
Polyarchy Visualization:
Visualizing Multiple Intersecting Hierarchies

George Robertson, Kim Cameron†, Mary Czerwinski, & Daniel Robbins
Microsoft Research & Microsoft Corporation†

One Microsoft Way
Redmond, WA 98052, USA

Tel: 1-425-703-1527
E-mail: ggr; kcameron; marycz;dcr@microsoft.com

ABSTRACT
We describe a new information structure composed of
multiple intersecting hierarchies, which we call
Polyarchies. Visualizing polyarchies enables use of novel
views for discovery of relationships which are very
difficult using existing hierarchy visualization tools. This
paper will describe the visualization design and system
architecture challenges as well as our current solutions. A
Mid-Tier Cache architecture is used as a “polyarchy
server” which supports a novel web-based polyarchy
visualization technique, called Visual Pivot. A series of five
user studies guided iterative design of Visual Pivot.

Keywords
Information Visualization, 3D, Animation, Hierarchy,
Polyarchy, Metadirectory, User Studies, Query Language

INTRODUCTION
People working in enterprises face a common problem in
understanding the relationships among data from multiple
databases. For example, consider the databases a typical
large corporation maintains about people and resources.
There often exist many databases describing employees,
such as those for recruiting, organization charts, managing
organizational headcount, benefits, mail, access to
networks and data resources, building security, telephone
services, and capital assets. Each database contains
information about people, with some information loosely
replicated in several databases. A metadirectory provides a
common interface to all of the databases, without replacing
them [14]. Since each database is optimized for a particular
function, there is no need or desire to combine them all into
a single database. In addition, a metadirectory provides
synchronization between the individual databases for data

that is replicated, so that changes to any data will be
propagated to all databases which contain it. Metadirectory
technology guarantees convergence of information across
connected systems. The result is more accurate
information at reduced administrative cost.

When a metadirectory combines information from separate
databases for display, a serious visualization problem
occurs: the user must make sense out of multiple
intersecting hierarchies (i.e., hierarchies that share at least
one node), which we call Polyarchies. How do we show
the information to the user in a way that makes sense? How
can the user determine which hierarchies a particular entity
(e.g., person, group, business unit, or location) belongs to?
How do we display these different hierarchies in a way that
helps the user understand the relationship between the
hierarchies as well as the relationship between entities
within a hierarchy? While we have described these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CHI 2002, April 20-25, 2002, Minneapolis, Minnesota, USA.
Copyright 2001 ACM 1-58113-453-3/02/0004…$5.00.

Figure 1. Polyarchy Visualization showing
relationship of three people in the management
hierarchy.

problems in terms of databases about people and resources,
the problems occur with any collection of databases that
have entities appearing in more than one of the databases.
For example, a person may want to explore several
consumer oriented databases simultaneously. A Polyarchy
Visualization must address these questions.

Solving these problems enables use of individual databases
beyond their original scope. In our example, a typical
employee is able to view relationships among people along
a number of dimensions in a way that would have
previously required using several different tools and
cognitive integration of the results over time. For example,
if I receive an announcement of a meeting with several
people I do not know, how do I quickly find out who they
are and what they do? Traditional tools require many
interactions to answer such a question, if it is even
possible. Polyarchy visualization enables a user to get the
same result with a few simple interactions. Figure 1 shows
a visualization of the management relationship between
three people. The user obtained this result simply by
selecting the three people and the desired view.

While the previous example only showed one hierarchy
view (Management), users need to see other hierarchy
views, and we need a way to transition between them. We
use a new visualization technique called Visual Pivot, with
two hierarchies simultaneously displayed around a
designated entity called the pivot point (the first entity in a
query set). This is a visual analog to a database pivot,
where a view of one dimension is replaced with a view of
another dimension. An animation pivots from one
hierarchy view to another, giving the user a chance to see
the relationship between the hierarchies in the context of
the selected pivot point. Perhaps more importantly, the
pivot animation helps the user maintain context during
complex transitions. In the following sections, we will
describe how visual pivot works, briefly describe five user
studies that have guided iterative design of visual pivot,
and discuss implementation issues for both the
visualization client and polyarchy server.

