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Abstract

We present a new method for speech denoising and robust
speech recognition. Using the framework of probabilistic mod-
els allows us to integrate detailed speech models and models
of realistic non-stationary noise signals in a principled manner.
Theframework transformsthe denoising probleminto aproblem
of Bayes-optimal signal estimation, producing minimum mean
square error estimators of desired features of clean speech from
noisy data. We describe a fast and efficient implementation of
an agorithm that computes these estimators. The effectiveness
of this algorithm is demonstrated in robust speech recognition
experiments, using the Wall Street Journal speech corpus and
Microsoft Whisper large-vocabulary continuous speech recog-
nizer. Results show significantly lower word error rates than
those under noisy-matched condition. In particular, when the
denoising algorithm is applied to the noisy training data and
subsequently the recognizer isretrained, very low error ratesare
obtained.

1. Introduction

Denoising and robust speech recognition are of critical impor-
tance in practical deployment of speech technology. Many de-
noising techniques exist in the literature, e.g., [1, 2, 3]. How-
ever, few of them are based on ageneral and rigorousframework,
whileat the sametimedemonstrating effectivenessin large-scale
robust speech recognition experiments.

In this paper, we present anew method for speech denoising
and for robust speech recognition in realistic environments. Us-
ing the framework of probabilistic models allows usto integrate
detailed speech models and models of realistic non-stationary
noise signalsin aprincipled manner. The framework transforms
the denoising problem into a problem of Bayes-optimal signal
estimation, producing minimum mean square error (MM SE) es-
timators of desired features of clean speech from noisy data.
We describe a fast and efficient implementation of an algorithm
that computesthese estimators. The performance of this method
is demonstrated in large scale speech recognition experiments,
where it achieves significant improvements over standard meth-
ods in quasi-stationary and non-stationary noise conditions.

Notation. Throughout the paper we consider fixed, N-
sample frames, and denote the time sample within a frame by
a subscript n = 0,...,N — 1. Time domain signals are de-
noted by small letters, e.g., z,,. Omitting the subscript, we de-
note collectively © = (o, ...,xn—1). The corresponding fre-
guency domain signals are denoted by capital letters, eg., Xk,
k =0,..,N — 1. Thetwo are related by the discrete Fourier
transform (DFT), X, = > e~ ™km g, Omitting the subscript

k, X denotes the complex N-dimensional vector
X = (Xoyoor, Xn-1) - @

Matrices are denoted by capital bold faced letters, e.g., 3.
The Gaussian distribution over X with mean X and covariance
Yis

p(X) = NX|X,%) (3]
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where XT = (X*)T (complex transposition), and the covari-
ance matrix is Hermitian (Xt = 3) and positive definite.

2. Bayesian Denoising

We consider the case where asingle speech sourceis present and
asingle microphoneisavailable. We use awindow of length NV,
and assumethat each NV -sampleframe of any signal we consider
has been convolved with that window.

Let z,, bethewindowed clean speech signal emitted at time
n, and let y,, be the windowed noisy speech signal received at
the microphone at the same time. Let u,, denote the windowed
noise signal. Assuming additive noise, we have

Yn = Tp + Un . (3)

The basic denoising task is to provide, for each frame, an
estimate &,, of the clean speech signal in that frame. In dif-
ferent applications, however, estimates of specific functions of
the speech signal f(zo, ...,zn—1) May be desired. In partic-
ular, in the present paper we will be estimating the spectrum
Sy =| X |* of the clean speech. Due to the variance of the
estimated signal, the estimate of a function f differs from ap-
plying that function to the estimated speech signal. Thus, we
define the denoising task as estimating desired functions of the
clean speech.

