
Hybrid Natural Language Generation for Spoken Dialogue Systems

Michel Galley, Eric Fosler-Lussier, and Alexandros Potamianos

Dialogue Systems Research Department
Bell Labs, Lucent Technologies, New Jersey (USA)�

galley,fosler,potam � @research.bell-labs.com

Abstract
The natural language generation component of most dialogue
systems is based on templates. Template-based generators are
hard to maintain and reuse, and the sentences they produce
lack the variability and robustness needed by conversational
systems. In this paper, we propose a flexible and domain-
independent natural language generator for spoken dialogue
systems which combines fixed surface expressions with freely
generated text. The generation algorithm follows a hybrid ap-
proach, combining finite state machine (FSM) grammars and
corpus-based language models. In this approach, the FSM
grammar (a reversible parser grammar) is constrained by a word
and concept � -gram that takes terminals and non-terminal co-
occurrences into account. The � -gram grammar helps prevent
inappropriate derivations, therefore improving the quality of the
generated texts. Furthermore, the proposed algorithm achieves
faster than real-time performance because of the limited number
of derivations.

1. Introduction
Natural language generation (NLG) has been extensively stud-
ied for ‘single-interaction’ systems, e.g., summarizers, trans-
lators, and report generators, but little is known about effec-
tive ways of performing NLG in dialogue systems. Current ap-
proaches to NLG have limited success when applied to conver-
sational systems. The naturalness and perceived intelligence of
a spoken dialogue interface depends heavily on the qualities of
the natural language generation module. The language use must
be extensive and varied [13]. In addition, the NLG module has
to be robust against missing and incomplete data [6], a problem
that occurs often in spoken dialogue systems. Another require-
ment in spoken dialogue systems is real-time performance; the
NLG module should operate in a fraction of real time.

Template-based systems require little linguistic expertise
and are cost-effective solutions to NLG in the early stages of
prototyping. However, templates tend to become unmanage-
able as the system grows, since the number of templates needed
to cover all situations while maintaining a reasonable quality
can become quite large. In addition, templates are application
specific and have to be rewritten when switching to a new appli-
cation domain. Other problems that template-based NLG sys-
tems face include an overly restrictive use of language that lim-
its variability in the generated text, and vulnerability to missing
data, since they merely rely on slot-filling techniques. Over-
all, the time and energy needed to achieve a reasonable quality,
variety, and robustness using templates is very high for large
applications.

General-purpose rule-based generation systems like
FUF/SURGE [5] and KPML [3] sidestep these problems,
offering a broad coverage of English, but because of their

generality, sophistication, and their need for a large amount of
linguistic knowledge, such systems tend to be difficult to adapt
to task-oriented applications. In addition, typical rule-based
generators do not achieve real-time performance and are
unsuitable for dialogue systems [9, 13].

Recently, attempts have been made to overcome the prob-
lems of both template-based and rule-based systems by intro-
ducing a hybrid approach incorporating both models [4, 8, 13].
In [1], Axelrod proposes a model where sub-phrases in the
templates can be “turned-on” depending on the semantic input.
In [9], Oh and Rudnicky propose a purely stochastic surface re-
alization. Stochastic surface realization is flexible and fast but
it runs the unavoidable risk of generating ungrammatical and
ill-formed sentences.

In this paper, we propose a flexible framework for natu-
ral language generation in dialogue systems that combines both
rule-based and stochastic models. Statistical language models
reduce the need for formal linguistic characterization. Simple
and intuitive semantic rules can effectively be used to obtain
an output of sustainable quality, “by relegating some aspects
of lexical choice ... to the statistical component” [6]. In ad-
dition, we show how this framework is robust against missing
data, and how it is possible to introduce variability in the out-
put with minimal efforts. The proposed algorithm can also be
implemented to run in a fraction of real-time. This framework
has been implemented in the Bell Labs Communicator system,
a task-based information-seeking spoken dialogue system. It
is currently dedicated to the travel reservation domain, but its
components are portable across multiple domains. Our over-
all goal, is to decrease prototyping time and effort by creating
application-independent tools and algorithms that automate the
design process and that can be used by non-expert application
developers.

2. System Overview
In dialogue systems, natural language generation is the task of
automatically producing utterances from an abstract semantic
representation. In [13], Stent proposes that natural language
generators should consist of three layers: planning intention,
content, and form. In dialogue systems, determining the sys-
tem’s intent, or communicative goal, is out of the scope of the
generator and is usually handled by the dialogue manager. The
two remaining tasks are respectively performed by the utterance
planner and the utterance realizer described next.

