
A New Method for Speech Denoising and Robust Speech Recognition
Using Probabilistic Models for Clean Speech and for Noise

Hagai Attias, Li Deng, Alex Acero, John C. Platt

Microsoft Research USA
1 Microsoft Way, Redmond, WA 98052

{hagaia,deng,alexac,jplatt}@microsoft.com

Abstract

We present a new method for speech denoising and robust
speech recognition. Using the framework of probabilistic mod-
els allows us to integrate detailed speech models and models
of realistic non-stationary noise signals in a principled manner.
The framework transforms the denoising problem into a problem
of Bayes-optimal signal estimation, producing minimum mean
square error estimators of desired features of clean speech from
noisy data. We describe a fast and efficient implementation of
an algorithm that computes these estimators. The effectiveness
of this algorithm is demonstrated in robust speech recognition
experiments, using the Wall Street Journal speech corpus and
Microsoft Whisper large-vocabulary continuous speech recog-
nizer. Results show significantly lower word error rates than
those under noisy-matched condition. In particular, when the
denoising algorithm is applied to the noisy training data and
subsequently the recognizer is retrained, very low error rates are
obtained.

1. Introduction
Denoising and robust speech recognition are of critical impor-
tance in practical deployment of speech technology. Many de-
noising techniques exist in the literature, e.g., [1, 2, 3]. How-
ever, few of them are based on a general and rigorous framework,
while at the same time demonstrating effectiveness in large-scale
robust speech recognition experiments.

In this paper, we present a new method for speech denoising
and for robust speech recognition in realistic environments. Us-
ing the framework of probabilistic models allows us to integrate
detailed speech models and models of realistic non-stationary
noise signals in a principled manner. The framework transforms
the denoising problem into a problem of Bayes-optimal signal
estimation, producing minimum mean square error (MMSE) es-
timators of desired features of clean speech from noisy data.
We describe a fast and efficient implementation of an algorithm
that computes these estimators. The performance of this method
is demonstrated in large scale speech recognition experiments,
where it achieves significant improvements over standard meth-
ods in quasi-stationary and non-stationary noise conditions.

Notation. Throughout the paper we consider fixed, N -
sample frames, and denote the time sample within a frame by
a subscript n = 0, ..., N − 1. Time domain signals are de-
noted by small letters, e.g., xn. Omitting the subscript, we de-
note collectively x = (x0, ..., xN−1). The corresponding fre-
quency domain signals are denoted by capital letters, e.g., Xk,
k = 0, ..., N − 1. The two are related by the discrete Fourier
transform (DFT),Xk =

∑
n e

−iωknxn. Omitting the subscript

k,X denotes the complex N -dimensional vector

X = (X0, ..., XN−1) . (1)

Matrices are denoted by capital bold faced letters, e.g., Σ.
The Gaussian distribution overX with mean X̂ and covariance
Σ is

p(X) = N (X | X̂,Σ) (2)

= | 2πΣ |−1/2 exp
[
−1

2
(X − X̂)†Σ−1(X − X̂)

]
,

where X† = (X�)T (complex transposition), and the covari-
ance matrix is Hermitian (Σ† = Σ) and positive definite.

2. Bayesian Denoising
We consider the case where a single speech source is present and
a single microphone is available. We use a window of lengthN ,
and assume that eachN -sample frame of any signal we consider
has been convolved with that window.

Let xn be the windowed clean speech signal emitted at time
n, and let yn be the windowed noisy speech signal received at
the microphone at the same time. Let un denote the windowed
noise signal. Assuming additive noise, we have

yn = xn + un . (3)

The basic denoising task is to provide, for each frame, an
estimate x̂n of the clean speech signal in that frame. In dif-
ferent applications, however, estimates of specific functions of
the speech signal f(x0, ..., xN−1) may be desired. In partic-
ular, in the present paper we will be estimating the spectrum
Sk =| Xk |2 of the clean speech. Due to the variance of the
estimated signal, the estimate of a function f differs from ap-
plying that function to the estimated speech signal. Thus, we
define the denoising task as estimating desired functions of the
clean speech.

