
h thatm0 =2 fm1; : : : ;mkg [ bn( ~P ) [ dom(�). From the algorithm, this implies thatthere exists i su
h that Che
k ( ~P ; �;Afx mig) = T. So, by the indu
tionhypothesis, U( ~P ; �) j= Afx mig. Now, a

ording to the value of mi:� mi 2 fm1; : : : ;mkg \ (fn(A) [ fn(U( ~P ; �))): by Lemma A.17, we haveU( ~P ; �) j= 9x:A.� mi 2 fm1; : : : ;mkg and mi =2 (fn(A)[ fn(U( ~P ; �))): by Lemma A.17, wehave U( ~P ; �) j= 9x:A.� mi =2 fm1; : : : ;mkg: it is obvious then that mi =2 fn(A) [ fn(U( ~P ; �)).So, by Lemma A.17, we have U( ~P ; �) j= 9x:A.Conversely, let us assume that U( ~P ; �) j= 9x:A. From Lemma A.17, thisis equivalent to that for fm1; : : : ;mkg = fn(U( ~P ; �)) [ fn(A) and for anyarbitrary m0 su
h that m0 =2 fm1; : : : ;mkg, there exists i su
h that U( ~P ; �) j=Afx mig. This latter is equivalent to that Che
k ( ~P ; �;Afx mig) = T byindu
tion hypothesis. Now a

ording to the value of mi:43



� mi 2 fn(U( ~P ; �)) [ fn(A): in this 
ase mi 2 fn( ~P ; �) [ fn(A). So, by thealgorithm, Che
k ( ~P ; �; 9x:A) = T.� mi =2 fn(U( ~P ; �)) [ fn(A) and mi 2 fn( ~P ; �) [ fn(A): on
e again, by thealgorithm, Che
k ( ~P ; �; 9x:A) = T.� mi =2 fn( ~P ; �) [ fn(A): so, mi = m0. Sin
e m0 
an be 
hosen arbitrar-ily, one 
an assume moreover that mi =2 bn( ~P ) [ dom(�). So, by thealgorithm, Che
k ( ~P ; �; 9x:A) = T.- for the Sometime modality �A: U( ~P ; �) j= �A is by de�nition equivalentto the fa
t that there exists P 0; n su
h that U( ~P ; �) !n P 0 and P 0 j= A. ByProposition 3.4, this latter implies that there exists ~P 0; �0 su
h that U( ~P ; �)!nU( ~P 0; �0) and U( ~P 0; �0) � P 0 and thus, U( ~P 0; �0) j= A. Therefore, by in-du
tion hypothesis, this implies Che
k ( ~P 0; �0;A) = T. Now, let us showby indu
tion over n that U( ~P ; �) !n U( ~P 0; �0) and U( ~P 0; �0) j= A impliesChe
k ( ~P ; �;�A) = T.For n = 0: h ~P ;�i = h ~P 0;�0i and Che
k ( ~P ; �;�A) = Che
k ( ~P ; �;A) = T.For 0 < n: in this 
ase, by Proposition 3.4, there exists ~P 00; �00 su
h thath ~P ;�i ! h ~P 00;�00i !n�1 h ~P 0;�0i. So, by indu
tion hypothesis using thatChe
k ( ~P 0; �0;A) = T, Che
k ( ~P 00; �00;�A) = T. Sin
e h ~P ;�i ! h ~P 00;�00i, bythe algorithm we have Che
k ( ~P ; �;�A) = T.Conversely, let us assume that Che
k ( ~P ; �;�A) = T and let us show thatthere exists P 0; n su
h that U( ~P ; �) !n P 0 and P 0 j= A. The proof goes byindu
tion on m the number of re
ursive 
alls of Che
k ( ~P 0; �0;�A) = T.Form = 0: in this 
ase, Che
k ( ~P ; �;�A) = T sin
e Che
k ( ~P ; �;A) = T. Thenby indu
tion hypothesis on the stru
ture of the formula, U( ~P ; �) j= A. So, we
an 
hoose P 0 = U( ~P ; �) and n = 0.For m > 0: in this 
ase, Che
k ( ~P ; �;�A) = T due to the fa
t that for someh ~P 0;�0i su
h that h ~P ;�i ! h ~P 0;�0i, Che
k ( ~P 0; �0;A) = T. By the indu
-tion hypothesis, on the number of re
ursive 
alls, we have that there existsP 0; n su
h that U( ~P 0; �0) !n P 0 and P 0 j= A. By Proposition 3.4, we haveU( ~P ; �)! U( ~P 0; �0). So, U( ~P ; �)!n+1 P 0 and P 0 j= A.- for the Somewhere modality ✧A: the proof is similar to the previous 
aseusing Proposition 3.3 instead of Proposition 3.4.- for the lo
ation adjun
t modality A�n: by de�nition, U( ~P ; �) j= A�n i�n[U( ~P ; �)℄ j= A. By assumption n does not belong to dom(�). So, from thede�nition for U , n[U( ~P ; �)℄ = U(n[ ~P ℄; �). So, n[U( ~P ; �)℄ j= A is equivalent tothat U(n[ ~P ℄; �) j= A. Using the indu
tion hypothesis, this latter is equivalentto Che
k (n[ ~P ℄; �;A) = T, and thus by the algorithm to Che
k ( ~P ; �;A�n) =T. �Restatement of Proposition 3.10 For all pro
esses P and 
losed formulasA, we have P j= A if and only if Che
k (F(P ); �;A) = T.Proof As the 
losure hF(P ); �i is normal, this follows from Lemma A.18. �44



