
Information and Computation 177, 160–194 (2002)
doi:10.1006/inco.2001.3121

Types for the Ambient Calculus

Luca Cardelli

Microsoft Research, 7 J.J. Thomson Avenue, Cambridge, United Kingdom

Giorgio Ghelli

Università di Pisa, Dipartimento di Informatica, Corso Italia 40, Pisa, Italy

and

Andrew D. Gordon

Microsoft Research, 7 J.J. Thomson Avenue, Cambridge, United Kingdom

Received January 31, 2001; revised October 12, 2001; published online June 19, 2002

The ambient calculus is a concurrent calculus where the unifying notion of ambient is used to model
many different constructs for distributed and mobile computation. We study a type system that describes
several properties of ambient behavior. The type system allows ambients to be partitioned in disjoint
sets (groups), according to the intended design of a system, in order to specify both the communication
and the mobility behavior of ambients. C© 2002 Elsevier Science (USA)

Contents.
1. Introduction.
2. The polyadic ambient calculus (review).
3. Introduction to exchange types.
4. Typed ambient calculus.
5. Opening control.
6. Crossing control.
7. Effect safety.
8. Encoding a distributed language.
9. Conclusions.

Appendices.
A. Proof of subject reduction.
B. Proof of effect safety.

1. INTRODUCTION

The ambient calculus [13] is a process calculus whose basic abstraction, the ambient, represents
mobile, nested, and computational environments with local communications. Ambients can represent the
standard components of distributed systems, such as nodes, channels, messages, and mobile code. They
can also represent situations where entire active computational environments are moved, as happens
with mobile computing devices and with multithreaded mobile agents.

We define here a set of type systems for the ambient calculus, which are based on the idea
of partitioning ambients in progammer defined groups, and tracking communication and mobility
properties.

Type systems are, today, a widely applied technique allowing programmers to describe the key
properties of their code and to have these properties mechanically and efficiently checked. Mobile code
makes types, and machine-checkable properties in general, useful for security reasons too, as has been
demonstrated by the checking performed on Java applets [26].

In standard languages, the key invariants that are maintained by type systems have mainly to do with
the contents of variables and with the interfaces of functions, procedures, or methods. In the ambient
calculus, the basic properties of a piece of code are those related to its mobility, to the possibility of
opening an ambient and exposing its content, and to the type of data which may be exchanged inside

160

0890-5401/02 $35.00
C© 2002 Elsevier Science (USA)
All rights reserved.

TYPES FOR THE AMBIENT CALCULUS 161

an ambient. To understand how groups arise in this context, consider a typical static property we may
want to express in a type system for the ambient calculus; informally:

The ambient named n can enter the ambient named m.

This could be expressed as a typing n : CanEnter(m) stating that n is a member of the collection
CanEnter(m) of names that can enter m. However, this would bring us straight into the domain of
dependent types [14], since the type CanEnter(m) depends on the name m. Instead, we introduce
type-level groups of names, G, H , and restate our property as:

The name m belongs to group G.
The ambient named n can enter any ambient of group G.

This idea leads to typings of the form m : G, n : CanEnter(G) which are akin to standard typings such
as x : Int, y : Channel(Int).

To appreciate the relevance of groups in the description of distributed systems, consider a programmer
coding a typical distributed system composed of nodes and mobile threads moving from one node to
another, and where threads communicate by sending input and output packets through typed channels.
In this paper we define a type system where a programmer can:

• define groups such as Node, Thread, Channel, and Packet, which match the system structure;

• declare properties such as: this ambient is a Thread and it may only cross ambients which are
Nodes; this ambient is a Packet and can enter Channels; this ambient is a Channel of type T , and it
cannot move or be opened, and it may open Packets containing data of type T ; this ambient is a Node
and it cannot move or be opened;

• have the system statically verify all these properties.

Our groups are similar to sorts used in typed versions of the π -calculus [27], but we introduce an
operation, (νG)P , for creating a new group G, which can be used within the process P .

The binders for new groups, (νG), can float outward during reduction as long as this adjustment
(called extrusion in the π -calculus) does not introduce name clashes. Because of extrusion, group
binders do not impede the mobility of ambients that are enclosed in the initial scope of fresh groups but
later move away. On the other hand, even though extrusion enlarges scopes, simple scoping restrictions
in the typing rules prevent names belonging to a fresh group from ever being received by a process
which has been defined outside the initial scope of the group.

Therefore, we obtain a flexible way of protecting the propagation of names. This is to be contrasted
with the situation in the untyped π -calculus and ambient calculus, where names can (intentionally,
accidentally, or maliciously) be extruded arbitrarily far, by the automatic and unrestricted application
of extrusion rules, and communicated to other parties.