RELATED WORK
Hierarchies are one of the most commonly used
information structures. A typical computer user interacts
with hierarchies many times each day. Over the last twenty
years there has been much research on effective display and
interaction with hierarchies: the Smalltalk File Browser in
1979 [13]; Fisheye Views in 1986 [5]; SemNet in 1986 [4];
Cone Trees in 1991 [12]; TreeMaps in 1991 [9];
Hyperbolic Browser in 1994 [10]; FSViz in 1995 [2]; H3 in
1997 [11]; Disk Trees in 1998 [3]; and many others. In
spite of all that research, we still have not solved some
basic problems, particularly with scalability (loss of context
for large hierarchies) and difficulty maintaining focus on
multiple selections. Polyarchy visualization specifically
addresses scalability and multiple focus issues.

As the industry begins to address enterprise-wide problems
(for example with metadirectories), we see uses of multiple
hierarchies that current approaches do not handle. Some
work has been done on multiple hierarchies. The Time
Tube [3] examines a single hierarchy changing over time
and highlights changes. While careful analysis of
highlighted changes in Time Tube does reveal interesting
patterns, it is not clear that a casual user could easily see
those patterns. In addition, the user is forced to integrate
these changes cognitively across time, putting a strain on
short-term memory resources. A taxonomy visualization
[7] examines similar hierarchies and highlights differences
between them. All hierarchies are shown side by side and
lines are drawn between common nodes in the hierarchies.
This also reveals interesting patterns. However, the authors
of that visualization found that the technique did not scale
well and abandoned the approach. The polyarchy
visualization technique does scale to very large hierarchies,
as will be discussed. MultiTrees [6] are multiple hierarchies
with shared subtrees. But polyarchies are multiple
intersecting hierarchies, sharing at least one node rather
than sharing subtrees. Hence, MultiTrees are a subset of
polyarchies. The added complexity requires a new
approach as described in this paper.

POLYARCHY VISUALIZATION: VISUAL PIVOT
The goal of polyarchy visualization is to show the user how
various hierarchies relate to each other in the context of
selected entities, and to show how those entities relate to
each other. We focus on selected entities and their paths to
the root of each hierarchy, instead of general overviews of
extremely large hierarchies.

The interface, as shown in Figure 1, has four parts. In the
upper left, the user specifies a search. For this particular
metadirectory, the search attributes are Anything, First
Name, Last Name, Full Name, Title, and Email Alias. In
the example, we are searching for Scott Bishop, so we
search for “Bishop” as “Anything”. The lower left panel
displays a list of the search results, including key attribute
values (e.g., email address, phone number, title, and
location). If the user clicks on one of the search results, it
will replace what is displayed to the right. There is also an
“add to” button to the right of each person, which will
cause the person to be added to the query set.

A key aspect of this system is that search results are always
displayed in the context of the current hierarchy view
specified in the upper right section, which has a menu of
hierarchy views and the query set. In this example,
“Management” is the selected hierarchy view and there are
three people in the query set. Just to the left of the query set
is a button for removing items from the query set. This
panel also contains back and forward buttons for
controlling the history of changes to the selected hierarchy
view and query set. The lower right section displays the
current query set in the selected hierarchy view, typically
showing the paths from the selected entities up to the root.

In the lower right display, if the user clicks on an entity, it
is added to the query set as the new pivot point. Hovering
on an entity will bring up a tool tip, which provides
additional information about the node. A right click will
bring up a context menu that shows in which other
hierarchy views the entity participates, and allows the user
to pivot to any of those views. Both the tool tip and context
menu involve a query to the polyarchy server, so server
performance is critical. This will be discussed further in the
implementation section below.

Another key aspect of the system is how the display
changes when any change to the view or query set is made.
If we are simply replacing everything, an animation is used
to show the old display moving off to the right as the new
display moves in from the left. If we are adding an entity to
the current view, part of the display is moved to make room
for what is being added. If we are removing an entity from
the current view, part of the display is moved to eliminate
what is being removed. Each of these animations was
empirically optimized to be approximately one second.

While pivoting from one hierarchy view to another, one of
several visual pivot animations is used to emphasize
relationships between hierarchies and help the user
maintain context. Figure 2 shows the beginning of one
pivot animation style (vertical rotation), with both views
simultaneously visible. Nodes in the management hierarchy
are all people (blue with a person icon); while most nodes
in the business unit hierarchy are organization units (green
with an orgchart icon). The text labels of members of the
query set are bold, with the pivot point (first entity in the
query set) bold and blue. The new view is initially rotated
180 degrees around the pivot point. That is, the new view is
to the right of the old view, reversed and connected to the
old view at the pivot point (Andrew Dixon).

