
ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

Early Measurements of a Cluster-based
Architecture for P2P Systems

Balachander Krishnamurthy, Jia Wang, Yinglian Xie

I. INTRODUCTION

Peer-to-peer applications such as Napster [4], Freenet [1],
and Gnutella [2], [7] have gained much attention recently.
These applications are mainly designed and used for large-
scale sharing of MP3 files. In such systems, end-hosts
self-organize into an overlay network and share content
with each other. Compared to the traditional client-server
model, files are served in a distributed manner and repli-
cated among the network on demand. Since hosts partic-
ipating in peer-to-peer (P2P) networks also devote some
computing resources, such systems scale with the number
of hosts in terms of hardware, bandwidth, and disk space.
With the wide deployment of P2P applications, the P2P
traffic is becoming a growing portion of the Internet traffic.
There has been very little examination of P2P traffic pat-
terns and how they differ from traditional service models.
Studying and understanding P2P traffic is thus important
to provide efficient application-level content location and
routing within the network.

The existing applications use their own approach to do
content location and routing and none of them are scal-
able. Napster uses a centralized server to locate content,
while Gnutella clients broadcast queries to all their neigh-
bors. [8] discusses the query locality observed in Gnutella
traces and suggests caching as a short-term approach to
increase Gnutella’s scalability. Recent designs such as
CAN [5], Chord [9], Pastry [6], and Tapestry [10] pro-
pose distributed indexing schemes based on hashing to lo-
cate content. These systems assume a flat content deliv-
ery mesh. Each object’s location is stored at one or more
nodes selected deterministically by a uniform hash func-
tion; queries for the object will be routed incrementally to
the node. Although hash functions can help locate con-
tent deterministically, they lack the flexibility of keyword
searching—a useful operation to find content without prior
knowledge of exact object names. There is no real deploy-
ment at present and thus no measurement information is
available for understanding the usability and scalabilityof

The authors are with AT&T Labs–Research, Florham Park, NJ,
USA. email:fbala,jiawang,ylxieg@research.att.com. Contact author:
Balachander Krishnamurthy, Fax: 973-360-8077, 180 Park Avenue,
Florham Park, NJ 07932. Yinglian Xie is a student at CMU interning
at AT&T Labs–Research

such systems.
We present some early measurements of a Cluster-based

Architecture for P2P (CAP) systems—a decentralized,
peer-to-peer content location and sharing system that uses
network-aware clustering [3]. Network-aware clustering
is an effective technique to group clients that are topologi-
cally close and under common administrative control. The
introduction of one more hierarchy is aimed at scaling up
query lookup and forwarding. CAP would also be more
stable since clusters join and leave the network less fre-
quently than individual clients. CAP also does not use
hash functions to map objects to locations deterministi-
cally. Instead, CAP behaves more like a distributed search-
ing system such as Gnutella. We modified Gnutella and
collected P2P traces from a variety of places. We analyze
the trace data using network-aware clustering. We use the
Gnutella trace in our simulations to measure and compare
the performance of CAP and Gnutella. The implementa-
tion of CAP is currently ongoing and we plan to measure
the system based on real deployment. Our trace analy-
sis and preliminary simulation results show that the P2P
network can be very dynamic, and CAP is promising in
increasing the stability and scalability of such distributed
applications. We are now carrying out a longer and broader
study.

II. CAP

CAP employs network-aware clustering technique for
content location and routing. A user query consists of
names of the files to be retrieved or keywords to be
searched. The query response is a tuple: (timestamp,
query, object, location). Given a user query, CAP locates
nearby copies of object that satisfy the query. The actual
data retrieval will be performed by the user who initiated
the query.

CAP uses a centralized server (calledclustering server)
to perform network-aware clustering and cluster registra-
tion. Based on the information provided by the clustering
server, users are grouped into clusters and self-organize
into an overlay network. The two basic operations per-
formed in CAP are:node joining and leaving, andquery
lookup and routing. Users (also callednodes) can join and
leave the overlay network dynamically. A query for an

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

object will be routed through the overlay network until lo-
cations of the desired object are found, and the location
information is returned directly to the initiating node.

