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Abstract

One approach to robust speech recognition is to use a sim-
ple speech model to remove the distortion, before applying the
speech recognizer. Previous attempts at this approach have re-
lied on unimodal or point estimates of the noise for each ut-
terance. In challenging acoustic environments,e.g., an airport,
the spectrum of the noise changes rapidly during an utterance,
making a point estimate a poor representation. We show how
an iterative form of Laplace’s method can be used to estimate
the clean speech, using a time-varying probability model of the
log-spectra of the clean speech, noise and channel distortion.
We use this method, called ALGONQUIN, to denoise speech
features and then feed these features into a large vocabulary
speech recognizer whose WER on theclean Wall Street Journal
data is 4.9%. When 10 dB of noise consisting of an airplane en-
gine shutting down is added to the data, the recognizer obtains
a WER of 28.8%. ALGONQUIN reduces the WER to 12.6%,
well below the WER of 25.0% obtained by our spectral sub-
traction algorithm, and close to the WER of 9.7% obtained by
the slow procedure of retraining the recognizer on training data
corrupted by the exact same noise. In fact, if ALGONQUIN is
used to denoise the noisy training data before the recognizer is
retrained, the WER is improved to 8.5%. For 10 dB of additive
uniform white noise, our spectral subtraction algorithm reduces
the WER from 55.1% to 33.8%. ALGONQUIN reduces the
WER to 14.2%. The recognizer trained on noisy data obtains
a WER of 14%, whereas the recognizer trained on noisy data
denoised by ALGONQUIN obtains a WER of 9.9%.

1. Introduction
Two main approaches to robust speech recognition [1] include
“recognizer domain approaches” (c.f. [2, 3, 4]), where the
acoustic recognition model is modified or retrained to recognize
noisy, distorted speech, and “feature domain approaches” (c.f.
[5, 6]), where the features of noisy, distorted speech are first
denoised and then fed into a speech recognition system whose
acoustic recognition model is trained on clean speech.

One advantage of the feature domain approach over the rec-
ognizer domain approach is that the speech modeling part of
the denoising model can have much lower complexity than the
full acoustic recognition model. This can lead to a much faster
overall system, since the denoising process uses probabilistic
inference in a much smaller model. Also, since the complexity
of the denoising model is much lower than the complexity of
the recognizer, the denoising model can be adapted to new en-
vironments more easily, or a variety of denoising models can be
stored and applied as needed.

One concern about the feature domain approach is that the
residual noise left over after denoising may significantly de-

grade recognition performance. However, in [6], it is shown
that by training the recognizer on speech that is first corrupted
by avariety of noise types and then denoised using a particular
method, excellent recognition results are obtained using the de-
noising method on new noise types. This is because theresidual
noise left by the denoising method has statistics that tend to be
similar for different noise types. This result justifies the feature
domain approach we present here.

We model the log-spectra of the clean speech, noise, and
channel impulse response function using mixtures of Gaus-
sians. The relationship between these log-spectra and the log-
spectrum of the noisy speech is nonlinear, leading to a poste-
rior distribution over the clean speech that is a mixture of non-
Gaussian distributions.

We show how an iterative form of Laplace’s method (using
the vector Taylor series to approximate a density with a Gaus-
sian) can be used to infer the clean speech. Our method, called
ALGONQUIN, improves on previous work using Laplace’s
method [8] by modeling the variance of the noise and chan-
nel instead of using point estimates, by modeling the noise and
channel as a mixture of different types instead of one type, by
iterating Laplace’s method to track the clean speech instead of
applying it once at the model centers, and by accounting for the
error in the nonlinear relationship between the log-spectra.

From experiments on large vocabulary recognition using
the Wall Street Journal data with additive white noise, office
noise, and airplane engine noise, we find that ALGONQUIN
obtains significantly lower WERs than a spectral subtraction
method. In fact, ALGONQUIN’s WERs are close to the WERs
obtained by a recognizer that is retrained by adding the test
noise to the training set. When the noisy training data is de-
noised by ALGONQUIN before retraining the recognizer, the
WERs drop significantly.

2. Model of clean speech, noise, channel,
and noisy distorted speech

After describing a probability model of the class of clean
speech, clean speech log-spectrum, class of noise, noise log-
spectrum, class of channel, channel impulse response log-
spectrum, and noisy distorted speech, we show how probabilis-
tic inference in this model can be used to estimate the clean
speech.

For clarity, we present a version of ALGONQUIN that
treats frames of log-spectra independently. The extension of the
version presented here to HMM models of speech, noise and
channel distortion is analogous to the extension of a mixture of
Gaussians to an HMM with Gaussian outputs.