B Hardness ProofsThis appendix 
ontains proofs of results stated in Se
tion 4.B.1 Proof of Lemma 4.1Lemma 4.1 is the 
rux of 
orre
tness for the en
oding from Se
tion 4.1 of QBFsatisfa
tion in the full 
al
ulus and logi
.Restatement of Lemma 4.1 Consider a 
losed quanti�ed boolean formula' and its en
oding [['℄℄ in the ambient logi
. The formula ' is valid if and onlyif the model 
he
king problem 0 j= [['℄℄ holds.Proof Let us denote C1 ^ : : : ^Ck by  . We 
onsider a 
losed QBF formulaQ1v1 : : : Qnvn . We are going to show that for any 0 � m � n, denoting '0 theformula Qm+1vm+1 : : : Qnvn  ,v1 7! t1; : : : ; vm 7! tm j= '0 i� 0 j= [['0℄℄fv1 t1; : : : ; vm tmgNote that this statement obviously implies Lemma 4.1.The proof of this statement goes by indu
tion on the number l of variablesthat are quanti�ed in '0.For the base 
ase l = 0: v1 7! t1; : : : ; vn 7! tn j=  i� for ea
h Ci, thereexists `j in Ci su
h that tj = tt i� lj = vj and tj = � i� `j = vj . Thisis equivalent to saying that for ea
h Ci, there exists `j in Ci su
h that 0 j=[[lj ℄℄fv1 t1; : : : ; vn tng, whi
h is equivalent to 0 j=  fv1 t1; : : : ; vn tng.For the indu
tion step 0 < l � n: let us denoteM the interpretation v1 7!t1; : : : ; vn�l 7! tn�l, � the 
orresponding substitution fv1 t1; : : : ; vn�l tn�lgand '0 the formula Qn�l+2vn�l+2 : : : Qnvn  . Assuming that the statementholds for l � 1, let us 
onsiderM j= Qn�l+1vn�l+1'0.By 
ase distin
tion over Qn�l+1:Case where Qn�l+1 = 9: in this 
ase, either M; vn�l+1 7! tt j= '0 orM; vn�l+1 7! � j= '0. By indu
tion hypothesis, this is equivalent to that either0 j= [['0℄℄�fvn�l+1 ttg or 0 j= [['0℄℄�fvn�l+1 � g. This latter is equivalent to0 j= 9vn�l+1 2 ftt ;� g:[['0℄℄� whi
h is equivalent by de�nition of the en
odingto 0 j= [[Qn�l+1vn�l+1'0℄℄�.Case where Qn�l+1 = 8: this 
ase is similar to the previous one. �B.2 Proof of Lemma 4.3Lemma 4.3 is the 
rux of 
orre
tness for the en
oding from Se
tion 4.2 of QBFsatisfa
tion in the 
al
ulus of mobile ambients without I/O.To prove Lemma 4.3, let us �rst �x some notations and prove some auxiliarylemmas.
45