To help distributed query lookup and forwarding, there
are one or moredelegate nodes within each cluster. The
clustering server keeps track of the existing clusters and
the corresponding delegate node’s information. The dele-
gate node acts as a directory server for the objects stored at
nodes within the same cluster. Queries will be submitted
to the cluster delegate node first; if it cannot be resolved
at the delegate directory, the delegate node forwards the
query to other nodes in either a recursive or iterative way
until an answer is found. To reduce query latency, dele-
gate nodes maintain a cache of recently received queries,
with each entry consisting of a query and the correspond-
ing response. Thus the location information of popular ob-
jects will be replicated at multiple places and can be found
quickly. The delegate node also performs node member-
ship registration. It maintains information about each ac-
tive node within a cluster to distinguish queries from inside
and outside a cluster. In case of delegate node failure, each
node independently resorts to the clustering server for the
new delegate node. The first node asking for the clustering
server will become the newly selected delegate node. A
bootstrap mechanism is required to set up the directories
at the new delegate node.

III. E XPERIMENTS

We modified an open source Gnutella client [7] to pas-
sively monitor and log all Gnutella messages that were
routed through it. The end host running the modi-
fied Gnutella client joins Gnutella using Clip2’sgnutel-
lahosts.com [2] service. Each entry in the trace has the
following fields: (1) Time stamp. (2) IP address of
the neighbor host. (3) Message ID. (4) Type of mes-
sage. There are four types of messages recorded: ping
request (Gnutella init message), ping reply (Gnutella init
response), search request, and search reply. In addi-
tion to the above fields, we also recorded other fields,
which are specific to different types of messages, in-
cluding query strings, number of results found, file
names of returned results, etc. Five traces were col-
lected independently at CMU(Pennsylvania), AT&T(New
Jersey), ACIRI(California), WPI(Massachusetts), and
UKY(Kentucky). The data gathering in the first three
sites ran with unlimited number of concurrent connections.
When an intrusion detection system was triggered (incor-
rectly), we rate-limited our experiments (reducing number
of concurrent connections and the number of hosts con-
tacted) and ran it on two other sites. The average number
of neighbors of the Gnutella client in the trace can be con-

Location Trace length Number of IPs
CMU 10 hours 799,386
ATT 14 hours 302,262
ACIRI 6 hours 185,905

TABLE I
GNUTELLA TRACES WITH UNLIMITED CONNECTIONS.

Location Trace length Number of IPs
CMU 89 hours 301,025
ATT 139 hours 261,094
WPI 10 hours 69,285
UKY 96 hours 409,084
UKY 75 hours 292,759

TABLE II
GNUTELLA TRACES WITH LIMITED CONNECTIONS.

trolled by the number of concurrent connections, with up
to four neighbors as default. Table I and II summarize the
traces we have collected. We are installing this client in
several places around the world and gathering traces for
extended durations.

We observed that some clients had used private IP
addresses in the collected Gnutella traces. These pri-
vate IP addresses are in the following ranges: 10.x.x.x,
172.16.0.0 - 172.31.255.255, and 192.168.x.x. Since pri-
vate IP addresses are designed for use on internal networks
and cannot be clustered using network-aware clustering,
we remove them from the traces before applying network-
aware clustering and present our results below. There are
8% - 16% of all IP addresses identified as private IPs in the
traces.

We clustered the user IP addresses extracted from the
traces. Figure 1 plots the distributions of the number of
hosts and the number of messages of the CMU trace (we
show results from one trace, other results are similar). The
distribution of the number of hosts in a cluster is non-
uniform: more than half of the clusters have a small num-
ber of clients, with some issuing a large number of mes-
sages. Figure 2 plots the client and cluster distributions ob-
served every 30 minutes. The number of clients observed
in each 30-minute period varies between 5% - 10% of all
clients in the trace, which implies that the Gnutella net-
work is very dynamic, with peers joining and leaving fre-
quently. The percentages of clients observed in the trace
during each 30-minute period is much smaller than that
of clusters, indicating the number of clusters in the net-
work is more stable. Thus, network-aware clustering based
scheme helps reduce dynamism in the P2P network.