Following [7, 8], we derive an approximate relationship be-
tween the log spectra of the clean speech, noise, channel and



noisy speech. Assuming additive noise and linear channel dis-
tortion, in the time domain we have

y(t) = h(t) ? x(t) + n(t); (1)

where “?” indicates convolution.
We obtain the Fourier transform for a particular frame (25

ms spaced at 10 ms intervals) by applying a window and com-
puting the FFT. Assuming the channel frequency response is
constant across each mel-frequency filter band, we obtain the
mel-frequency domain relationship,

Y (f) � H(f)X(f) +N(f): (2)

Assuming the channel impulse response is shorter than the
frame size, the energy spectrum is obtained as follows:

jY (f)j2

= Y (f)�Y (f)

� (H(f)X(f) +N(f))�(H(f)X(f) +N(f))

= (H(f)�H(f))(X(f)�X(f)) + (N(f)�N(f))

+ 2Re(N(f)�H(f)X(f));

= jH(f)j2jX(f)j2 + jN(f)j2

+ 2N(f)�H(f)X(f): (3)

If the phase of the noise and the speech are uncorrelated, the last
term in the above expression is small and we can approximate
the energy spectrum as follows:

jY (f)j2 � jH(f)j2jX(f)j2 + jN(f)j2: (4)

Letting y be the vector containing the log-spectrum
log jY (:)j2, and similarly forh, x andn, we can rewrite (4)
as

exp(y) � exp(h) exp(x) + exp(n)

= exp(h+ x) + exp(n)

= exp(h+ x) Æ (1+ exp(n� h� x)); (5)

where theexp() function operates in an element-wise fashion
on its vector argument and the “Æ” symbol indicates element-
wise product.

Taking the logarithm, we obtain a functiong() that is an
approximate mapping ofh, x andn to y (see [7, 8] for more
details):

y � g([x n h]T) = h+x+ln(1+exp(n�h�x)): (6)

“T” indicates matrix transpose andln() andexp() operate on
the individual elements of their vector arguments.

Assuming the errors in the above approximation are Gaus-
sian, the observation likelihood is

p(yjx;n;h) = N (y;g([x n h]T);	); (7)

where	 is the covariance matrix of the errors.
Using a priorp(x;n;h), the goal of denoising is to infer

the log-spectrum of the clean speechx, given the log-spectrum
of the noisy speechy. The minimum squared error estimate of
x is

x̂ =

Z
x

xp(xjy); where

p(xjy) /

Z
n;h

p(yjx;n;h)p(x;n;h): (8)

This inference is made difficult by the fact that the nonlinearity
g([x n h]T) in (6) makes the posterior non-Gaussian even if the
prior is Gaussian.

We model the priorp(x;n;h) using a mixture of Gaus-
sians. Lets 2 f1; : : : ; N

s
g index the combined set of Gaus-

sian mixture components for the speech, noise and channel dis-
tortion. We usually start with a mixture ofN

x
Gaussians for

the speech,Nn Gaussians for the noise, andN
h

Gaussians for
the channel, and then combine these to produce a mixture of
N
s
= N

x
N
n
N
h

Gaussians on the combined vector[x n h]T.
The noise model can be estimated from silence periods (the

method we used in our experiments) or it can be estimated from
the test utterance using a generalized expectation-maximization
algorithm, where the speech model is kept fixed and the noise
model is adapted to the test utterance.

We use�s, �
s

and�
s

to parameterize the mixture model
as follows:

p(s) = �
s
;

p(x;n;hjs) = N ([x n h]T;�
s
;�s): (9)

If the number of log-spectrum coefficients isM , thenx, n and
h areM -vectors and�

s
is a3M -vector. We assume the speech,

noise and channel distortion are independent, so�
s

is a diago-
nal3M � 3M covariance matrix.

Combining (7) and (9), the joint distribution over the mix-
ture index, clean speech, noise, channel distortion and noisy
speech is

p(y;x;n;h; s) =

N (y;g([x n h]T);	)N ([x n h]T;�
s
;�s)�s: (10)

3. Probabilistic inference by iterating
Laplace’s method

For each mixture components, we use an iterative form of
Laplace’s method to approximatep(x;n;hjy; s). Laplace’s
method uses the vector Taylor series to approximate a density
with a Gaussian. Starting at the mixture center�

s
, we com-

pute the first and second order statistics of the posterior and use
these to predict the location of the mode. We iterate this proce-
dure until convergence or for a fixed number of iterations.

In previous work [8], a single application of Laplace’s
method (referred to as a vector Taylor series approximation)
is made at the mean of the Gaussian speech component, and
the uncertainty in the noise and channel is not accounted for.
For time-varying environments, accounting for variability in the
noise and channel improves performance significantly.