Here is a high level view of the probabilistic modeling ap-
proach to speech denoising. In the frequency domain, (3) be-
comes Yk = Xk + Uk. Denote the frame signals collectively
byX,Y, U as in (1). We construct a probabilistic model pX(X)
for the speech signal. The purpose of this model is, roughly, to
quantify how likely an arbitrary signal X is to be a speech sig-
nal. We also construct a separate probabilistic model pU (U) for
the noise signal. Both models are parametric and are described
in detail below. Next, we need the probability distribution for
observing a noisy signal Y , given that the clean signal wasX . It
follows from (3) that this distribution, denoted p(Y | X), is ob-
tained from the noise model pU (U) by substitutingU = Y −X .



We thus have a model for the joint distribution of clean and noisy
speechX,Y ,

p(X,Y ) = pU (Y −X)pX(X) . (4)

The subscripts will henceforth be dropped and we will write
p(X) instead of pX(X), etc., as long as there is no ambiguity.

At the focus of probabilistic denoising is the probability dis-
tribution for the clean speech signal being X , given that the
noisy signal Y has been observed. This distribution, denoted
p(X | Y ) and termed the posterior distribution overX , is com-
puted from (4) by Bayes’ rule, p(X | Y ) = p(X,Y )/p(Y ).
Having obtained the posterior, we can use it to estimate the
clean speech signal or a function f(X) thereof by computing
its average w.r.t. this posterior,

f̂ =
∫
f(X)p(X | Y )dX . (5)

It can shown that the estimate of f given by f̂ is optimal in the
MMSE sense. Of course, other optimality criteria may in prin-
ciple be used. For example, a natural criterion in the Bayesian
framework is the likelihood of f given the data, p(f | Y ). How-
ever, computing this likelihood and maximizing it w.r.t. f is
generally a difficult problem. In this paper, we use the estimator
(5).

3. Speech and Noise Models
A key point of this paper is the use of a strong speech model. Via
this model, the denoising algorithm incorporates prior knowl-
edge about the structure of speech signals, which is essential
to its performance. Signal processing methods such as spec-
tral subtraction do not employ any model of speech. Much of
the past work on speech denoising from a probabilistic perspec-
tive has employed very simple models, most commonly based
on AR or ARMA descriptions [1]. These models are weak in
the sense that they include little information on the properties
of speech. Such an approach may allow features of the frame
signalsX (e.g., their spectra) to have arbitrary values, including
values that are unlikely to occur in a speech signal. A strong
model, in contrast, would weigh different values according to
their likelihood. The lack of prior information could be espe-
cially significant in the single microphone case, where N clean
samples need to be estimated fromN noisy samples, a problem
which is just barely constrained.

The most detailed statistical speech models currently avail-
able are those employed by state-of-the-art speech recognition
engines. These systems are generally based on mixture of diag-
onal Gaussian models in the mel-cepstral domain, endowed with
temporal Markov dynamics, and have a very large (∼ 100000)
number of states corresponding to individual atoms of speech.
However, in the mel-cepstral domain the noisy speech has a
strong non-linear relationship to the clean speech, making the
denoising problem harder.

In this paper, we work in the frequency domain where the
clean and noisy speech are related linearly. We employ a proba-
bilistic speech model, and take an intermediate approach regard-
ing the model structure and its size.

Mixture model for speech. Speech signals are non-
stationary, meaning that the signal X at different frames may
have different statistical properties. This feature can be cap-
tured using a mixture model. The model has S components,
labeled s = 1, ..., S. Component s is a Gaussian distribution

with mean zero and covariance matrix As. The prior probability
of component s is πs, normalized such that

∑
s πs = 1.

This description constitutes a generative model for speech.
To generate the speech signal for a given frame, (1) select a
component swith probability p(s), (2) sample aN -dimensional
vectorX from the Gaussian distribution p(X | s), where

p(X | s) = N (X | 0,As) , p(s) = πs . (6)

Eq. (6) defines a mixture model for the speech distribution
p(X) =

∑
s p(X | s)p(s). Notice that the distribution (6) al-

lows a general correlation structure between the frequency com-
ponentsXk of the speech signal.