This paper reports the results of a research effort some parts of which are described in conference
papers. In [12] we investigate exchange types, which subsume standard type systems for processes and
functions, but do not impose restrictions on mobility; no groups were present in that system. In [9]
we report on immobility and locking annotations, which are basic predicates about mobility, still with
no notion of groups. In [10] we introduce the notion of groups; that paper is essentially an extended
abstract of the present one.

We organise the paper as follows. In Section 2 we review the basic untyped ambient calculus. In
Section 3 we informally introduce a group-based exchange type system which only tracks communi-
cations. In Section 4 we give a precise definition of the same system and a subject reduction result.
Section 5 enriches the system of Section 4 to control ambient opening. In Section 6, we define the full
system in which both ambient opening and ambient movement are tracked. Section 7 formalizes safety
properties guaranteed by typing. In Section 8 we revisit a typed encoding of a distributed programming
language from our earlier work on locking and mobility annotations [9], in order to illustrate the ex-
pressiveness of the type system. In particular, we show how groups help describing the different classes
of ambients and their properties. Section 9 concludes and discusses related work. Finally, appendixes
contain proofs of the subject reduction and effect safety properties for the full type system.

162 CARDELLI, GHELLI, AND GORDON

2. THE POLYADIC AMBIENT CALCULUS (REVIEW)

We begin by reviewing and slightly extending the ambient calculus of [13]. In that calculus, commu-
nication is based on the exchange of single values. Here we extend the calculus with communication
based on tuples of values (polyadic communication), since this simple extension greatly facilitates the
task of providing an expressive type system. We also add objective moves, as in [9], and we annotate
bound variables with type information.

Four of our process constructions (restriction, inactivity, composition, and replication) are commonly
found in process calculi. To these we add ambients, capabilities, and a simple form of communication.
We briefly discuss these constructions; see [13] for a more detailed introduction.

The restriction operator, (νn : W)P , creates a new (unique) name n of type W within a scope P . The
new name can be used to name ambients and to operate on ambients by name. The inactive process,
0, does nothing. Parallel composition is denoted by a binary operator, P | Q, that is commutative and
associative. Replication is a technically convenient way of representing iteration and recursion: the
process !P denotes the unbounded replication of the process P and is equivalent to P | !P .

An ambient is written M[P], where M is the name of the ambient, and P is the process running
inside the ambient.

The process M.P executes an action regulated by the capability M and then continues as the process
P . We consider three kinds of capabilities: one for entering an ambient, one for exiting an ambient,
and one for opening up an ambient. (The latter requires special care in the type system.) Capabil-
ities are obtained from names; given a name n, the capability in n allows entry into n, the capa-
bility out n allows exit out of n, and the capability open n allows the opening of n. Implicitly, the
possession of one or all of these capabilities is insufficient to reconstruct the original name n from
which they were extracted. Capabilities can also be composed into paths, M.M ′, with ε for the empty
path.

Communication is asynchronous and local to an ambient. It is similar to channel communication in
the asynchronous π -calculus [7, 21], except that the channel has no name: the surrounding ambient
provides the context where the communication happens. The process 〈M1, . . . , Mk〉 represents the
output of a tuple of values, with no continuation. The process (x1 : W1, . . . , xk : Wk).P represents the
input of a tuple of values, whose components are bound to x1, . . . , xk , with continuation P .

Communication is used to exchange both names and capabilities, which share the same syntactic
class M of messages. The first task of our type system is to distinguish the Ms that are names from the
Ms that are capabilities, so that each is guaranteed to be used in an appropriate context. In general, the
type system might distinguish other kinds of expressions, such as integer and boolean expressions, but
we do not include those in our basic calculus.

The process go N .M[P] moves the ambient M[P] as specified by the N capability and has M[P] as
its continuation. It is called an objective move since the ambient M[P] is moved from the outside, while
a movement caused by a process N .P which runs inside an ambient is called a subjective move. There
are more powerful forms of objective move, beyond what is expressible in the untyped calculus, that
may have undesirable properties [13]. We adopt the form go N .M[P] as primitive because it usefully
allows more refined typings than are possible with only subjective moves—as we show in Section 6.2—
and because it does not affect the untyped operational semantics, since it is derivable in the untyped
calculus. We can define an objective move go N .M[P] to be short for (νk)k[N .M[out k.P]] where k is
not free in P .

Messages and Processes:

M, N ::= message
n name
in M can enter into M
out M can exit out of M
open M can open M
ε null
M.M ′ path

TYPES FOR THE AMBIENT CALCULUS 163

P, Q, R ::= process
(νn : W)P restriction
0 inactivity
P | Q composition
!P replication
M[P] ambient
M.P action
(x1 : W1, . . . , xk : Wk).P input action
〈M1, . . . , Mk〉 output action
go N .M[P] objective move

The following table displays the main reduction rules of the calculus (the full set is presented in
Section 4). The notation P{x1 ← M1, . . . , xk ← Mk} in rule (Red I/O) denotes the outcome of a capture-
avoiding simultaneous substitution of message Mi for each free occurrence of the corresponding name
xi in the process P , for i ∈ 1 . . k.