For a given 
losed QBF formula ' = Q1v1 : : :Qnvn in prenex and 
onjun
-tive normal form, we denote  by C1 ^ : : : ^ Ck and de�ne for all 0 � i � nVi �= vi[pos [℄℄ j vi[neg [℄℄V tti �= vi[pos [℄ j v0i[℄℄ j vi[neg [℄℄V �i �= vi[pos [℄℄ j vi[neg [℄ j v0i[℄℄For all 0 � m � n,M being equal to v1 7! t1; : : : ; vm 7! tm,'m �= Qm+1vm+1 : : : Qnvn PM �= V t11 j : : : j V tmm j Vm+1 j : : : j Vn j P'massuming that [['m℄℄ = (P'm ;A'm).It should be noti
ed that due to the de�nition of [[ ℄℄, for all 0 � m < n,P'm j= v0m+1[T℄ and P'n j= end [T℄.Lemma B.1 For all 0 � m < n,PM !3 PM;vm+1 7!ttPM !3 PM;vm+1 7!�and there does not exist P 0 su
h that P 0 6� PM;vm+1 7!tt , P 0 6� PM;vm+1 7!� andPM !3 P 0.Proof For m < n � 1, we 
onsiderM to be v1 7! t1; : : : ; vm 7! tm and wehave 'm = Qm+1vm+1 : : : Qnvn . Whatever Qm+1 is, by de�nition of en
,P'm = v0m+1[in vm+1:vm+2[out v0m+1:out vm+1:R'm+1 ℄℄for P'm+1 = v0m+1[R'm+1 ℄. Now from the pro
ess PM equal toV t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[pos [℄℄ j vm+1[neg [℄℄ jv0m+1[in vm+1:v0m+2[out v0m+1:out vm+1:R'm+1 ℄℄only two redu
tion steps are possible leading either toP posM � V t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[pos [℄℄ jvm+1[neg [℄ j v0m+1[v0m+2[out v0m+1:out vm+1:R'm+1 ℄℄℄or to P negM � V t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[neg [℄℄ jvm+1[pos [℄ j v0m+1[v0m+2[out v0m+1:out vm+1:R'm+1 ℄℄℄Now, we have from ea
h of P posM and P negM two deterministi
 redu
tion steps:P posM ! V t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[neg [℄℄ jvm+1[pos [℄ j v0m+1[℄ j v0m+2[out vm+1:R'm+1 ℄℄46



! V t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[neg [℄℄ jvm+1[pos [℄ j v0m+1[℄℄ j v0m+2[R'm+1 ℄� PM;vm+1 7!ttand P negM ! V t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[pos [℄℄ jvm+1[neg [℄ j v0m+1[℄ j v0m+2[out vm+1:R'm+1 ℄℄! V t11 j : : : j V tmm j Vm+2 j : : : j Vn j vm+1[pos [℄℄ jvm+1[neg [℄ j v0m+1[℄℄ j v0m+2[R'm+1 ℄� PM;vm+1 7!�The proof goes in a similar way for the 
ase where m = n� 1. �Lemma B.2 For all m in f0; : : : ; n � 1g, M being the interpretation v1 7!t1; : : : ; vm 7! tm, we have� for 0 � m < n � 1, PM;vm+1 7!tt and PM;vm+1 7!� are the two uniquepro
esses rea
hable from PM that satisfy the ambient formula v0m+2[T℄ j T.� for m = n� 1, PM;vm+1 7!tt and PM;vm+1 7!� are the two unique pro
essesrea
hable from PM that satisfy the ambient formula end [T℄ j T.Proof For 0 � m < n� 1, we know from the proof of Lemma B.1 that bothPM;vm+1 7!tt and PM;vm+1 7!� satisfy the ambient formula v0m+2[T℄ j T and donot satisfy formulas v0[T℄ j T where v0 is a primed ambient name di�erent fromv0m+2. Now, still from the proof of Lemma B.1, we know that any rea
hablepro
ess from PM is either PM0 for some extensionM0 ofM or an \intermediate"pro
ess rea
hable from PM0 in one or two steps. It is easy to see that none ofthese \intermediate" pro
esses satis�es an ambient formula v0[T℄ j T whateverthe primed name v0 is. Finally, asM0 is di�erent from M, PM0 will satisfy aformula v0[T℄ j T for some v0 6= v0m+2, but not the formula v0m+2[T℄ j T.The proof goes in a similar way for the 
ase where m = n� 1. �Restatement of Lemma 4.3 Assume ' is a 
losed quanti�ed Boolean for-mula, and that (P;A) = en
('). Then P j= A if and only if ' is valid.Proof We are going to show for any 0 � m � n that for the interpretationM equal to v1 7! t1; : : : ; vm 7! tmM j= 'm i� PM j= A'mNote that for m = 0,M is the empty interpretation, 'm = ', PM = P andA'm = A, so this statement obviously implies Lemma 4.3. The proof of thisstatement goes by indu
tion on the number l = n�m of quanti�ers in 'm.For the base 
ase l = 0: 'm = C1 ^ : : : ^ Ck is an unquanti�ed formula andM = v1 7! t1; : : : vn 7! tn. The interpretation M is a model for the formula'm if and only ifM renders true at least one literal `i in ea
h of the 
lauses Ci.Now, depending on whether `i o