Mixture model for noise. Like speech signals, realistic
noise signals are characterized by non-Gaussianity and non-
stationarity. The noise model used in this paper has there-
fore a similar structure to the speech model. It is a mixture
model with C components. Each component c = 1, ..., C
is a zero-mean Gaussian with a covariance matrix Bc, i.e.,
p(U | c) = N (U | 0,Bc), and a prior probability ηc.

To derive a denoising algorithm, we must determine p(Y |
X). This conditional is given by summing over the noise model
components, p(Y | X) =

∑
c p(Y | X, c)p(c), where

p(Y | X, c) = N (Y | X,Bc) , p(c) = ηc . (7)

Finally, the joint distribution of all model variables is given
by

p(Y,X, c, s) = p(Y | X, c)p(X | s)p(c)p(s) . (8)

4. Denoising Algorithm
The focus of our denoising algorithm is the clean speech poste-
rior, given in our model by summing over all possible configu-
rations (c, s) of speech and noise components,

p(X | Y ) =
∑
cs

p(X | c, s, Y )p(c, s | Y ) . (9)

It can be shown that the speech posterior conditioned on the
configuration is a Gaussian, whose mean is linear in the data,

p(X | c, s, Y ) = N (X | WcsY,Dcs) , (10)

where

Wcs = DcsB−1
c ,

Dcs =
(
A−1

s + B−1
c

)−1
(11)

The posterior probability of the configuration (c, s), denoted
γcs = p(c, s | Y ), is given by

γcs =
1
z
N (Y | 0,Dcs)πsηc , (12)

where z is determined such that the normalization condition∑
cs γcs = 1 is satisfied.

We can now estimate the speech signalXk and its spectrum
Sk =| Xk |2 for each frame. Denote the mean speech signal
conditioned on the configuration (c, s) and the data by

X̂cs = WcsY . (13)

Using (5), we get

X̂k =
∑
cs

γcsX̂
cs
k ,

Ŝk =
∑
cs

γcs

(
| X̂cs

k |2 +(Dcs)kk

)
. (14)



Hence, the denoised speech signal X̂k is obtained by lin-
early transforming the data, where the total transformation∑

cs γcsWcs combines additively the transformation corre-
sponding to the different configurations, weighted by the config-
uration posterior. This posterior changes from frame to frame,
making the filter time-varying. The denoised spectrum Ŝk is
obtained in a similar manner. Notice that it differs from | X̂k |2
due to the variance in the posterior p(c, s,X | Y ).

5. Efficient Implementation
Whereas the speech model (6) can describe quite general distri-
butions, learning general N ×N covariance matrices As from
data may be a complex task. In this paper, we use a parametriza-
tion based on the linear prediction coding (LPC) model of speech
production. Mathematically, this is an autoregressive model of
order p, which describes the windowed time domain signal xn.
In this model, the signal at time point n is given by a linear
combination of the signals at the preceding p time points, plus a
noise signal. We assume a different LPC model for each speech
cluster s, given by

xn =
p∑

m=1

θs
mxn−m + vn . (15)

The coefficients θs
m are related to the physical shape of the vocal

tract. vn is termed excitation noise. It has mean zero, and its vari-
ance in cluster s is denoted by νs. We will describe the covari-
ance matrix As in terms of the LPC parameters (θs

1, ..., θ
s
p, νs).

This approach is related to that of [2].
We turn the description (15) into a probabilistic model in

the frequency domain in two stages. First, we assume that the
excitation noise is a temporally independent Gaussian, which
leads to a Gaussian distribution for the time domain signal of the
form

p(x | s) =
N−1∏
n=0

N (xn |
p∑

m=1

θs
mxn−m, νs) . (16)

Next, we switch to the frequency domain by applying DFT in
(16) using the identity

N−1∑
n=0

ν−1
s (xn −

p∑
m=1

θs
mxn−m)2 =

N−1∑
k=0

(As
k)−1 | Xk |2 , (17)

where As
k is defined by

As
k = Nνs/ | Θ′

s,k |2 , (18)

and Θ′
s,k is the N -point DFT of (1,−θs

1, ...,−θs
p).