Reduction:

n[in m.P | Q] | m[R] → m[n[P | Q] | R] (Red In)
m[n[out m.P | Q] | R] → n[P | Q] | m[R] (Red Out)
open n.P | n[Q] → P | Q (Red Open)
〈M1, . . . , Mk〉 | (x1 : W1, . . . , xk : Wk).P

→ P{x1 ← M1, . . . , xk ← Mk}
(Red I/O)

go(in m.N).n[P] | m[Q] → m[go N .n[P] | Q] (Red Go In)
m[go(out m.N).n[P] | Q] → go N .n[P] | m[Q] (Red Go Out)

We use the following syntactic conventions:

• parentheses may be used for precedence

• (νn : W)P | Q is read ((νn : W)P) | Q

• !P | Q is read (!P) | Q

• M.P | Q is read (M.P) | Q

• M.M ′.P is read M.(M ′.P)

• (n1 : W1, . . . , nk : Wk).P | Q is read ((n1 : W1, . . . , nk : Wk).P) | Q

• n[]
�= n[0]

• M
�= M.0 (where appropriate)

As an example, consider the following process:

a[p[out a.in b.〈c〉]] | b[open p.(x).x[]].

Intuitively, this example represents a packet named p moving from a machine a to a machine b. The
process p[out a.in b.〈c〉] represents the packet, as a subambient of ambient a. The name of the packet
ambient is p, and its interior is the process out a.in b.〈c〉. This process consists of three sequential
actions: exercise the capability out a, exercise the capability in b, and then output the name c. The effect
of the two capabilities on the enclosing ambient p is to move p out of a and into b (rules (Red Out),
(Red In)), to reach the state:

a[] | b[p[〈c〉] | open p.(x).x[]].

In this state, the interior of a is empty but the interior of b consists of two running processes, the
subambient p[〈c〉] and the process open p.(x).x[]. This process is attempting to exercise the open p
capability. This capability was previously blocked, but now that the p ambient is present, the capability’s

164 CARDELLI, GHELLI, AND GORDON

effect is to dissolve the ambient’s boundary; hence, the interior of b becomes the process 〈c〉 | (x).x[]
(Red Open). This is a composition of an output 〈c〉 with an input (x).x[]. The input consumes the output,
leaving c[] as the interior of b (Red I/O). Hence, the final state of the whole example is a[] | b[c[]].

As an example for the objective moves, consider the following variation of the previous one:

a[go(out a.in b).p[〈c〉]] | b[open p.(x).x[]].

In this case, the ambient p[〈c〉] is moved from the outside, out of a and into b (rules (Red Go Out),
(Red Go In)), to reach the same state that was reached in the previous version after the (Red Out),
(Red In) subjective moves:

a[] | b[go ε.p[〈c〉] | open p.(x).x[]].

3. INTRODUCTION TO EXCHANGE TYPES

An ambient is a place where processes can exchange messages and where other ambients can enter
and exit. We introduce here a type system which regulates communication, while mobility will be
tackled in the following sections. This system generalizes the one presented in [12] by allowing the
partitioning of ambients into groups.

3.1. Topics of Conversation

Within an ambient, multiple processes can freely execute input and output actions. Since the messages
are undirected, it is easily possible for a process to utter a message that is not appropriate for some
receiver. The main idea of the exchange type system is to keep track of the topic of conversation that is
permitted within a given ambient, so that talkers and listeners can be certain of exchanging appropriate
messages.

The range of topics is described in the following table by message types, W , and exchange types, T .
The message types are G[T], the type of names of ambients which belong to the group G and that allow
exchanges of type T , and Cap[T], the type of capabilities that when used may cause the unleashing of
T exchanges (as a consequence of opening ambients that exchange T). The exchange types are Shh,
the absence of exchanges, and W1 × · · · × Wk , the exchange of tuples of messages with elements of
the respective message types. For k = 0, the empty tuple type is called 1; it allows the exchange of
empty tuples; that is, it allows pure synchronization. The case k = 1 allows any message type to be an
exchange type.

Types:

W ::= message type
G[T] name in group G for ambients allowing T exchanges
Cap[T] capability unleashing T exchanges

S, T ::= exchange type
Shh no exchange
W1 × · · · × Wk tuple exchange (1 is the null product)

For example, in a scope where the Agent and Place groups have been defined, we can express the
following types:

• An ambient of the Agent group where no exchange is allowed (a quiet Agent): Agent[Shh]

• A harmless capability: Cap[Shh]

• A Place where names of quiet Agents may be exchanged:

Place[Agent[Shh]]

TYPES FOR THE AMBIENT CALCULUS 165

• A Place where harmless capabilities may be exchanged:

Place[Cap[Shh]]

• A capability that may unleash the exchange of names of quiet Agents:

Cap[Agent[Shh]].