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

10
0

10
5

10
−4

10
−2

10
0

10
2

Cluster sorted by number of clients

P
er

ce
nt

ag
e

of
 c

lie
nt

s

10
0

10
5

10
−6

10
−4

10
−2

10
0

10
2

Cluster sorted by number of clients

P
er

ce
nt

ag
e

of
 m

es
sa

ge
s

Fig. 1. The cluster distribution of the CMU trace (in log scale).
The clusters are sorted by number of clients.

0 5 10 15 20
0

5

10

15

20

25

30

35

x 30 minutes

P
er

ce
nt

ag
e

Percentage of messages
Percentage of hosts
Percentage of host clusters

Fig. 2. The client and cluster distribution per 30 minutes inthe
CMU trace.

The distribution of replies observed in the trace is gener-
ally proportional to the number of clients within a cluster.
We noticed several exceptions where small clusters gener-
ate a large number of replies. Two possibile reasons for
this are: (1) The cluster has a large number of files and is
able to reply to many of the search requests. (2) The cluster
has a few popular files that are requested by many clients.
Because aping reply Gnutella message tells us how many
files a host is willing to share, we extract the IP addresses
from ping reply messages and match them to those in the
search reply messages. There are 54,743 such IP addresses
matched in the CMU trace. We observe that clusters with
more files usually generate more replies. There are also
some clusters with smaller number of files that generate a

0 20 40 60 80 100
0

500

1000

1500

2000

2500

Cluster sorted by number of all queries

N
um

be
r

of
 q

ue
rie

s

Number of all queries
Number of unique queries
Number of all repeated queries
Number of unique repeated queries

Fig. 3. Query distribution using network-aware clustering

lot of replies, implying the existence of popular files.
We observe that there are popular queries in the Gnutella

traces which can be cached to reduce query latency. We
sample the CMU trace and take the first 47,100search re-
quest messages with 8,878 unique queries. Up to 26% of
the unique queries from each cluster are submitted more
than once; while up to 48% of all queries from each clus-
ter are repeated ones and can be cached. Figure 3 plots the
number of queries and repeated queries from each cluster.
A query is considered to be from a cluster if a user within
the cluster either submits or forwards the query (we cannot
differentiate query initiator from the client who forwarded
the query based on the Gnutella message). A query is con-
sidered to be repeated if it is observed more than once in
the trace.

We compare the performance of CAP and Gnutella via
a trace-driven simulation. We assume the user joins the
network when its IP address appears in the trace for the
first time. If a user does not send a message for a cer-
tain period of time, we assume the user has left. We ex-
tract filenames from thesearch reply messages and assign
them to the corresponding users. We generate queries by
randomly picking users requesting for files existing in the
system. We also assume the query popularity distribution
follows the file popularity distribution, i.e., a file is queried
multiple times if it appears in the multiple replies in the
Gnutella traces. This assumption is validated by examin-
ing the query popularity distribution and the file popular-
ity distribution using the same trace. We sample the first
10,000 nodes in the CMU trace and Figure 4 plots the two
distributions.

To forward queries, each delegate node keeps a list of
neighbor delegate nodes and their cluster prefixes. Each
query also has a maximum search depth. If a query cannot
be resolved at the delegate node, it will be forwarded to the
neighbors in the list using the depth-first search algorithm
until the object is found or the delegate node has tried all

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

Queries sorted by number of appearances

N
um

be
r

of
 a

pp
ea

ra
nc

es

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

Files sorted by number of appearances

N
um

be
r

of
 a

pp
ea

ra
nc

es

Fig. 4. Query popularity distribution and file popularity distri-
bution

its neighbors in the list. The neighbor list can be obtained
initially from the clustering server and be improved gradu-
ally based on the application requirements. In our simula-
tion, the neighbor list is assigned randomly when the del-
egate node joins; it is then updated with the neighbor who
finds the largest percentage of requested objects ranking
first. This is a heuristic based on the assumption that the
neighbor who finds the most number of requested objects
is likely to find more objects in the future. Other ways
to improve the neighbor list could involve use of search
latency. For simplicity, we assume current directory infor-
mation is stored at each delegate node.