Hence, the distribution of the frequency domain signal in
cluster s is given by p(X | s) = N (X | 0,As) as in (6), but
with a diagonal covariance matrix

(As)kl = As
kδkl . (19)

It is easy to show that the diagonal elements As
k form the mean

spectrum of the signals in cluster s, i.e., 〈| Xk |2〉 = As
k, where

the average is taken w.r.t. p(X | s).
We point out that the frequency components Xk are now

mutually independent, given the cluster label s. Moreover, the
real and imaginary parts of Xk are also independent and have
the same variance. This follows from the LPC structure of our
model, and reflects the fact that the model describes the speech
spectrum but not its phase.

In a similar fashion, we describe the covariance matrices
Bc of the noise model (7) in terms of the LPC parameters
(φs

1, ..., φ
s
q, λs). This results in diagonal matrices, where the

noise spectrum of component c, Bc
k = Nλc/ | Φ′

c,k |2, is on
the diagonal.

Observe that the linear transformation Wcs in (10,11),
which is now diagonal, is simply the Wiener filter corresponding
to the signal and noise spectra As

k and Bc
k, respectively. Hence,

the computation of the estimators X̂k and Ŝk for each frame can
be performed efficiently and very fast.

6. Speech Model Training
We trained the speech model parameters {(θs

1, ..., θ
s
p, νs), s =

1, ..., S} using 10000 sentences of the Wall Street Journal cor-
pus, recorded with a close-talking microphone for 150 male and
female speakers of North American English. We used 410-point
frames with a 160-point overlap at a sampling rate of 16kHz,
and employed a N = 512-point DFT after applying a Ham-
ming window. The LPC model in each component had the order
p = 14, and S = 256 components were used.

Before describing our training procedure we define some no-
tation. Let T denote the number of speech frames in our dataset,
and let Xt be the frequency domain speech signal in frame t,
where t = 1, ..., T . Let ρt

s denote the posterior probabilities
ρt

s = p(s | Xt) of component labels s at frame t. Notice that
they differ from the posterior probabilities γcs in (12), which are
computed from the noisy data. In addition, letQs

k be the speech
power spectrum corresponding to component s, defined by

Qs
k =

∑
t

ρt
s | Xt

k |2 /
∑

t

ρt
s . (20)

We train the model using an EM algorithm which proceeds
as follows. In the E-step, we compute the posterior probabilities
ρt

s ∝ p(Xt | s)p(s), where p(Xt | s) and p(s) are those in (6),
and ρt

s is normalized such that
∑

s ρ
t
s = 1.

In the M-step, we update the parameters θs
m by solving a

Levinson-Durbin equation of order p, whose autocorrelation co-
efficients are obtained from Qs

k in (20) by inverse DFT. The νs

are then updated by νs = N2/
∑

k | Θ′
s,k |2 Qs

k, where Θ′
s,k

is the N -point DFT of (1,−θs
1, ...,−θs

p). Finally, the mixing
fractions are updated as usual via πs =

∑
t ρ

t
s/T .

The model parameters were initialized as follows. From
each frame in the dataset, the parameters (θ1, ..., θp, ν) were
extracted by solving the Levinson-Durbin equation, where the
autocorrelation was obtained from the frame spectrum | Xk |2.
These parameters were converted into cepstral coefficients, and
clustered intoS classes usingK-means clustering. The resulting
hard clusters induce a corresponding clustering of the speech
frames Xt in the dataset. For each cluster s, we computed the
parameters (θs

1, ..., θ
s
p, νs) as in the M-step above, using ρt

s =
0, 1 that corresponds to hard clusters. These parameters were
used as initial values. The parameters πs were initialized to the
relative number of frames in each hard cluster.

7. Experimental Results
To examine the effectiveness of this algorithm in robust speech
recognition, we used the denoised speech spectra Ŝk (14) to com-
pute the input signals to a recognition system. Two paradigms
are used. In the first one, the recognizer was trained on clean
speech. In the second one, the recognizer was retrained on a
training set consisting of signals that were computed from the
denoised spectra.