3.2. Intuitions

Before presenting the formal type rules (in Section 4), we discuss the intuitions that lead to them.

3.2.1. Typing of Processes

If a message M has message type W , then 〈M〉 is a process that outputs (exchanges) W messages.
Therefore, we have a rule stating that:

M : W implies 〈M〉 : W.

If P is a process that may exchange W messages, then (x : W).P is also a process that may exchange
W messages. Therefore:

P : W implies (x : W).P : W.

The process 0 exchanges nothing, so it naturally has exchange type Shh. However, we may also
consider 0 as a process that may exchange any type. This is useful when we need to place 0 in a context
that is already expected to exchange some type:

0 : T for any T .

Alternatively, we may add a subtype relation among types, give 0 a minimal type, and add a rule which
allows processes with a type to appear where processes with a supertype are required [36]. We reject
this approach here only because we want to explore the ideas of group-based exchange and mobility
types in the simplest possible setting.

If P and Q are processes that may exchange T , then P | Q is also such a process. Similarly for !P:

P : T, Q : T implies P | Q : T

P : T implies !P : T .

Therefore, by keeping track of the exchange type of a process, T -inputs and T -outputs are tracked
so that they match correctly when placed in parallel.

3.2.2. Typing of Ambients

An ambient n[P] is a process that exchanges nothing at the current level, so, like 0, it can be placed
in parallel with any process, hence we allow it to have any exchange type:

n[P] : T for any T .

There needs to be, however, a connection between the type of n and the type of P . We give to each
ambient name n a type G[T], meaning that n belongs to the group G and that only T exchanges are
allowed in any ambient of that name. Hence, a process P can be placed inside an ambient with that
name n only if the type of P is T :

n : G[T], P : T implies n[P] is well-formed (and can have any type).

166 CARDELLI, GHELLI, AND GORDON

By tagging the name of an ambient with the type of exchanges, we know what kind of exchanges to
expect in any ambient we enter. Moreover, we can tell what happens when we open an ambient of a
given name.

3.2.3. Typing of Open

Tracking the type of I/O exchanges is not enough by itself. We also need to worry about open, which
might open an ambient and unleash its exchanges inside the surrounding ambient.

If ambients named n permit T exchanges, then the capability open n may unleash those T exchanges.
We then say that open n has a capability type Cap[T], meaning that it may unleash T exchanges when
used:

n : G[T] implies open n : Cap[T].

As a consequence, any process that uses a Cap[T] must be a process that is already willing to
participate in exchanges of type T , because further T exchanges may be unleashed:

M : Cap[T], P : T implies M.P : T .

3.2.4. Typing of In and Out

The exercise of an in or out capability cannot cause any exchange; hence such capabilities can be
prepended to any process. Following the same pattern we used with 0 and ambients, the silent nature
of these capabilities is formalized by allowing them to acquire any capability type:

in n : Cap[T] for any T

out n : Cap[T] for any T .

3.2.5. Groups

Groups are used in the exchange system to specify which kinds of messages can be exchanged inside
an ambient. We add a process construct to create a new group G with scope P:

(νG)P.

The type rule of this construct specifies that the process P should have an exchange type T that does
not contain G. Then, (νG)P can be given type T as well. That is, G is never allowed to “escape” out
of the scope of (νG) into the type of (νG)P:

P : T, G does not occur in T implies (νG)P : T .

4. TYPED AMBIENT CALCULUS

We are now ready for a formal presentation of the typed calculus which has been informally introduced
in the previous section. We first present its syntax, then its typing rules, and finally a subject reduction
theorem, which states that types are preserved during computation.

4.1. Types and Processes

Types are defined as in Section 3.1; messages and processes are defined as in Section 2, but we add
the operator (νG)P of Section 3.2.5.

Messages and Processes:

P, Q, R ::= process
(νG)P group creation
. . . as in Section 2

TYPES FOR THE AMBIENT CALCULUS 167

We identify processes up to consistent renaming of bound names and groups. In the processes (νG)P
and (νn : W)P , the group G and the name n, respectively, are bound, with scope P . In the process
(x1 : W1, . . . , xk : Wk).P , the names x1, . . . , xk are bound, with scope P .

The following table defines the free names of processes and messages, and the free groups of processes
and types.