Hereis a high level view of the probabilistic modeling ap-
proach to speech denoising. In the frequency domain, (3) be-
comes Vi = X + Ux. Denote the frame signals collectively
by X,Y, U asin (1). We construct aprobabilistic model px (X)
for the speech signal. The purpose of this model is, roughly, to
quantify how likely an arbitrary signal X isto be a speech sig-
nal. We also construct a separate probabilistic model py (U) for
the noise signal. Both models are parametric and are described
in detail below. Next, we need the probability distribution for
observing anoisy signal Y, given that the clean signal was X. It
follows from (3) that this distribution, denoted p(Y" | X), isob-
tained from the noisemodel py (U) by substitutingU = Y — X.



Wethushaveamodel for thejoint distribution of clean and noisy
speech XY,

p(X,Y) =pu(Y — X)px(X) . 4

The subscripts will henceforth be dropped and we will write
p(X) instead of px (X), etc., aslong as thereis no ambiguity.

At thefocus of probabilistic denoising isthe probability dis-
tribution for the clean speech signal being X, given that the
noisy signal Y has been observed. This distribution, denoted
p(X | Y') and termed the posterior distribution over X, iscom-
puted from (4) by Bayes rule, p(X | YV) = p(X,Y)/p(Y).
Having obtained the posterior, we can use it to estimate the
clean speech signal or a function f(X) thereof by computing
its average w.r.t. this posterior,

= / FOXOP(X | V)X | 5)

It can shown that the estimate of f given by f is optimal in the
MMSE sense. Of course, other optimality criteriamay in prin-
ciple be used. For example, a natural criterion in the Bayesian
framework isthelikelihood of f giventhedata, p(f | Y). How-
ever, computing this likelihood and maximizing it w.rt. fis
generally adifficult problem. In this paper, we use the estimator

(5).

3. Speech and Noise Models

A key point of this paper isthe use of astrong speech moddl. Via
this model, the denoising agorithm incorporates prior knowl-
edge about the structure of speech signals, which is essential
to its performance. Signal processing methods such as spec-
tral subtraction do not employ any model of speech. Much of
the past work on speech denoising from a probabilistic perspec-
tive has employed very simple models, most commonly based
on AR or ARMA descriptions [1]. These models are weak in
the sense that they include little information on the properties
of speech. Such an approach may allow features of the frame
signals X (e.g., their spectra) to have arbitrary values, including
values that are unlikely to occur in a speech signal. A strong
model, in contrast, would weigh different values according to
their likelihood. The lack of prior information could be espe-
cially significant in the single microphone case, where NV clean
samples need to be estimated from N noisy samples, a problem
which isjust barely constrained.

The most detailed statistical speech models currently avail-
able are those employed by state-of-the-art speech recognition
engines. These systems are generally based on mixture of diag-
onal Gaussian modelsinthe mel-cepstral domain, endowed with
temporal Markov dynamics, and have a very large (~ 100000)
number of states corresponding to individual atoms of speech.
However, in the mel-cepstra domain the noisy speech has a
strong non-linear relationship to the clean speech, making the
denoising problem harder.

In this paper, we work in the frequency domain where the
clean and noisy speech arerelated linearly. We employ aproba
bilistic speech model, and take an intermediate approach regard-
ing the model structure and its size.

Mixture model for speech. Speech signals are non-
stationary, meaning that the signal X at different frames may
have different statistical properties. This feature can be cap-
tured using a mixture model. The model has S components,
labeled s = 1, ...,.S. Component s is a Gaussian distribution

with mean zero and covariance matrix A ;. The prior probability
of component s is s, normalized suchthat 3 75 = 1.

This description constitutes a generative model for speech.
To generate the speech signal for a given frame, (1) select a
component s with probability p(s), (2) samplea N-dimensional
vector X from the Gaussian distribution p(X | s), where

pP(X |s) =N(X]0,As), pls)=ms. (6)

Eq. (6) defines a mixture model for the speech distribution
p(X) =, p(X | s)p(s). Notice that the distribution (6) al-
lowsageneral correlation structure between the frequency com-
ponents X, of the speech signal.