3. Utterance Planner
The main function of the utterance planner is to determine the
content of the system prompt according to the communicative
goal selected by the dialogue manager. A typical goal frame



produced by the dialogue manager is shown below:

[(GOAL
:intention inform
:predicate updatedValues
:context .trip.flight.leg1)]

System prompts are categorized according to the system’s ‘in-
tention’ which corresponds to a general communicative goal,
e.g., ‘inform’. The fields ‘predicate’ and ‘context’ further con-
strain the prompt type by specifying a sub-goal, e.g., inform the
user about changes to the value of attributes, and the semantic
sub-tree that the prompt refers too, e.g., the first leg of a flight
(see [2, 10] for details on the semantic tree representation). The
task of the utterance planner is to select the appropriate seman-
tic content for each category of system prompts. The semantic
content is defined here as a set of attribute-value pairs, (e.g.,
CITY:NEWARK).

Selecting the appropriate set of attribute-value pairs to in-
clude in the utterance is a hard problem that is beyond the scope
of this paper. Many sources of information have to be combined
to determine what information is relevant to the user including:
communicative goal and subgoal, dialogue context, ontological
representation of the domain, user input, system output, dia-
logue history and user preferences.

In order to introduce variability in the system prompts,
several syntactic structures and lexicalisations are consid-
ered for the same communicative goal. Such alternative
forms, or phrasal patterns, e.g., Now you’re flying
�
FROMCITY � � TOCITY � , contain non-terminal symbols,

e.g.
�
FROMCITY � that abstract away all the details about

the semantic content, e.g., city, state, airport, country. Such
a symbol corresponds to a concept of the application domain,
which can have different lexicalisations as discussed in the next
section e.g., Chicago, Chicago O’Hare, and O’Hare
airport in Chicago are alternative lexicalisations of the�
CITY � symbol. The output of the utterance planner consists

of a list of phrasal patterns and scores, and a list of values
(constraints on the patterns). For example, given a change
in the value of the departure city and the aforementioned
communicative goal the output of the utterance planner might
be:

[(PATTERNS
‘Now I have you leaving � FROMCITY ��� TOCITY � ’ 0.92
‘Now you’re flying � FROMCITY ��� TOCITY � ’ 0.92
‘Now I have you leaving � FROMCITY � ’ 0.8
‘Ok, your new flight leaves � FROMCITY � ’) 0.8

(CONTENT
:depCity ‘Athens’
:depState ‘Georgia’
:arrCity ‘Newark’)]

Note that each phrasal pattern may contain a different set of
attributes. The scores associated with each phrasal pattern are
a by-product of the context selection algorithm and are solely a
function of which attributes the phrasal pattern contains.

4. Utterance Realizer
Utterance realization is the process of producing text that is syn-
tactically and morphologically correct, while consistent with
the input from the utterance planner. In this process, a language
model, e.g., a generative grammar, is used. As discussed in
the previous section, the utterance planner provides the utter-
ance realizer with different phrasal patterns, e.g., What time
would you like to get in

�
TOCITY � ?. The main

role of the utterance realizer is to convert into surface expres-
sions the non-terminals, e.g.,

�
TOCITY � , for each of the

phrasal patterns and rank order the produced surface realiza-
tions. Value constraints, e.g., ‘:arrCity’ is ‘Newark’, need to be
satisfied. Robustness towards missing or underspecified seman-
tic information is also expected.

A fully linguistically motivated utterance realizer can pro-
duce high-quality text output and is easy to maintain and ex-
tend; however, such a system depends on large amounts of
hand-crafted knowledge. Statistical models don’t require a lot
of linguistic resources, but tend to generate ill-formed or un-
grammatical sentences. In this section, a hybrid generation ap-
proach is described that combines the flexibility and simplic-
ity of template-based systems with the power, scalability, and
maintainability of complex rule-based NLG systems.

4.1. Rule-based Language Model

Phrasal patterns contain non-terminal symbols, which corre-
spond to concepts in the application domain. These symbols
are recursively expanded by the rules of a semantic generative
grammar, until the phrasal patterns contain only terminal sym-
bols (words). We say that this grammar is semantic because
it does not contain a detailed analysis of the syntax of the lan-
guage; rather, it encodes knowledge about how lexical patterns
co-occur within the application domain to form concepts.