Free Names and Free Groups:

fn((νG)P)
�= fn(P) fn(n)

�= {n}
fn((νn : W)P)

�= fn(P) − {n} fn(in M)
�= fn(M)

fn(0)
�= ∅ fn(out M)

�= fn(M)
fn(P | Q)

�= fn(P) ∪ fn(Q) fn(open M)
�= fn(M)

fn(!P)
�= fn(P) fn(ε)

�= ∅

fn(M[P])
�= fn(M) ∪ fn(P) fn(M.N)

�= fn(M) ∪ fn(N)
fn(M.P)

�= fn(M) ∪ fn(P)
fn((x1 : W1, . . . , xk : Wk).P)

�= fn(P) − {x1, . . . , xk}
fn(〈M1, . . . , Mk〉) �= fn(M1) ∪ · · · ∪ fn(Mk)
fn(go N .M[P])

�= fn(N) ∪ fn(M) ∪ fn(P)

fg((νG)P)
�= fg(P) − {G} fg(G[T])

�= {G} ∪ fg(T)
fg((νn : W)P)

�= fg(W) ∪ fg(P) fg(Cap[T])
�= fg(T)

fg(0)
�= ∅ fg(Shh)

�= ∅

fg(P | Q)
�= fg(P) ∪ fg(Q) fg(W1 × · · · × Wk)

�=
fg(!P)

�= fg(P) fg(W1) ∪ · · · ∪ fg(Wk)
fg(M[P])

�= fg(P)
fg(M.P)

�= fg(P)
fg((x1 : W1, . . . , xk : Wk).P)

�= fg(W1) ∪ · · · ∪ fg(Wk) ∪ fg(P)
fg(〈M1, . . . , Mk〉) �= ∅

fg(go N .M[P])
�= fg(P)

The following tables describe the operational semantics of the calculus. The type annotations present
in the syntax do not play a role in reduction; they are simply carried along by the reductions.

Terms are identified up to an equivalence relation, ≡, called structural congruence. This relation
provides a way of rearranging processes so that interacting parts can be brought together. Then, a
reduction relation, →, acts on the interacting parts to produce computation steps. The core of the
calculus is given by the reduction rules (Red In), (Red Out), (Red Go In), (Red Go Out), and (Red
Open), for mobility, and (Red I/O), for communication.

The rules of structural congruence are the same as for the untyped ambient calculus [13], except for the
addition of type annotations, and new rules for objective moves and group restriction. The rules (Struct
GRes . . .) describe the extrusion behavior of the (νG) binders. Note that (νG) extrudes exactly as (νn)
does; hence it does not pose any dynamic restriction on the movement of ambients or messages. The
rule (Struct Go ε) allows empty objective moves to be erased. The rules (Struct Go ε .), (Struct Go . ε),
and (Struct Go . Assoc) allow the capability expression in an objective move to be rearranged to allow
application of the reduction rules (Red Go In) and (Red Go Out). (These three rules of structural
congruence were missing in an earlier version of this system [10].)

Reduction:

n[in m.P | Q] | m[R] → m[n[P | Q] | R] (Red In)
m[n[out m.P | Q] | R] → n[P | Q] | m[R] (Red Out)
open n.P | n[Q] → P | Q (Red Open)
〈M1, . . . , Mk〉 | (x1 : W1, . . . , xk : Wk).P

→ P{x1 ← M1, . . . , xk ← Mk}
(Red I/O)

168 CARDELLI, GHELLI, AND GORDON

go(in m.N).n[P] | m[Q] → m[go N .n[P] | Q] (Red Go In)
m[go(out m.N).n[P] | Q] → go N .n[P] | m[Q] (Red Go Out)

P → Q ⇒ P | R → Q | R (Red Par)
P → Q ⇒ (νn : W)P → (νn : W)Q (Red Res)
P → Q ⇒ (νG)P → (νG)Q (Red GRes)
P → Q ⇒ n[P] → n[Q] (Red Amb)
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

Structural Congruence:

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q, Q ≡ R ⇒ P ≡ R (Struct Trans)

P ≡ Q ⇒ (νn : W)P ≡ (νn : W)Q (Struct Res)
P ≡ Q ⇒ (νG)P ≡ (νG)Q (Struct GRes)
P ≡ Q ⇒ P | R ≡ Q | R (Struct Par)
P ≡ Q ⇒ !P ≡ !Q (Struct Repl)
P ≡ Q ⇒ M[P] ≡ M[Q] (Struct Amb)
P ≡ Q ⇒ M.P ≡ M.Q (Struct Action)
P ≡ Q ⇒ (x1 : W1, . . . , xk : Wk).P ≡ (x1 : W1, . . . , xk : Wk).Q (Struct Input)
P ≡ Q ⇒ go N .M[P] ≡ go N .M[Q] (Struct Go)

P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
!P ≡ P | !P (Struct Repl Par)

n1 �= n2 ⇒ (νn1 : W1)(νn2 : W2)P ≡ (νn2 : W2)(νn1 : W1)P (Struct Res Res)
n /∈ fn(P) ⇒ (νn : W)(P | Q) ≡ P | (νn : W)Q (Struct Res Par)
n �= m ⇒ (νn : W)m[P] ≡ m[(νn : W)P] (Struct Res Amb)