Mixture model for noise. Like speech signals, redlistic
noise signals are characterized by non-Gaussianity and non-
stationarity. The noise model used in this paper has there-
fore a similar structure to the speech model. It is a mixture
model with C' components. Each component ¢ = 1,...,C
is a zero-mean Gaussian with a covariance matrix B., i.e,
p(U | ¢) =N(U | 0,B.), and aprior probability 7..

To derive a denoising algorithm, we must determine p(Y" |
X). Thisconditional isgiven by summing over the noise model
components, p(Y | X) =>__ p(Y | X, ¢)p(c), where

p(Y | X,0) =N(Y | X,Be), pc)=1e. @

Finaly, the joint distribution of all model variablesis given
by

p(Y,X,¢,5) =p(Y | X,c)p(X | s)p(c)p(s) - 8

4. Denoising Algorithm

The focus of our denoising algorithm is the clean speech poste-
rior, given in our model by summing over al possible configu-
rations (c, s) of speech and noise components,

pX 1Y) =) p(X|c,sY)p(e,s|Y). ©)

cs

It can be shown that the speech posterior conditioned on the
configuration is a Gaussian, whose mean is linear in the data,

p(X | ¢,s,Y)=N(X | WeY,D..), (10)
where
W.. = D.B.',
D.. = (A7'+B;Y)" (11)

Theposterior probability of theconfiguration (¢, s), denoted
Yes = p(c, s | Y), isgiven by

1
Yes = ;N(Y ‘ O7Dcs)7rsnc s (12)

where z is determined such that the normalization condition
D es Yes = 1issatisfied.

We can now estimate the speech signal X, and its spectrum
Sk =| X4 |? for each frame. Denote the mean speech signal
conditioned on the configuration (¢, s) and the data by

Xcs = WCSY . (13)
Using (5), we get
Xk = Z’YCSXIES 5

S = e (X0 P +De)) - (14



Hence, the denoised speech signal X is obtained by lin-
early transforming the data, where the total transformation
D es Yes Wes combines additively the transformation corre-
sponding to the different configurations, weighted by the config-
uration posterior. This posterior changes from frame to frame,
making the filter time-varying. The denoised spectrum Sy, is
obtained in asimilar manner. Notice that it differs from | X, |2
due to the variance in the posterior p(c, s, X | Y).

5. Efficient Implementation

Whereas the speech model (6) can describe quite general distri-
butions, learning general N x N covariance matrices A ; from
datamay be acomplex task. Inthispaper, we use a parametriza-
tion based onthelinear prediction coding (L PC) model of speech
production. Mathematically, thisis an autoregressive model of
order p, which describes the windowed time domain signal z,.
In this model, the signa at time point n is given by a linear
combination of the signals at the preceding p time points, plusa
noise signal. We assume a different LPC model for each speech
cluster s, given by

p
T = Z 0, Trnm + Un . (15)

The coefficients §;,, arerelated to the physical shape of thevocal
tract. v, istermedexcitationnoise. It hasmeanzero, anditsvari-
ancein cluster s is denoted by vs. We will describe the covari-
ance matrix A, interms of the LPC parameters (67, ..., 0p, vs).
This approach isrelated to that of [2].

We turn the description (15) into a probabilistic model in
the frequency domain in two stages. First, we assume that the
excitation noise is a temporally independent Gaussian, which
leadsto a Gaussian distribution for the time domain signal of the
form

plx | s) = Han|20 Tn—m, Vs) - (16)

Next, we switch to the frequency domain by applying DFT in
(16) using the identity

N-1 P N-1
D vt @n =Y Ontn-m)’ = Xk P, )
n=0 m=1 k:()
where Aj, is defined by
Af = Nv/ |04, [, (18)

and O , isthe N-point DFT of (1, —07, ..., —0;).