The recursive weighted finite-state grammar in our system
is roughly equivalent to a probabilistic context free grammar
(PCFG). Unfortunately, expanding phrasal patterns via a PCFG
has some limitations. By the definition of context-free, the ex-
pansion of any PCFG rule is performed independently of any
other expansion. In natural languages, however, the realization
of a phrase usually depends on its location in the parse tree [7].
For example, consider the difference between placing a pronoun
in a sentence (e.g. he gave it to Bill), and placing a
corresponding noun phrase (He gave Bill the ball); in the
latter sentence you cannot replace the ball with it. PCFGs lack
the ability to model horizontal dependencies within and across
rules. Similarly, another problem with PCFGs is their lack of
sensitivity to words: the probability of their parses only depends
on structural factors; lexical co-occurrences are not taken into
account, and consequently many inter-lexical constraints are ig-
nored.

In the context of our NLG component, an even more impor-
tant problem with PCFGs is the assumption we have made about
the application developer: we shouldn’t expect him to possess
any linguistic expertise. Badly hand-written rules might lead
the NLG component to generate ungrammatical sentences. Fur-
thermore, the developer is likely to keep adding new rules to
expand the coverage and the variability of the output language,
thus leading to an over-generation problem: the combinatorial
factors might lead the NLG module to generate a vast number of
possible utterances, rendering the problem of storing them and
choosing the best one difficult. There do exist ways to represent
large amount of alternative sentences in compact structures like
lattices. However, it would be best to reduce the search space
by weeding out bad candidates in the first place.

4.2. Statistical Language Model

Given the shortcomings of a pure PCFG generation approach
detailed in the previous section, we propose an approach which
prunes out sentences that are unlikely to be generated by rank-
ing them with a second, lexically-oriented model. A word-
based � -gram grammar lets us take lexical co-occurrences into



... DEPARTING <FROMCITY> ...

'ruled-based'
modeln-gram

model

(a)

(b)

... DEPARTING FROM <CITY> ...

... DEPARTING LEAVING <CITY> ...

Figure 1: Generation by the rule based system of two possible
instantiations of DEPARTING

�
FROMCITY � . (a) A possi-

ble expansion, rated highly by the � -gram grammar. (b) A less
likely expansion, rated poor by the � -gram grammar.

account within surface word strings. Furthermore, with a
‘word-concept’ � -gram, i.e., an � -gram trained on terminals
and nonterminals of the semantic grammar, we can put some
contextual conditions on the expansion of a node according to
its location in the parse tree. This technique is similar to a pars-
ing strategy currently used in our lab [11].

In Fig. 1, we show an example where we can expand�
FROMCITY � into FROM

�
CITY � , but not into DEPART-

ING
�
CITY � , because of the context: the previous word is

LEAVING, and the � -gram model tells us that the probability
of LEAVING DEPARTING is very close to zero. While zero-
frequency counts are a problem in speech recognition language
models, from a generative point of view, we can use this in-
formation to delete very unlikely lexical co-occurrences from
output sentences.

This approach has many advantages: by using the � -gram
grammar to prune unlikely expansions, the combinatorial explo-
sion problem we would encounter if we let the semantic gram-
mar generate all sentences it can produce is greatly reduced.
Furthermore, this architecture enables us to achieve our goal
of not relying on linguistic expertise: it is flexible enough to
cope with semantic grammar rules written by non-experts (like
those of the previous example). Finally, by training an � -gram
on a sequence of concepts and words like

�
AIRPORT � in�

CITY � , we can represent co-occurrences in concepts in a
more compact way than if were were modeling strings like JFK
AIRPORT IN NEW YORK. It offers a better understanding of
the underlying language and increases the power and robustness
of the statistical language model.

5. Implementation
As stated above, the utterance realizer creates utterances given
phrasal patterns and a set of attributes by integrating two sta-
tistical models. In our implementation, the models have been
encoded as finite state machines (FSM), using the AT&T Bell
Labs Finite State Machine (FSM) library [12]. The encoding
scheme is very similar to that of our finite-state recursive parser
[11].

In our architecture, the set of context-free rules are imple-
mented as a finite state transducer (FST), labelled � . Left-hand
sides of the rules are mapped to the input alphabet of the FST,
and right-hand sides to the output alphabet. Epsilon (null) la-
bels, denoted as “eps”, are added to the left-hand side of the
rule, so that the number of input and output symbols are equal.
Fig. 2 illustrates the encoding of some semantic rules are in the
FST � .