(νG1)(νG2)P ≡ (νG2)(νG1)P (Struct GRes GRes)
G /∈ fg(W) ⇒ (νG)(νn : W)P ≡ (νn : W)(νG)P (Struct GRes Res)
G /∈ fg(P) ⇒ (νG)(P | Q) ≡ P | (νG)Q (Struct GRes Par)
(νG)m[P] ≡ m[(νG)P] (Struct GRes Amb)

P | 0 ≡ P (Struct Zero Par)
(νn : W)0 ≡ 0 (Struct Zero Res)
(νG)0 ≡ 0 (Struct Zero GRes)
!0 ≡ 0 (Struct Zero Repl)

ε.P ≡ P (Struct ε)
(M.M ′).P ≡ M.M ′.P (Struct.)

go ε.N [P] ≡ N [P] (Struct Go ε)
go (ε.M).N [P] ≡ go M.N [P] (Struct Go ε.)
go (M.ε).N [P] ≡ go M.N [P] (Struct Go.ε)
go ((M.M ′).M ′′).N [P] ≡ go (M.(M ′.M ′′)).N [P] (Struct Go.Assoc)

4.2. The Exchange Types

In the tables below, we introduce typing environments, E , the five basic judgments, and the typing
rules. By convention, any antecedent of the form E � J1, . . . , E � Jn means E � � when n = 0.

TYPES FOR THE AMBIENT CALCULUS 169

Environments, E, and the Domain, dom(E), of an Environment:

E ::= ∅ | E, G | E, n : W environment

dom(∅)
�= ∅

dom(E, G)
�= dom(E) ∪ {G}

dom(E, n : W)
�= dom(E) ∪ {n}

Judgments:

E � � good environment
E � W good message type W
E � T good exchange type T
E � M : W good message M of message type W
E � P : T good process P with exchange type T

Good Environments:

(Env ∅)

∅ � �

(Env n)

E � W n /∈ dom(E)

E, n : W � �

(Env G)

E � � G /∈ dom(E)

E, G � �

Good Types:

(Type Amb)

G ∈ dom(E) E � T

E � G[T]

(Type Cap)

E � T

E � Cap[T]

(Type Shh)

E � �
E � Shh

(Type Prod)

E � W1 . . . E � Wk

E � W1 × · · · × Wk

Good Messages:

(Exp n)

E ′, n : W, E ′′ � �
E ′, n : W, E ′′ � n : W

(Exp.)

E � M : Cap[T] E � M ′ : Cap[T]

E � M.M ′ : Cap[T]

(Exp ε)

E � Cap[T]

E � ε : Cap[T]

(Exp In)

E � n : G[S] E � T

E � in n : Cap[T]

(Exp Out)

E � n : G[S] E � T

E � out n : Cap[T]

(Exp Open)

E � n : G[T]

E � open n : Cap[T]

Good Processes:

(Proc Action)

E � M : Cap[T] E � P : T

E � M.P : T

(Proc Amb)

E � M : G[S] E � P : S E � T

E � M[P] : T

(Proc Res)

E, n : G[S] � P : T

E � (νn : G[S])P : T

(Proc GRes)

E, G � P : T G /∈ fg(T)

E � (νG)P : T

170 CARDELLI, GHELLI, AND GORDON

(Proc Zero)

E � T

E � 0 : T

(Proc Par)

E � P : T E � Q : T

E � P | Q : T

(Proc Repl)

E � P : T

E � !P : T

(Proc Input)

E, n1 : W1, . . . , nk : Wk � P : W1 × · · · × Wk

E � (n1 : W1, . . . , nk : Wk).P : W1 × · · · × Wk

(Proc Output)

E � M1 : W1 · · · E � Mk : Wk

E � 〈M1, . . . , Mk〉 : W1 × · · · × Wk

(Proc Go)

E � N : Cap[Shh] E � M : G[S] E � P : S E � T

E � go N .M[P] : T

4.3. Subject Reduction

We obtain a standard subject reduction result. A subtle point, though, is the need to account for the
appearance of new groups (G1, . . . , Gk , below) during reduction. This is because reduction is defined
up to structural congruence, and structural congruence does not preserve the set of free groups of a
process. The culprit is the rule (νn : W)0 ≡ 0, in which groups free in W are not free in 0.

THEOREM 4.1 (Subject congruence). If E � P : T and P ≡ Q then there are G1, . . . , Gk such that
G1, . . . , Gk, E � Q : T .

Proof. See Appendix A.

THEOREM 4.2 (Subject reduction). If E � P : T and P → Q then there are G1, . . . , Gk such that
G1, . . . , Gk, E � Q : T .

Proof. See Appendix A.

Subject reduction specifies that, if P is well typed, it will only reduce to well-typed terms. This fact
has some practical consequences:

• P will never reduce to meaningless processes allowed by the syntax like (in n)[P];

• no process deriving from P will contain an ambient where a process attempts an input or output
operation which does not match the ambient type.