Hence, the distribution of the frequency domain signa in
cluster sisgiven by p(X | s) = N (X | 0,A;) asin (6), but
with adiagonal covariance matrix

(As)kl = AZ(SM . (19)

It is easy to show that the diagonal elements A;, form the mean
spectrum of the signalsin cluster s, i.e., {| X, |?) = A3, where
the averageistaken w.rt. p(X | s).

We point out that the frequency components X, are now
mutually independent, given the cluster label s. Moreover, the
real and imaginary parts of X, are also independent and have
the same variance. This follows from the LPC structure of our
model, and reflects the fact that the model describes the speech
spectrum but not its phase.

In a similar fashion, we describe the covariance matrices
B. of the noise model (7) in terms of the LPC parameters
(7, ..., 95, As). This results in diagonal matrices, where the
noise spectrum of component ¢, B, = NA./ | ®,, |? ison
the diagonal.

Observe that the linear transformation W.s in (10,11),
whichisnow diagonal, issimply the Wiener filter corresponding
to the signal and noise spectra A; and By, respectively. Hence,
the computation of the estimators X, and S, for each frame can
be performed efficiently and very fast.

6. Speech Model Training

We trained the speech model parameters {(65, ...,0;,vs),s =
1,...,.S} using 10000 sentences of the Wall Street Journal cor-
pus, recorded with a close-talking microphone for 150 male and
femal e speakers of North American English. We used 410-point
frames with a 160-point overlap at a sampling rate of 16kHz,
and employed a N = 512-point DFT after applying a Ham-
ming window. The LPC model in each component had the order
p = 14, and S = 256 components were used.
Beforedescribing our training procedurewe define someno-
tation. Let T' denote the number of speech framesin our dataset,
and let X" be the frequency domain speech signal in frame ¢,
wheret = 1,...,T. Let p’ denote the posterior probabilities
pt = p(s | X*) of component labels s at frame t. Notice that
they differ from the posterior probabilities~. in (12), which are
computed from the noisy data. In addition, let Q;, bethe speech
power spectrum corresponding to component s, defined by

Qv =D P | XL /> pt. (20)

We train the model using an EM algorithm which proceeds
asfollows. Inthe E-step, we compute the posterior probabilities
pt o p(X*' | s)p(s), wherep(X* | s) and p(s) arethosein (6),
and p isnormalized suchthat >_ pf = 1.

In the M-step, we update the parameters 6;,, by solving a
L evinson-Durbin equation of order p, whose autocorrelation co-
efficients are obtained from @7, in (20) by inverse DFT. The v,
are then updated by vs = N?/>", | ©., |* Qi, where ©, ,
is the N-point DFT of (1,67, ...,—6,). Findly, the mixing
fractions are updated as usua viam, = Y, pt/T.

The model parameters were initialized as follows. From
each frame in the dataset, the parameters (61, ..., 0,, V) were
extracted by solving the Levinson-Durbin equation, where the
autocorrel ation was obtained from the frame spectrum | X, |2.
These parameters were converted into cepstral coefficients, and
clusteredinto S classesusing K -meansclustering. Theresulting
hard clusters induce a corresponding clustering of the speech
frames X* in the dataset. For each cluster s, we computed the
parameters (05, ..., 05, v) asin the M-step above, using p! =
0,1 that corresponds to hard clusters. These parameters were
used asinitial values. The parameters 7, were initialized to the
relative number of framesin each hard cluster.

7. Experimental Results

To examine the effectiveness of this algorithm in robust speech
recognition, we used the denoised speech spectra S, (14) tocom-
pute the input signals to a recognition system. Two paradigms
are used. In the first one, the recognizer was trained on clean
speech. In the second one, the recognizer was retrained on a
training set consisting of signals that were computed from the
denoised spectra.