We also define a second FSM, � , which is a weighted finite
state automaton (FSA) that encodes all transitions of the ‘word-

0

1

<FROMCITY>:BETWEEN

<FROMCITY>:DEPART

<FROMCITY>:FROM

<FROMCITY>:LEAVING

2<FROMCITY>:LEAVING

3

<CITY>:<city>

<CITY>:<airport>

4

<CITY>:<city>

<CITY>:<airport>

5

<CITY>:<city>

eps:<CITY>
eps:FROM

eps:<state>

eps:IN

Figure 2: The FST � of a simple semantic grammar

concept’ � -gram, including back-off probabilities. Finally, a
weighted FSA � is constructed that represents all alternative
phrasal patterns.

The expansion of the phrasal patterns is done by recursively
composing � with both language models, followed by taking
the output projection (i.e., discarding the input symbols):

� � ����� (1)

�	� � � (2)

�	
 � � �	
����� ��� proj 2 (3)

The recursion terminates when � 
 equals � 
��� — when a
recursion doesn’t create any new text span1. Checking whether
two automata are equivalent is computationally expensive, since
both automata have to be minimized in order to be compared.
But a simple analysis of the rules can determine what is the
maximum number of recursion, since it is equivalent to the max-
imum depth of the generative trees. The resulting automaton is
a string composed of only words and attributes. Fig. 3 illustrates
the expansion of a phrasal pattern.

The resulting FSM is then composed with FSAs encod-
ing the constraints. For example, if the utterance planner
specifies that the utterance should contain exactly the at-
tributes

�
airport � ,

�
state � ,

�
digit � , and

�
ampm � ,

all paths in the output FSM that don’t satisfy those conditions
are eliminated. A n-best search through the resulting FSM de-
termines a candidate set of generated sentences to choose from.

6. Discussion
The example in Fig. 4 shows how the ‘word-concept’ � -gram
can help reducing the number of ungrammatical sentences. We
have run the NLG module in two different situations, once
solely using the semantic rule-based model, and once with both
the rule-based and � -gram (trigram) models. Both systems were
seeded with the same phrasal pattern and the same values for
the database attributes. Since a � -gram model is well suited to
catch short-term dependencies (e.g., agreement between a sub-
ject and a verb), many ungrammatical generations are avoided.
We noticed that most of the incorrect words appear at the edges
of either the fixed part or the freely generated part of the phrasal
pattern. This is the case in error E1, where an error occurs
right between the edges of both fixed (flying) and variable
(Newark at 7:20am) parts. � -gram models also help to
avoid error like in errors E3 and E4, because they correspond
to unseen sequence of words. However, error E2 may not be
avoidable, even with a trigram.

1A span is a portion of a sentence or utterance.



(a) 0 1
YOU’RE

2
FLYING

3
<FROMCITY>

4
<TOCITY>

(b)
0 1

YOU’RE
2

FLYING
3

FROM
4

<CITY>
5

INTO

TO
6

<CITY>

(c)

2
...

3
FROM

6

<airport>

<city>

4
<airport>

<city>

5

<airport>

<city>

7
INTO

TO
<state>

IN

10

<airport>

<city>

8
<airport>

<city>

9

<airport>

<city>

<state>

IN

Figure 3: The FSA representing a single phrasal pattern and the two first steps of the surface realization mechanisms.

phrasal pattern:
����� flying

�
FROMCITY � �

FROMTIME � �
TOCITY � �

TOTIME �

a: no n-gram weights
����� flying from Newark at 7:20am to Boston arriving in Boston at 8:00am �����
����� flying NewarkE1 at 7:20am to Boston that arriveE2 at 8:00am �����
����� flying from Newark leaving at atE3 7:20am to Boston arriving at 8:00am �����
����� flying from Newark leaving at 7:20am to Boston arriving 8:00am E4 �����

b: with n-gram weights
����� flying from Newark at 7:20am arriving in Boston at 8:00am �����
����� flying from Newark leaving at 7:20am and arriving in Boston at 8:00am �����
����� flying from Newark leaving at 7:20am and arriving at 8:00am in Boston �����
����� flying at 7:20 from Newark and arriving in Boston at 8:00am �����

Figure 4: Sample four best outputs from rule-based generator
(a) without � -gram weights, and (b) with � -gram weights. Er-
rors are marked as a superscript E � .