Subject reduction also has interesting and subtle connections with secrecy of names.
Consider a well-typed process ((νG)P) | O , where O is a type-checked “opponent,” and a name n

is declared inside P with a type G[T]. Although (νG) can be extruded arbitrarily far, according to the
extrusion rules, no process which derives from the opponent O will ever be able to read n through
an input (x : W).Q. Any process 〈n〉 | (x : W).Q which derives from ((νG)P) | O is well typed, hence
W = G[T], but the opponent was not, by assumption, in the initial scope of G, and therefore cannot even
mention the type G[T]. Therefore, we can guarantee that names of group G can never be communicated
to processes outside the initial scope of G, simply because those processes cannot name G to receive
the message. (Elsewhere [11] we extend this argument to the case of untyped opponents.)

This situation is in sharp contrast with ordinary name restriction, where a name that is initially
held secret (e.g., a key) may accidentally be given away and misused (e.g., to decrypt current or old
messages). This is because scoping of names can be extruded too far, inadvertently. Scoping of groups
can be extruded as well, but still offers protection against accidental or even malicious leakage.

Of course, we would have even stronger protection if we did not allow (νG) binders to extrude at all.
But this would be too rigid. Since (νG) binders can be extruded, they do not impede the mobility of
ambients that carry secrets. They only prevent those ambients from giving the secrets away. Consider

TYPES FOR THE AMBIENT CALCULUS 171

the following example of traveling agents sharing secrets.

a[(νG)(νk ′ : G[Shh])(νk ′′ : G[Shh])(k ′[out a.in b.out b.in c] | k ′′[out a.in c.in k ′])] | b[] | c[]

Within an ambient a, two agents share a secret group G and two names k ′ and k ′′ belonging to that
group. The two agents adopt the names k ′ and k ′′ as their respective names, knowing that those names
cannot be leaked even by themselves. This way, as they travel, nobody else can interfere with them.
If somebody interferes with them, or demonstrates knowledge of the names k ′ or k ′′, the agents know
that the other party must be (a descendant of) the other agent. In this example, the first agent travels to
ambient b and then to c, and the second agent goes to ambient c directly. The scope extrusion rules for
groups and names allow this to happen. Inside c, out of the intial scope of (νG), the second agent then
interacts with the first by entering it. It can do so because it still holds the shared secret k ′.

The proof that group extrusion preserves types can be found in the appendix, but we comment here
on the crucial case: the preservation of typing by the extrusion rule (Struct GRes Amb).

For a well-typed P , (νG)P is well typed if and only if P does not communicate a tuple which names
G in its type (rule (Proc GRes)): (νG) must not “see” G-typed names communicated at its own level.
This intuition suggests that, referring to the following table, P ′ should be typeable ((νG) cannot “see”
the output 〈n〉) while P ′′ should not be (〈n〉 is at the same level as (νG)). However, the two processes
are equivalent, modulo extrusion of (νG) (rule (Struct GRes Amb)):

P ′ = (νG)m[(νn : G[Shh])〈n〉]
P ′′ = m[(νG)(νn : G[Shh])〈n〉].

We go through the example step by step to solve the apparent paradox. First consider the term

(νG)(νn : G[Shh])〈n〉.

This term cannot be typed, because G attempts to escape the scope of (νG) as the type of the message
n. An attempted typing derivation fails at the last step below

. . .

⇒ G, n : G[Shh] � n : G[Shh]

⇒ G, n : G[Shh] � 〈n〉 : G[Shh]

⇒ G � (νn : G[Shh])〈n〉 : G[Shh]

�⇒ � (νG)(νn : G[Shh])〈n〉 : G[Shh] (because G ∈ fg(G[Shh])).

Similarly, the term

(νm : W)m[(νG)(νn : G[Shh])〈n〉]

cannot be typed, because it contains the previous untypeable term. But now consider the following
term, which is equivalent to the one above up to structural congruence, by extrusion of (νG) across an
ambient boundary:

(νm : W)(νG)m[(νn : G[Shh])〈n〉].

This term might appear typeable (contradicting the subject congruence property) because the message
〈n〉 : G[Shh] is confined to the ambient m, and m[. . .] can be given an arbitrary type, e.g., Shh, which
does not contain G. Therefore (νG) would not “see” any occurrence of G escaping from its scope.
However, consider the type of m in this term. It must have the form H [T], where H is some group, and
T is the type of messages exchanged inside m. But that’s G[Shh]. So we would have

(νm : H [G[Shh]])(νG)m[(νn : G[Shh])〈n〉]

which is not typeable because the first occurrence of G is out of scope.

172 CARDELLI, GHELLI, AND GORDON

This example tells us why (νG) intrusion (floating inwards) into ambients is not going to break
good typing: (νG) cannot enter the scope of the (νm : W) restriction which creates the name m of an
ambient where messages with a G-named type are exchanged. This prevents (νG) from entering such
ambients.