Let�
s

(i) and�s

(i) be the mean and covariance of the cur-
rent approximation at iterationi. So, at iterationi we have

p(x;n;hjy; s) � N ([x n h]T;�
s

(i)
;�s

(i)): (11)

Let g0 : R3M
! R

M

� R
3M be the derivative ofg() with

respect to its argument. Since different elements in the vectors
of (6) are uncoupled, thisM �3M matrix is a concatenation of
threeM �M diagonal matrices.

Usingg0() to obtain a 1st order vector Taylor series expan-
sion, we obtain the recursions

�s

(i+1) =
�
�s

�1 + g
0(�

s

(i))T	�1
g
0(�

s

(i))
�
�1
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�
s
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s
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�
�s
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0(�

s

(i))T	�1
g
0(�

s

(i))
�
�1

�
�
�s

�1(�
s
� �

s

(i)) + g
0(�

s

(i))	�1(y�g(�
s

(i)))
�
: (12)



Initially, we set�
s

(0) = �
s

and�
s

(0) = �
s
.

After I iterations for every mixture components, we use
�
s

(I) and�
s

(I) to compute the posterior responsibilities of the
component indexed bys:
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�
: (13)

� is the normalizing constant that satisfies
P

s

�
(I)
s

= 1.
The minimum squared error estimate of the clean speech,

x̂, is
x̂ =

X
s

�
(I)
s
�
s

(I)
: (14)

We apply this algorithm on a frame-by-frame basis, until all
frames in the test utterance have been denoised.

4. Speed
Our research C code denoises 40 frames/second, for 256 speech
components, 1 noise component, no channel model, and 5 iter-
ations of Laplace’s method.

We used matrix notation in the above description mainly
for brevity. Since elements ofx, n, h andy that are in different
rowsdo not interact in (6), the matrices in the above description
are diagonal or block diagonal. Consequently, the operations
are essentially scalar operations.

MATLAB code for this version of ALGONQUIN is avail-
able at http://www.cs.toronto.edu/�frey/aal. The version num-
ber is ALGONQUINS2. For 256 speech components, 1 noise
component, no channel model, and 5 iterations of Laplace’s
method, this routine is able to denoise each test utterance of
the Wall Street Journal in about 2 minutes on a 1GHz Pentium
machine. Several obvious tricks can be used to gain another
order of magnitude in speed.

The amount of time needed by this version of ALGO-
NQUIN scales asO(Nx � Nn � Nh

), whereNx is the number
of speech components,Nn is the number of noise components,
andN

h
is the number of channel components. We have de-

rived a factorized variational technique that reduces the time to
O(Nx +Nn +N

h
).

5. Experimental results on large vocabulary
speech recognition

We present results for noise added by computer to the Wall
Street Journal data, including uniform white noise, office noise
and highly time-varying noise consisting of an airplane engine
shutting down. In all cases, ALGONQUIN uses a speech model
consisting of a mixture of 256 Gaussians trained on the clean
Wall Street Journal data.

The denoised log-spectral coefficients are converted to cep-
stral coefficients and then fed into the Whisper speech recog-
nition system, which includes a language model. This system
obtains a WER of 4.9% onclean Wall Street Journal test data.

For each type of noise, we compare the WER obtained by
denoising using ALGONQUIN with the WER obtained without
denoising and the WER obtained by denoising using spectral
subtraction [6].

Table 1: WER on Wall Street Journal test data with uniform
white noise, SNR = 10 dB.

Method WER
No denoising 55.1%
Spectral subtraction 33.8%
ALGONQUIN 15.3%

Recognizer trained on noisy speech 14.0%
Recognizer trained on ALGONQUIN output 9.9%

Noise-free data 4.9%

Table 2: WER on Wall Street Journal test data with office noise,
SNR = -5 dB.

Method WER
No denoising 20.2%
Spectral subtraction 14.2%
ALGONQUIN 9.1%

Recognizer trained on noisy speech 7.3%
Recognizer trained on ALGONQUIN output 7.2%

Noise-free data 4.9%

The spectral subtraction technique [6] obtains a point esti-
mate of the noise spectrum during “silence” periods and sub-
tracts this spectrum from the noisy speech spectrum. The sub-
traction is thresholded to prevent the energy from going to low.

In [6], it was shown that by training the recognizer on
speech that is first corrupted by avariety of noise types and
then denoised using a particular method, excellent recognition
results are obtained using the denoising method on new noise
types. We are currently obtaining results for ALGONQUIN ap-
plied in this way. For now, we give the WER obtained by de-
noising test data with ALGONQUIN and then feeding it into a
recognizer that is trained on data that had thesame noise added
and was then denoised using ALGONQUIN before training. We
compare this WER with the WER obtained by training the rec-
ognizer on the noisy data without first denoising the data. In
this way, we can see whether or not ALGONQUIN makes the
recognition task easier for the retrained recognizer.