The large vocabulary continuous recognition system used in
our experiments is a version of the Microsoft continuous-density
HMMs (Whisper) with 6000 tied HMM states (senones), 20
Gaussians per state, which uses a speech representation consist-
ing of Mel-cepstrum (MFCC), delta cepstrum, and delta-delta
cepstrum. A fixed, bigram language model is used in all the
experiments. The system had been trained on a total of 17, 809
female clean speech sentences.

The test set consisted of 167 female WSJ sentences, which
were distorted by adding synthetic white non-Gaussian noise,
quasi-stationary noise recorded in an office, or non-stationary
noise recorded at an airport near a plane whose engine is shutting
off gradually. The amount of noise added to the clean speech
sentences was determined by a pre-specified SNR. The denoising
algorithm was applied to these data and produced an estimate of
the clean speech spectra. The MFCCs were computed from these
spectra, and the delta and delta-delta cepstra were then computed
from the MFCCs. The resulting speech representation was fed
to the recognizer.

Table 1 shows the results for white noise at 10 dB SNR.
A single component noise model was used. On the bottom are
three word error rate (WER) baselines. Preprocessing the test
set by a spectral subtraction algorithm (described in [3]) gives
a WER of 33.79%, and retraining on the output of spectral sub-
traction reduces it to 11.74%. Preprocessing the test set by the
new algorithm using a S = 64-component speech model has a
WER of 19.21%, which decreases to 12.81% for S = 256. Re-
training on the output of this algorithm reduces the WER further
to 10.34%, which is an excellent result.

Table 1: Recognition performance comparison (WER %) for
WSJ speech data corrupted by white noise at 10 dB SNR.

Systems WERs

new algorithm, S=64 19.21
new algorithm, S=256 12.81

new algorithm + retraining, S=256 10.34
spectral subtraction 33.79

spectral subtraction + retraining 11.74
no preprocessing (noisy-matched) 14.03

no preprocessing (mismatched) 55.06
clean speech 4.87

We also explored the effects of approximations on recogni-
tion and on computational speed (table 2). The approximation
was carried out by choosing a small number of the largest terms
in the weighted sum of (14), using aS = 256-component speech
model and a single component noise model.

Table 2: WERs (%) and computation speed for approximating
the denoising algorithm.

Number of terms WERs Computation speed

256 12.81 4.01 × Real time
5 13.48 3.80 × Real time
3 14.51 3.66 × Real time
1 18.54 3.45 × Real time

Table 3 shows the results for a quasi-stationary office noise
at -5 dB SNR, and table 4 shows the results for a highly time-
varying noise at 10 dB SNR of a plane engine shutting down. A
C = 4-component noise model was used in the latter.

Table 3: Recognition performance comparison (WER %) for
WSJ speech data corrupted by office noise at -5 dB SNR.

Systems WERs

new algorithm, S=64 15.07
new algorithm + retraining, S=64 7.50

spectral subtraction 14.15
spectral subtraction + retraining 7.05

no preprocessing (noisy-matched) 7.27
no preprocessing (mismatched) 20.16

clean speech 4.87

Table 4: Recognition performance comparison (WER %) for
WSJ speech data corrupted by plane engine noise at 10 dB SNR.

Systems WERs

new algorithm, S=256 11.60
spectral subtraction 25.04

spectral subtraction + retraining 10.12
no preprocessing (noisy-matched) 9.71

no preprocessing (mismatched) 28.77
clean speech 4.87

8. Conclusion
We have presented a new and quite general framework for speech
denoising and robust speech recognition. We demonstrated a
fast and efficient implementation of this framework, and ob-
tained very good recognition results. This implementation uses
a speech model where the spectra, in effect, are smoothed us-
ing the LPC parameters. Other smoothing methods may also be
used, such as methods based on cepstra or on specific filter banks.
We are currently extending this framework in several directions,
including modeling the effect of reverberations. We are also
pursuing approximation methods for reducing the complexity of
the algorithm when large noise models are used.
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