Next, the animation rotates both views 180 degrees about
the vertical axis through the pivot point so that the old one
is replaced on the left with the new one. Figure 3 shows an
intermediate point during that animation. Finally, the new
view is moved to a preferred viewing position and scale, as
the old view disappears. The pivot animation is done in
about one second; long enough that the user is able to see
that the old view is morphing to a new view with the same
pivot point, but short enough that the user does not feel as
though waiting for the system. While static views show the
relationship between entities within a hierarchy, it is visual
pivot that shows the relationship between hierarchy views
and maintains context for the user. The animation may be
stopped while in progress so that the user can more clearly
see the relationship between views.

Multiple Hierarchy Visualization
The methods described above are appropriate for showing
transitions between two views. To see relationships
between three or more views, a user must sequentially
switch between multiple views. To simplify the case where
the user needs to see two or more views simultaneously, a

Figure 2. First stage of Visual Pivot from
management to business unit hierarchy around
pivot point Andrew Dixon.

Figure 3. Visual Pivot during a pivot animation.

Figure 4. Stack Linked style showing two hierarchy
views.

Stack Linked animation style was added. Figure 4 is an
example of this style, showing three views simultaneously.
Whenever the user switches to a new view, the previous
views are moved back and to the right, so they recede into
the background, fading away and taking less space because
of perspective view. Optional links show where selected
entities appear in each view. In practice, three or four views
can be shown before the display becomes too complicated.

We have experimented with eight animation styles (three
vertical rotations, two horizontal rotations, sliding, and two
kinds of stack) and a wide range of animation times. The
next section discusses five user studies, including studies to
select the best animation style and speed.

USER STUDIES
We conducted five user studies to guide the iterative design
of polyarchy visualizations. In each study, participants
(intermediate to advanced PC users between the ages of 20
and 60) were shown one or two tutorial tasks to help them
learn how to use the system. Then they did two or more
tasks that were timed. Each task involved retrieving
information about people in an organization, starting with
one person and building up to three people in a view. There
were 12 questions for each task. Typical questions were:

1. Who is Evan’s manager?
2. How many people have the same title as Evan?
3. Where is Evan’s office?
4. What manager do Evan and Ed have in common?
5. Do Evan and Richard work in the same building?

Study #1
The first study used a visual pivot concept mockup,
implemented with Macromedia Shockwave animations.
Twelve participants were given a variety of tasks to
determine if the concept made sense. The sequence of
selections and animations was predetermined based on
static information. The goal was to gather subjective data
and usability issues rather than performance data.
Participants reported an average satisfaction rating of 4.84
on a 7 point Likert scale (with the highest number as most
satisfied on Likert scales in each study). A number of
usability issues were observed and used to guide
development of a prototype. Users were observed to have
no difficulty understanding the concept of visual pivot.

Study #2
The remaining studies were performed using the working
prototype with live data about people working at our
company. The second study compared a 2D unanimated
version of visual pivot with a 3D animated version at three
animation speeds (0.8 sec; 2.0 sec and 4.0 sec). The
animation style was the vertical rotation pivot described
earlier. Nine target end users were given a series of four
tasks to complete, focused on simple, hypothetical Human
Resource issues. Each task was performed using one of the
four conditions (2D, 3D fast, 3D medium, 3D slow). Task

performance completion times were measured and
subjective satisfaction data was gathered.

There was no significant effect of the different
visualization techniques on task completion time. Planned
comparisons showed that the 3D fast and 3D medium
conditions were not significantly different than the 2D
condition, but there was a trend toward the 3D slow
condition having a longer task completion time (F(1,8) =
2.15, p=.21). There was a significant effect of 3D game
playing on performance. A split-half comparison, dividing
participants into two groups according to their mean task
completion time, revealed that the “faster” group was
significantly faster than the “slower” group (t(7) = 3.55, p <
0.01). The two groups differed widely in the average
amount of time that they played 3D video games weekly,
with the faster group playing 9.60 hours a week and the
slower group playing only 1.25 hours a week.