urs positively or negatively in Ci, we havetwo 
ases: 47



� `i = vi: by the en
oding and the de�nition of PM, this is equivalent tothat [[`i℄℄ = vi[pos [0℄ j v0i[0℄℄ j T and PM = vi[pos [0℄ j v0i[0℄℄ j P 0 forsome ambient pro
ess P 0 whi
h does not 
ontain the ambient name v0i.Therefore, it is equivalent to that PM j= [[`i℄℄.� `i = vi: this 
ase is dual to the previous one.Now, in both 
ases we have PM j= [[`i℄℄, whi
h means that PM is a modelfor at least one literal in ea
h of the [[Ci℄℄'s, and thus it is equivalent to thatPM j= A'm .For the indu
tion step 1 < l � n (the parti
ular base 
ase where l = 1 di�ersonly in the use of the ambient name end instead of v0n+1 and 
an be proved inthe same way) we assume that the statement holds for l�1 (that is, it holds form+1). The formula 'm has the form Qm+1vm+1'm+1, so we have to 
onsidertwo 
ases depending on whether Qm+1 is 9 or 8.In the 
ase of 9, we have that M j= 'm is equivalent to the disjun
tionM; vm+1 7! tt j= 'm+1 or M; vm+1 7! � j= 'm+1. By indu
tion hypothesis,this is equivalent to that either PM;vm+1 7!tt j= A'm+1 or PM;vm+1 7!� j= A'm+1 .By Lemma B.2, we know that PM;vm+1 7!tt and PM;vm+1 7!� are the two uniquepro
esses rea
hable from PM satisfying the ambient formula v0m+2[T℄ j T.Therefore, the last statement is equivalent to thatPM j= �(v0m+2[T℄ j T) ^ A'm+1 :The 
ase where Qn�l+1 = 8 is dual to the previous one and leads to theequivalen
e with PM j= �(vm+2[T℄ j T) ) A'm+1 :In both 
ases, by de�nition of en
, we have the equivalen
e with PM j= A'm .�B.3 Proof of Lemma 4.5Lemma 4.5 is the 
rux of 
orre
tness for the en
oding from Se
tion 4.3 of QBFsatisfa
tion in the 
al
ulus of immobile ambients with I/O. To prove it, let us�rst �x some notations and then prove some auxiliary lemmas.We use notations similar to the previous se
tion. For a given 
losed QBFformula ' = Q1v1 : : : Qnvn in prenex and 
onjun
tive normal form, we denote by C1 ^ : : : ^ Ck. Let M be an interpretation v1 7! t1; : : : ; vm 7! tm. Wedenote �M the substitution fv1 t1; v1 t1; : : : ; vm tm; vm tmg where ti isthe negated value of ti. IfM is the empty interpretation, we let �M to be theidentity.For 0 � m � n, let 'm be the formula Qm+1vm+1 : : :Qnvn and en
('m) =(P'm ;A'm). For M = v1 7! t1; : : : ; vm 7! tm, let us denote PM the pro
essQ'm�M su
h that P'm � v0m+1[Q'm ℄. Note that in this notation P'm�M =v0m+1[PM℄. By M+ and M� we denote respe
tively M; vm+1 tt ; vm+1 �andM; vm+1 � ; vm+1 tt . 48