5.1. Uniform white noise
We added 10dB of uniform white noise to the test data. The
noise model is a single Gaussian with mean and variance es-
timated from the first 50 silence frames of each test utterance.
The results are shown in Table 1. ALGONQUIN gives a WER
that is significantly lower than the WER obtained by spectral
subtraction and almost as good as the WER obtained by the
recognizer that is trained on noisy training data. A significant
improvement in WER is obtained if the recognizer is trained on
noisy data that is first denoised using ALGONQUIN.

5.2. Office noise
This noise sequence was recorded in an office and contains typ-
ical office sounds, such as air conditioning, computer fan and
disk, keyboard typing and the room acoustics. The noise level
is -5 dB. The noise model is a single Gaussian with mean and
variance estimated from the first 50 silence frames of each test
utterance. The results are shown in Table 2.

5.3. Airplane engine noise
This noise sequence was recorded at an airport and contains the
highly time-varying sound of an aircraft engine shutting down,



Table 3: WER on Wall Street Journal test data with airplane
engine noise, SNR = 10 dB.

Method WER
No denoising 28.8%
Spectral subtraction 25.0%
ALGONQUIN, 1 noise component 29.4%
ALGONQUIN, 2 noise components 22.9%
ALGONQUIN, 4 noise components 18.2%
ALGONQUIN, 8 noise components 13.0%
ALGONQUIN, 16 noise components 12.6%

Recognizer trained on noisy speech 9.7%
Recognizer trained on ALGONQUIN output 8.5%
(8 noise components)

Noise-free data 4.9%

cycling through harmonics that are similar to speech harmonics.
We set the noise level to10 dB. We give results for a noise
model consisting of 1, 2, 4, 8 and 16 mixture components. The
results are shown in Table 3. For this highly time-varying noise,
the advantage of the mixture model over a point estimate or a
single Gaussian is clear.

6. Discussion
ALGONQUIN is a fast technique for denoising speech spec-
trum features. In this paper, we used the log-spectrum features,
although the cepstrum features or even the energy spectrum fea-
tures can be used.

On the Wall Street Journal data set, ALGONQUIN obtains
WERs that are significantly lower than a standard spectral sub-
traction technique [6], and comparable to the performance ob-
tained by the cumbersome process of training the recognizer
on noisy training data. The WERs obtained by the recognizer
trained on noisy dataimprove if ALGONQUIN is used to de-
noise both the training and test data. For highly time-varying
noise, we find that using a mixture model for the noisy leads to
a significant improvement over a single Gaussian.

In contrast to previous work using Laplace’s method [8],
ALGONQUIN

� accounts for variability in the features for noise and
channel distortion (instead of using a point estimate)

� accounts for the covariance between the speech features
and the noise and channel features

� uses an iterative form of Laplace’s method, that tracks
the interpolated estimates of the speech, noise and chan-
nel (instead of being applied at the fixed model centers)

� accounts for the error in the nonlinear relationship be-
tween the noisy speech and the clean speech, noise and
channel

In contrast to the recognizer domain approach of Gales and
Young [4], ALGONQUIN uses a small speech model (in our
experiments, 256 states) to account for the noise and channel.
This means the model can be adapted more quickly to new types
of noise, since the recognizer typically has about 120,000 mix-
ture states. In contrast to Attiaset. al., who perform inference in
a time-domain model of the speech (although computations are
performed in the frequency domain for speed), ALGONQUIN
performs inference in a model of the log-spectrum features.

The research C code for ALGONQUIN denoises 40
frames/second, for 256 speech components, 1 noise compo-

nent, no channel model, and 5 iterations of Laplace’s method.
Straightforward implementation tricks can be used to reduce
this time by an order of magnitude. When the number of noise
components is increased, the time needed to denoise the utter-
ance increases. We have derived a factorized variational method
that will allow ALGONQUIN to run significantly faster and we
are currently running experiments to verify that the variational
technique gives comparable WERs.

We are also running experiments on a version of ALGO-
NQUIN that can estimate the noise model from the test utter-
ance, even during periods of non-”silence”. The procedure of
iterating Laplace’s method can be viewed as maximizing an
approximate lower bound on the log-probability of the test ut-
terance. So, it can be used as an E-step in a generalized EM
algorithm [10]. In the M-step, the parameters of the noise
model are adjusted to increase the approximate bound on the
log-probability of the test utterance.
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