A common opinion expressed by participants was that the
slow 3D condition was too slow. Six of the nine subjects
thought that the slow animation was more distracting than
informative. However, there were many positive comments
about the 3D animation, and the average satisfaction rating
was 4.42 on a 5 point Likert scale (unfortunately this was a
different scale than those used on the other studies).
Several participants mentioned that rotation about a vertical
axis made the text difficult to read during part of the
animation, because of occlusion.

Study #3
The third study was a survey of four animation styles at
three animation speeds (0.8 sec; 1.8 sec; and 3.0 sec).
There was also an instant case, which had no animation but
otherwise had the same 3D appearance. Tested animation
speeds were faster, in response to previous observations.

Figure 5. Sliding animation during transition from
management to business unit hierarchy.

The first style was the vertical rotation used previously.
Other styles attempted to fix observed problems,
particularly with occlusion. The second style used vertical
rotation, but only the new view moved with no text visible
and a transparent panel behind it to help with visual
grouping. The third style was a sliding style (see Figure 5):
the new view appeared to the right of the old view and
slightly lower, then moved to the left and then up, while the
old view’s text was grayed out to help with occlusion. The
fourth style (see Figure 6) pivoted around a horizontal axis
through the pivot point, while the old view’s text was
grayed out.

Eight target participants were given one task and asked to
try each of the 13 style/speed combinations. They were
asked to vote for their three favorite combinations, using 10
total points divided any way they wanted. That is, if a
participant liked one combination a lot more than the other
two, that person could give the first an 8 and the other two
one point each. Results obtained from the study revealed
that the preferred style was rotation about a horizontal axis,
with the sliding style placing second. The preferred speed
was fast (by a large margin), followed by medium, then
instant. No one voted for the slow speed.

Study #4
The fourth study was performed using three animation
speeds (0.5 sec; 1.0 sec; and 2.0 sec), and focused on
comparing the two highest rated animation styles: sliding
and horizontal rotation. The animation speeds chosen for
the study were faster, in response to the results of study #3.
Fourteen participants performed seven complex, multi-part
tasks, one for each experimental condition (instant, sliding
fast, sliding medium, sliding slow, horizontal rotation fast,
horizontal rotation medium, and horizontal rotation slow).
The order of visualization type was determined with a Latin
square design. Performance times were recorded for the
fifteen subtasks that occurred within each complex task.

An analysis of the completion time for each subtask
showed a reliable advantage for the sliding animation over
horizontal rotation (see Figure 7). There was also a
significant effect of practice for both animations, with an
advantage for the sliding animation (see Figure 7). There
was no reliable difference between instant, fast, and
medium speeds. However, the slow speed caused a
significant disadvantage (see Figure 8).

Satisfaction results indicated a strong preference for the
fast animation speed. When comparing mean satisfaction
scores collected at the end of each task there was a
significant difference between animation styles (t(8) =
5.443; p < 0.001), with sliding receiving higher satisfaction
scores than horizontal rotation. The fast sliding animation
averaged 6.0 on a 7 point Likert scale, while horizontal
rotation averaged 5.64. When asked which visualization
technique they preferred at the end of the experiment,
participants were split evenly (seven preferred sliding and
seven preferred horizontal rotation).

While study results suggest that the fast sliding style is
sufficient, it is quite easy to support multiple animation
styles and speeds, thus giving users a choice.

Figure 6. Horizontal rotation during transition from
management to business unit hierarchy.

0

2

4

6

8

10

12

14

16

18

M
ea

n
S

u
b

ta
sk

C
o

m
p

le
ti

o
n

T
im

e
(s

)

Instant Fast Medium Slow

Figure 8. Study 4: Mean subtask completion
time versus animation speeds.

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

1 2 3
Repetition Number

L
o

g
M

ea
n

S
u

b
ta

sk
T

im
e

(s
) Sliding

Horizontal Visual Pivot

Figure 7. Study 4: Learning effects of
sliding versus horizontal rotation.

Study #5
The fifth study focused on comparing the sliding animation
style with the stack style (Figure 6 without links shown),
which was added to provide a way for users to see multiple
views simultaneously. Since some task questions could be
answered using information from previous views, we
hypothesized that performance would be faster with the
stack style. Six participants took part in this study.

The performance results indicated no reliable difference
between sliding and stack styles. Since the stack style can
become complex, it is possible that its potential advantage
was overcome by complexity. Satisfaction results showed
that the sliding style was preferred by every participant.
Sliding averaged 5.96 on a 7 point Likert scale, while stack
averaged 4.67. Participants’ comments clearly indicated
that stack style complexity limited satisfaction.