Thelarge vocabulary continuous recognition system used in
our experimentsisaversion of the Microsoft continuous-density
HMMs (Whisper) with 6000 tied HMM states (senones), 20
Gaussians per state, which uses a speech representation consist-
ing of Mel-cepstrum (MFCC), delta cepstrum, and delta-delta
cepstrum. A fixed, bigram language model is used in al the
experiments. The system had been trained on atotal of 17,809
femal e clean speech sentences.

The test set consisted of 167 female WSJ sentences, which
were distorted by adding synthetic white non-Gaussian noise,
quasi-stationary noise recorded in an office, or non-stationary
noiserecorded at an airport near aplanewhose engineisshutting
off gradually. The amount of noise added to the clean speech
sentenceswas determined by apre-specified SNR. Thedenoising
algorithm was applied to these data and produced an estimate of
theclean speech spectra. The MFCCswere computed fromthese
spectra, and the deltaand delta-deltacepstrawere then computed
from the MFCCs. The resulting speech representation was fed
to the recognizer.

Table 1 shows the results for white noise at 10 dB SNR.
A single component noise model was used. On the bottom are
three word error rate (WER) baselines. Preprocessing the test
set by a spectral subtraction algorithm (described in [3]) gives
aWER of 33.79%, and retraining on the output of spectral sub-
traction reduces it to 11.74%. Preprocessing the test set by the
new algorithm using a S = 64-component speech model has a
WER of 19.21%, which decreases to 12.81% for S = 256. Re-
training on the output of this algorithm reducesthe WER further
to 10.34%, which is an excellent result.

Table 1: Recognition performance comparison (WER %) for
WSJ speech data corrupted by white noise at 10 dB SNR.

| Systems | WERs |
new algorithm, S=64 19.21
new agorithm, S=256 12.81
new algorithm + retraining, S=256 | 10.34
spectral subtraction 33.79

spectral subtraction + retraining 11.74
no preprocessing (noisy-matched) | 14.03
no preprocessing (mismatched) 55.06
clean speech 4.87

We also explored the effects of approximations on recogni-
tion and on computational speed (table 2). The approximation
was carried out by choosing asmall number of the largest terms
intheweighted sum of (14), usingaS = 256-component speech
model and a single component noise model.

Table 2: WERSs (%) and computation speed for approximating
the denoising algorithm.

[ Number of terms | WERs | Computation speed |
12.81 4.01 x Real time
13.48 3.80 x Red time
1451 3.66 x Redl time
1854 3.45 x Red time

N
P woy
(o2}

Table 3 shows the results for a quasi-stationary office noise
a -5 dB SNR, and table 4 shows the results for a highly time-
varying noise at 10 dB SNR of aplane engine shutting down. A
C = 4-component noise model was used in the latter.

Table 3: Recognition performance comparison (WER %) for
WSJ speech data corrupted by office noise at -5 dB SNR.

| Systems | WERs |
new algorithm, S=64 15.07
new algorithm + retraining, S=64 7.50
spectral subtraction 14.15

spectral subtraction + retraining 7.05
no preprocessing (noisy-matched) | 7.27
no preprocessing (mismatched) 20.16
clean speech 4.87

Table 4. Recognition performance comparison (WER %) for
WSJ speech data corrupted by plane engine noise at 10 dB SNR.

| Systems | WERs |
new algorithm, S=256 11.60
spectral subtraction 25.04

spectral subtraction + retraining 10.12
no preprocessing (noisy-matched) | 9.71
no preprocessing (mismatched) 28.77
clean speech 4.87

8. Conclusion

We have presented anew and quite general framework for speech
denoising and robust speech recognition. We demonstrated a
fast and efficient implementation of this framework, and ob-
tained very good recognition results. Thisimplementation uses
a speech model where the spectra, in effect, are smoothed us-
ing the LPC parameters. Other smoothing methods may also be
used, such asmethodsbased on cepstraor on specificfilter banks.
We are currently extending this framework in several directions,
including modeling the effect of reverberations. We are also
pursuing approximation methods for reducing the complexity of
the algorithm when large noise models are used.
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