Lemma B.3 For all 0 � m < n,PM ! (h� i j v00m+1[℄ j (vm+1):P'm+1)�M;vm+1 ttand PM ! (htti j v00m+1[℄ j (vm+1):P'm+1)�M;vm+1 �and there is no other P 0 su
h that P ! P 0.Proof Straightforward from the en
oding. �Lemma B.4 For all 0 � m < n, PM !2 (v00m+1[℄ j P'm+1)�M+ and PM !2(v00m+1[℄ j P'm+1)�M� and there is no other P 0 su
h that P !2 P 0.Proof Straightforward from the en
oding, Lemma B.3 and the de�nition ofPM. �Restatement of Lemma 4.5 Assume ' is a 
losed quanti�ed Boolean for-mula, and that (P;A) = en
('). Then P j= A if and only if ' is valid.Proof Let V0 = 0 and for all 1 � m � n let Vm = v00m[℄. We are going to showfor any 0 � m � n that for the interpretationM equal to v1 7! t1; : : : ; vm 7! tm,M j= 'm i� Vm j P'm�M j= A'm :The parti
ular 
ase of this statement withm = 0 is equivalent to Lemma 4.5.Its proof goes by indu
tion over the number l = n �m of quanti�ed variablesin 'm.Case where l = 0: the formula 'm is equal to C1 ^ : : :^Ck ,M has the formv1 7! t1; : : : ; vn 7! tn andM j= C1 ^ : : :^Ck. As C1 ^ : : :^Ck is in 
onjun
tivenormal form, for at least one literal `i in ea
h Ci,M(`i) = tt . This is equivalentto that for ea
h Ci, there exists at least one literal `i in Ci su
h that� vj tt ; vj � belongs to �M if `i = vj and� vj � ; vj tt belongs to �M if `i = vj .By the de�nition of en
(C1 ^ : : : ^Ck), this is equivalent to that the interior ofea
h C ambient (ea
h marked by a D ambient) in the pro
ess P'm�M 
ontainsa tt sub-ambient. This again is equivalent to P'm�M j= ❏((D[0℄ j T)) (tt [0℄ jT)) that is, to P'm�M j= A'm . Sin
e Vm does not 
ontain any subambientD[0℄, the statement follows.Case where l = 1 (that is, m = n� 1): the formula 'm is equal to Qnvn ,M is a the form v1 7! t1; : : : ; vn�1 7! tn�1. We follow a

ording to the value ofQn:� 
ase where Qn = 9: M j= 'm is equivalent to either M; vn tt j=  orM; vn � j=  . Using the 
ase where l = 0, this is equivalent to thateither P'n�M+ j= A'n or P'n�M� j= A'n .49



By Lemma B.4, the pro
esses v00n[℄ j P'n�M+ and v00n[℄ j P'n�M� arethe two unique ones rea
hable from PM in two steps. Moreover, as P'n
an not be redu
ed, there is no pro
ess rea
hable from PM in stri
tlymore than two steps. It should be noti
ed that P'n�M+ and P'n�M�both satisfy the formula Inst(end)^:Inst+(end) whereas by Lemma B.3the two unique su

essors of PM as well as PM itself do not satisfy theformula Inst(end). Therefore, P'n�M+ j= A'n or P'n�M� j= A'n holdsi� PM j= �((Inst(end)^:Inst+(end))^A'n). And thus, this is equivalentto v00n�1[℄ j vn[PM℄ j= T j vn[�((Inst(end) ^ :Inst+(end)) ^ A'n)℄, that isv00n�1[℄ j P'n�1 j= A'n�1 .� 
ase where Qn = 8: this 
ase is dual to the previous one.Case where 1 < l � n: the formula 'm is equal to Qm+1vm+1'm+1,M hasthe form v1 7! t1; : : : ; vm 7! tm and we assume that the statement holds forl � 1 (that is, it holds for m+ 1). We follow a

ording to the value of Qm+1:� 
ase where Qm+1 = 9: M j= 'm is equivalent to either M; vm+1 tt j='m+1 orM; vm+1 � j= 'm+1. By indu
tion hypothesis, this is equiva-lent to that either v00m+1[℄ j P'm+1�M+ j= A'm+1 or v00m+1[℄ j P'm+1�M� j=A'm+1 .Let us have a look now at pro
esses rea
hable from PM: of 
ourse,PM itself is rea
hable, but by 
onstru
tion it does not satisfy the for-mula Inst(v0m+2). By Lemma B.3, two pro
esses are rea
hable in onestep from PM, but they do not satisfy the formula Inst(v0m+2). ByLemma B.4, two pro
esses are rea
hable from PM in two steps, namely(v00m+1[℄ j P'm+1)�M+ and (v00m+1[℄ j P'm+1)�M� and they both satisfythe formulas Inst(v0m+2) and :Inst+(v0m+2) (by 
onstru
tion). Now, byusing on
e again Lemma B.3 for the internal of v0m+2 in P'm+1�M+ andP'm+1�M� , all the pro
esses rea
hable from one of those latter satisfyInst+(v0m+2).Therefore, the last statement is equivalent to that PM j= �(Inst(v0m+2) ^:Inst+(v0m+2)) ^A'm+1 . Thus, it is equivalent to Vm[℄ j v0m+1[PM℄ j= T jv0m+1[�(Inst(v0m+2)^:Inst+(v0m+2))^A'm+1 ℄, that is Vm[℄ j P'm j= A'm .� the 
ase where Qm+1 = 8 is dual to the previous one. �
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