These 5 studies enabled iterative refinement of the pivot
style and animation speed to users’ satisfaction. The
sliding animation at a speed of about one second is now the
default pivot and animation parameters. We believe the
fact that the sliding pivot was ranked highest supports the
hypothesis that animation helps users maintain context,
since that animation had the least occlusion of all the styles
tested. Additional speeds and styles are also supported
since they also received high satisfaction scores.

IMPLEMENTATION ISSUES
The goal of polyarchy visualizations is to enable a user to
easily explore data from several existing databases, and
understand the relationships between multiple intersecting
hierarchies and between entities in those hierarchies. To
effectively achieve the goal, three fundamental problems
must be addressed: scale, flexibility, and responsiveness.

Scale is a key problem in two ways. First, the amount of
data being explored is enormous, ranging from tens of
thousands to millions of nodes. Second, the number of
users accessing this data is enormous; recall that our goal is
to make enterprise data useful for most of the employees in
the enterprise. Flexibility is a key problem because users
want to explore each hierarchy fully, with no performance
penalty for any hierarchy. Responsiveness is important in
any interactive system, but takes on a special character in
this system because of the flexibility and scale problems.
For example, to scale in number of users, the data passed
between client and server must be kept to a minimum, and
processing required by the server must be minimized. This
leads to delaying the request for data until it is actually
needed. Context menu and tool tip contents are not
requested until the user clicks the mouse button or dwells
on a node. To remain responsive requires that obtaining the
data for these basic operations must be extremely fast.

In this section, we will discuss a variety of issues that were
encountered while solving the key problems of scale,
flexibility, and responsiveness.

Web Service Architecture
Because of scale issues in database size and number of
users, it was clear from the beginning that a web service
architecture with a web-based client was required. A web
service (as opposed to client/server) architecture supports
many different client interfaces and back-end servers. In
this paper, we describe one particular client and server. The
details of the server will be discussed later. Here we
describe the nature of the client and communication
between client and server.

The client is a scripted web page that supports the user
interactions described earlier (search for people, selection
of people, managing the query set, choosing the hierarchy
view, context menus, and tool tips) as well as the polyarchy
visualization visual pivot sliding and rotation animations.
The client communicates with a Polyarchy Query Server
(PQS) using a Polyarchy Query Language (PQL) expressed
as XML (eXtensible Markup Language) [8] request and
reply forms. These XML forms are packaged as SOAP
(Simple Object Access Protocol) [1] remote procedure
calls, which allows handling of faults in a uniform way.

Data-Driven Service
Polyarchy visualizations must be flexible not only in terms
of how easily a user can explore, but also in terms of how
easy it is for the metadirectory designer to describe the
databases to include, the search attributes, the hierarchy
views to expose to the user, and how information is
displayed to the user. To address the responsiveness
problem, this information must be in a form that allows the
server to optimize caches and indexes for most responsive
replies to client queries. These issues are addressed in our
web service architecture by providing an XML data
description which drives both client and server.

PQL: Polyarchy Query Language
The Polyarchy Query Language (PQL) is similar to SQL,
but has been designed for queries and responses needed for
polyarchy visualization, focusing on the problems of scale,
flexibility, and responsiveness. In particular, PQL was
designed to make it qualitatively easier than SQL to
perform hierarchical queries and vastly reduces network
traffic for such queries.

PQL is a rich query language, allowing enormous
flexibility for exploration. The UI challenge is to build an
interface that is intuitive and hides much of the complexity.
For example, it is well known that having users specify
Boolean queries is problematic. We hide that complexity
by giving the user a way to manage a query set of people,
implicitly performing union searches on that set. We also
hide complexity by defining useful views that specify the
various parameters of a search. This has worked in all cases
we have encountered so far, but only because PQL is rich
enough to support a wide range of queries.

PQS: Polyarchy Query Server
The Polyarchy Query Server (PQS) has gone through three
implementations. The first version used Microsoft
Metadirectory Services (MMS), a commercial product
available to enterprises to solve the metadirectory database
problems described in the introduction. The first version of
the client used MMS as its server, using the existing MMS
query language instead of PQL. That implementation had
problems in flexibility and responsiveness, since MMS was
not optimized as a query server.