While anecdotally our system seems to be getting good re-
sults, evaluating a NLG system is, unfortunately, a difficult task.
Quantitative aspects like speed and memory usage are easy to
assess, but it is more difficult to appraise qualitative aspects.
Evaluating the NLG component of a spoken dialogue system
is even more problematic, since it is hard to separate it from
other components of the system, especially the text-to-speech
engine [9]. In future work, we hope to develop an experimental
paradigm to evaluate this system against our older, template-
based generator.

7. Conclusions
We have proposed a new application-independent approach for
natural language generation in dialogue systems that is robust
against missing data and that renders the expected variation in
the output.

Statistical methods provide the flexibility to deal with un-
derspecified linguistic knowledge, while semantic rules provide
some control as to what phrases should or should not be gen-
erated. The system can produce sentences in a fraction of real-
time, since most of the ungrammatical expansions are automat-
ically pruned by the stochastic language model.

Our natural language generation module also minimizes
development effort: the stochastic language model can accom-
modate simple semantic rules that do not require linguistic
expertise, making rules far simpler to write than detailed
syntactic rules. Furthermore, the rules from the semantic
grammar of the dialogue system’s parser can be used to seed
rule construction. We anticipate that, due to its flexibility, the

system will be easy to adapt for other domains.

Acknowledgments: This work was partially funded by DARPA under
the auspices of the Communicator project. The authors would like to
express their sincere appreciation to Chin-Hui Lee, Joe Olive, Gerald
Penn, Jeff Kuo, Andy Pargellis and Egbert Ammicht for many helpful
discussions.

8. References
[1] S. Axelrod. “Natural Language Generation in the IBM Flight Infor-

mation System”, in Proc. of ANLP-NAACL’2000, pp. 21-26, (Seat-
tle, Washington), May 2000.

[2] E. Ammicht, A. Potamianos, and E. Fosler-Lussier, “Ambiguity
Representation and Resolution in Spoken Dialogue Systems,” sub-
mitted to EUROSPEECH, (Aalborg, Denmark), 2001.

[3] J. Bateman. “KPML Development Environment: multilingual lin-
guistic resource development and sentence generation.”, German
National Center for Information Technology (GDM), IPSI, (Darm-
stadt, Germany), Jan. 1997.

[4] S. Busemann, H. Horacek. “A Flexible Shallow Approach to Text
Generation”, in Proc. INLG’98, pp. 238-247, (Niagara-on-the-
Lake, Canada), Aug. 1998.

[5] M. Elhadad, J. Robin. “An overview of SURGE: A reusable com-
prehensive syntactic realization component.” Technical Report 96-
03, Dept. of Mathematics and Computer Science, Ben Gurion Uni-
versity, (Beer Sheva, Israel), 1996.

[6] K. Knight and V. Hatzivassiloglou. “Two-Level, Many-Paths Gen-
eration”, In Proc. of the ACL-95. (Boston, Mass.), 1995.

[7] S. Kuno. “Functional Sentence perspective: A case study from
Japanese and English”, Linguistic Inquiry, volume 3, pp. 269-320,
1972.

[8] I. Langkilde, “Forest-Based Statistical Sentence Generation”, in
Proc. ANLP-NAACL’2000, pp. 170-177, May 2000.

[9] A.H. Oh and A.I. Rudnicky. “Stochastic Language Generation
for Spoken Dialogue Systems”, In Proc. of ANLP-NAACL’2000,
pp. 27-32, (Seattle, Washington), May 2000.

[10] A. Potamianos, E. Ammicht, and H.-K. Kuo, “Dialogue manage-
ment in the Bell Labs communicator system,” in Internat. Conf.
Speech Language Processing, (Beijing, China), Oct. 2000.

[11] A. Potamianos and H.-K. Kuo, “Speech understanding using finite
state transducers,” in Internat. Conf. Speech Language Processing,
(Beijing, China), Oct. 2000.

[12] M. Riley, F. Pereira, “Weighted-finite automata tools with applica-
tions to speech and language processing,” Technical report, AT&T
Bell Laboratories, 1995.

[13] A. Stent. “Content Planning and Generation in Continuous-
Speech Spoken Dialog Systems”, in Proc. of the KI’99 workshop,
”May I Speak Freely?”, (Bonn, Germany), Sep. 1999.