Since CAP does not guarantee that an existing object
will be found, we examine the probability for finding an
object. Again, using the CMU trace to illustrate the re-
sults, we consider a network of 1,000 nodes with 311 clus-
ters. There are 4,615 queries in our trace requesting 3,793
unique files. Each data point in our graphs is the aver-
age of 10 runs. Figure 5 plots the percentage of successful
queries by varying the maximum search depths in CAP and
in Gnutella. We observe that the percentages of success-
ful queries in CAP are much higher than that in Gnutella.
We measure the search latency in terms of the number of
hops traversed before an object is found with a fixed max-
imum search depth of five hops. Figure 6 shows the search
path length of successful queries using the CAP algorithm.
Most of the successful queries are resolved within twenty

0 2 4 6 8
0

20

40

60

80

100

Maximum search depth

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
fu

l q
ue

rie
s CAP:3 neighbors

CAP:5 neighbors
Gnutella:3 neighbors
Gnutella:5 neighbors

Fig. 5. Percentage of successful queries using the CAP algo-
rithm and the Gnutella algorithm.

 less than 3 3 to 5 greater than 5
0

500

1000

1500

2000

2500

3000

Search path length(number of hops)
N

um
be

r
of

 s
uc

ce
ss

fu
l q

ue
rie

s 3 neighbors
5 neighbors

Fig. 6. Search path length of successful queries in CAP.

hops, indicating that a query message will not affect many
nodes in the network, as opposed to Gnutella, which will
affect all the nodes in the tree rooted at the initiating node.

Figure 7 plots the average number of messages due to
each query and the average number of forwarding oper-
ations performed at each delegate node in CAP or node
in Gnutella algorithm, respectively. Because queries are
flooded in Gnutella, the number of messages per search
and the number of forwarding operations performed per
node grow exponentially with search depth; while in CAP,
both of them grow linearly.

IV. CONCLUSION AND FUTURE WORK

We have analyzed Gnutella traces using network-aware
clustering. We outlined the design of a Cluster-based Ar-
chitecture for P2P systems and our early measurements
show that CAP is scalable and stable. We are carrying
out a broad study of P2P traces using network-aware clus-
tering and plan to examine the performance of CAP based
on real deployment. We are also examining a number of
issues such as routing queries within and between clusters,
handling updates, as well as how cluster diameters, laten-
cies, and workload affect the performance and P2P traffic.

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

0 2 4 6 8
10

0

10
1

10
2

10
3

10
4

Maximum search depth

N
um

be
r

of
 m

es
sa

ge
s

pe
r

se
ar

ch

CAP:3 neighbors
CAP:5 neighbors
Gnutella:3 neighbors
Gnutella:5 neighbors

0 2 4 6 8
10

1

10
2

10
3

10
4

10
5

Maximum search depth

N
um

be
r

of
 fo

rw
ar

d
pe

r
de

le
ga

te
 o

r
no

de

CAP:3 neighbors
CAP:5 neighbors
Gnutella:3 neighbors
Gnutella:5 neighbors

Fig. 7. Number of messages per search and number of forward-
ing operations performed by each delegate in CAP or node
in Gnutella.

REFERENCES

[1] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet:A
Distributed Anonymous Information Storage and Retrieval Sys-
tem. InDesigning Privacy Enhancing Technologies:International
Workshop on Design Issues in Anonymity and Unobservability,
LNCS 2000, December 2000.

[2] Gnutella hosts. http://www.gnutellahosts.com.
[3] B. Krishnamurthy and J. Wang. On Network-Aware Clustering of

Web Clients. InProceedings of ACM Sigcomm, August 2000.
[4] Napster. http://www.napster.com.
[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A

Scalable Content-Addressable Network. InProceedings of ACM
Sigcomm, August 2001.

[6] A. Rowstron and Druschel P. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In under
conference submission, February 2001.

[7] GNUT-gnutella.
http://www.gnutelliums.com/linux_unix/gnut/.

[8] K. Sripanidkulchai. The popularity of Gnutella queriesand its
implications on scalability. InThe O’Reilly Peer-to-Peer and Web
Services Conference, September 2001.

[9] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for Internet
applications. InProceedings of ACM Sigcomm, August 2001.

[10] Y. Zhao, John D. Kubiatowicz, and Anthony Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location and Rout-
ing. Technical Report UCB//CSD-01-1141, U. C. Berkeley, April
2000.