Our second version of PQS was an experimental version of
MMS, written on top of SQL-Server instead of MMS’s
own data store. This allowed mixture of MMS queries with
SQL queries, solving some of our flexibility problems.
However, there were still problems with responsiveness
because many round trips to the server are required to
evaluate polyarchy queries with a relational database
server. It became clear that traditional relational database
servers cannot provide the combination of responsiveness
and flexibility required for this visualization.

To maximize flexibility, scalability, and responsiveness, a
third version of PQS was implemented. By developing
PQL, PQS, and the client visualization together, we have
created a flexible environment in which to develop the
model for polyarchy data representation, while eliminating
assumptions through which a server tends to limit a client
(latency, performance, and scalability).

PQS was designed as a Mid-Tier Cache loosely coupled to
the underlying data stores through replication of data. The
cache takes snapshots of all information sources and holds
them in RAM, optimized for the accesses specified by the
data description shared with the client, then responds to
PQL queries from clients. The cache can be replicated on
any number of server machines. This makes it possible to
easily scale to an arbitrary number of users.

Defining a Polyarchy
The first step in providing a polyarchy visualization is
identifying which hierarchies should be exposed to the
user. Some hierarchies are explicit, others are implicit. The
metadirectory designer identifies which databases to
include and which hierarchies to expose.

Many of these hierarchies are straightforward. For
example, management, business units, and location are all
simple hierarchies. But, the designer may want more
complex views of those hierarchies. For example, “Related
People” is a relationship between people that uses the
management hierarchy to show a person’s direct reports,
their manager, their manager’s direct reports, and the path
up to the root. This represents the set of people the selected
person is most likely to interact with. The designer can
define this view by specifying how many levels up and
down to display, and whether or not to include siblings. For
“Related People”, the designer specifies “up=*, down=1,

siblings=true”. Choosing these views is not something that
can easily be done algorithmically, as it requires thought
about the most useful relationships to expose. While this
may be a difficult task for the designer, it need only be
done once for a particular metadirectory. The visualization
must be designed to allow the designer to specify such
views, and the user to easily select them.

The second step is to identify search attributes, to help the
user select entities for display. Although analysis can
suggest candidate search attributes, the metadirectory
designer must identify those that are most appropriate.

Unresolved Issues
There are two interesting unresolved issues with the
visualization: hierarchy ordering and text rendering.

Hierarchy Ordering. When the server returns a hierarchy,
sibling nodes at a particular level of the hierarchy are in an
undetermined order. The client currently sorts siblings
alphabetically so that the user sees a consistent result. This
works for a single hierarchy. However, if multiple entities
are selected and the user pivots to another hierarchy view,
the order of two selections may be reversed (e.g., see
Figure 4). Without animation, this can be quite confusing.
Animation helps, since the user sees the reversal take place.
The problem might be solved by modifying the sort for the
new view to reflect the order of the old view.
Unfortunately, the new view will not be in alphabetical
order. A user could be just as confused by un-alphabetized
results. There appears to be no way to solve both problems
simultaneously; hence this seems to be a fundamental
problem with polyarchy visualization.

Text Rendering. The polyarchy display is a node-link
diagram with a text label for each node. There are several
ways to display text in the 3D scene so that it moves
appropriately during 3D animation. Text rendered in 3D
would provide ideal depth cues (e.g., change in size
depending on distance from the viewer). However current
3D rendering techniques for text produce poor quality and
readability because current texture filtering is inadequate.
Some readability problems can be addressed by bill-
boarding the text in 3D (showing it always in the plane of
the screen but rendered at the proper depth). This still
requires texture filtering, resulting in poor quality. An
alternative is to render text in an overlay plane, adjusting its
position on each frame so that it appears to be in the correct
place. This produces the highest quality and readability, but
incorrect depth cues. While this approach is not ideal, it is
the approach used in our prototype.

CONCLUSION
Polyarchies, or multiple intersecting hierarchies, are a new
kind of information structure encountered in work on
enterprise-wide databases. Metadirectories are a database
solution for providing a common front end to a collection
of databases. Metadirectories solve the synchronization and

update problems with these databases, but do not solve the
problem of how to effectively visualize polyarchies. The
user must be able to see the relationship between
hierarchies as well as the relationships between multiple
entities within a hierarchy.

Polyarchy visualization addresses the polyarchy problem as
well as more generic fundamental problems of hierarchy
visualizations: both the ability to scale and the ability to
focus on multiple selections without loss of context. It does
so by constraining what is viewed to the minimal set of
information that answers particular questions. These
solutions are packaged in views that can be easily
configured by the metadirectory designer. Relationships
between multiple selections are visualized in static views,
while visual pivot sliding and rotation animations show
how the hierarchies are related to each other. The
animations also help the user maintain context. Iterative
design and user testing has addressed a number of usability
issues and demonstrated that polyarchy visualization and
visual pivot are easy to understand and use, and have high
satisfaction ratings. Polyarchy visualization is a significant
step forward, allowing users to use novel views to easily
discover relationships that were very difficult using
standard hierarchy visualization tools.

Polyarchy visualization uses a web service architecture
based on a mid-tier cache to address issues of scalability,
flexibility, and responsiveness. Designing the visualization
client, polyarchy server, and query language together has
made it possible to address these issues. The architecture is
scalable in terms of the size of the database and the number
of users. The architecture is flexible by enabling the end
user to easily explore multiple intersecting hierarchies and
by enabling the designer to easily specify search attributes
and hierarchy views. The architecture is responsive by
designing queries and responses to minimize the amount of
data exchanged between client and server, and by designing
the server so that minimal processing and paging is
required to process each query. The architecture is also
responsive because both client and server are driven by a
common database description; the server can optimize for
exactly the kind of accesses the client will make.

ACKNOWLEDGMENTS
The authors would like to acknowledge the contributions of
Brent Field for running two user studies, and George
Furnas for helping distinguish polyarchies and MultiTrees.

REFERENCES
1. Box, D., Ehnebuske, D, Kakivaya, G., Layman, A.,

Mendelsohn, N., Nielsen, H.F., Thatte, S., and Winer,
D., SOAP: Simple Object Access Protocol. In MSDN
Library, January 2001, Microsoft.

2. Carrière, J. & Kazman, R. Interacting with hugh
hierarchies: beyond Cone Trees. In Proceedings of
Information Visualization ’95, IEEE, 74-81.

3. Chi, E., Pitkow, J., Mackinlay, J., Pirolli, P.,
Gossweiler, R., & Card, S. Visualizing the evolution of
web ecologies. In Proceedings of CHI’98, ACM, 400-
407.

4. Fairchild, K.M., Poltrock, S.E., & Furnas, G.W.
SemNet: Three-dimensional graphic representation of
large knowledge bases. Cognitive Science and its
Application for Human-Computer Interface. R.
Guindon (Ed). Lawrence Erlbaum, New Jersey, 1988.

5. Furnas, G.W. Generalized fisheye views. In
Proceedings of CHI’86 (Boston, MA), ACM, 16-23.

6. Furnas, G.W. and Zacks, J. Multitrees: Enriching and
reusing hierarchical structure. In Proceedings of
CHI'94 (Boston, MA), ACM, 330–336.

7. Graham, M., Kennedy, J., & Hand, C. A comparison
of set-based and graph-based visualizations of
overlapping classification hierarchies. In Proceedings
of AVI 2000 (Palermo, Italy), ACM, 41-50.

8. Homer, A., XML IE5: Programmer’s Reference.
Wrox Press Ltd., Birmingham, UK, 1999.

9. Johnson, B. & Shnedierman, B. Tree-maps: A space-
filling approach to the visualization of hierarchical
information. In Visualization 1991, IEEE, 284-291.

10. Lamping, J. & Rao, R., Laying out and visualizing
large trees using a hyperbolic space. In Proceedings of
UIST’94, ACM, 13-14.

11. Munzner, T., H3: Laying out large directed graphs in
3D hyperbolic space. In Proceedings of Information
Visualization ’97, IEEE, 2-10.

12. Robertson, G., Mackinlay, J., & Card, S. Cone Trees:
Animated 3D visualizations of hierarchical
information. In Proceedings of CHI’91 (New Orleans,
LA), ACM, 189-194.

13. Tesler, L. The Smalltalk Environment. In Byte, August
1981, p. 90.

14. The Burton Group. MetaDirectory FAQ. Catalyst ’99
Conference, July 1999. See http://www.netapps.org/
Events/HTMLDocs/workshopmetadirectoryfaq.htm.