Indeed, the following variation (not equivalent to the previous one) is typeable, but (νG) cannot
intrude any more:

(νG)(νm : H [G[Shh]])m[(νn : G[Shh])〈n〉].

5. OPENING CONTROL

Ambient opening is a prerequisite for any communication to happen between processes which did
not originate in the same ambient, as exemplified by any channel encoding.

On the other hand, opening is one of the most delicate operations in the ambient calculus, since the
contents of the guest spill inside the host, with two different classes of possible consequences:

• the content of the guest acquires the possibility of performing communications inside the hosts,
and of moving the host around;

• the host is now able to examine the content of the guest, mainly in terms of receiving messages
sent by the processes inside the guest and of opening its subambients.

For these reasons, a type system for ambients should support a careful control of the usage of the
open capability.

5.1. The System

In this section, we enrich the ambient types, G[T], and the capability types, Cap[T], of the previous
type system to control usage of the open capability.

To control the opening of ambients, we formalize the constraint that the name of any ambient opened
by a process is in one of the groups G1, . . . ,Gk , but in no others. To do so, we add an attribute
◦{G1, . . . ,Gk} to ambient types, which now take the form G[◦{G1, . . . ,Gk}, T]. A name of this type is
in group G and names ambients within which processes may exchange messages of type T and may only
open ambients in the groups G1, . . . ,Gk . We need to add the same attribute to capability types, which
now take the form Cap[◦{G1, . . . ,Gk}, T]. Exercising a capability of this type may unleash exchanges
of type T and openings of ambients in groups G1, . . . ,Gk . The typing judgment for processes acquires
the form E � P : ◦{G1, . . . ,Gk}, T . The pair ◦{G1, . . . ,Gk}, T constrains both the opening effects (what
ambients the process opens) and the exchange effects (what messages the process exchanges). We call
such a pair an effect and introduce the metavariable F to range over effects. It is also convenient to
introduce metavariables G, H to range over finite sets of groups. The following tables summarize these
metavariable conventions and our enhanced syntax for types:

Group Sets:

G, H ::= {G1, . . . ,Gk} finite set of groups

Types:

W ::= message type
G[F] name in group G for ambients which contain processes with

F effects
Cap[F] capability (unleashes F effects)

F ::= effect
◦H, T may open H, may exchange T

S, T ::= exchange type
Shh no exchange
W1 × · · · × Wk tuple exchange

TYPES FOR THE AMBIENT CALCULUS 173

The definition of free groups is the same as in Section 4 except that we redefine fg(W) by the
equations fg(G[F]) = {G} ∪ fg(F) and fg(Cap[F]) = fg(F), and we define fg(F) = H ∪ fg(T) where
F = ◦H, T .

The following tables define the type system in detail. There are five basic judgments as before.
They have the same format except that the judgment E � F , meaning that the effect F is good given
environment E , replaces the previous judgment E � T . We omit the three rules for deriving good
environments; they are exactly as in the previous section. There are two main differences between the
other rules below and the rules of the previous section. First, effects, F , replace exchange types, T ,
throughout. Second, in the rule (Exp Open), the condition G ∈ H constrains the opening effect H of a
capability open n to include the group G, the group of the name n.

Judgments:

E � � good environment
E � W good message type W
E � F good effect F
E � M : W good message M of message type W
E � P : F good process P with F effects

Good Types:

(Type Amb)

G ∈ dom(E) E � F

E � G[F]

(Type Cap)

E � F

E � Cap[F]

(Effect Shh)

H ⊆ dom(E) E � �
E � ◦H, Shh

(Effect Prod)

H ⊆ dom(E) E � W1 . . . E � Wk

E � ◦H, W1 × · · · × Wk

Good Messages:

(Exp n)

E ′, n : W, E ′′ � �
E ′, n : W, E ′′ � n : W

(Exp ε)

E � Cap[F]

E � ε : Cap[F]

(Exp.)

E � M : Cap[F] E � M ′ : Cap[F]

E � M.M ′ : Cap[F]

(Exp In)

E � n : G[F] E � ◦H, T

E � in n : Cap[◦H, T]

(Exp Out)

E � n : G[F] E � ◦H, T

E � out n : Cap[◦H, T]

(Exp Open)

E � n : G[◦H, T] G ∈ H

E � open n : Cap[◦H, T]

Good Processes:

(Proc Action)

E � M : Cap[F] E � P : F

E � M.P : F

(Proc Amb)

E � M : G[F] E � P : F E � F ′

E � M[P] : F ′

(Proc Res)

E, n : G[F] � P : F ′

E � (νn : G[F])P : F ′

(Proc GRes)

E, G � P : F G /∈ fg(F)

E � (νG)P : F

174 CARDELLI, GHELLI, AND GORDON

(Proc Zero)

E � F

E � 0 : F

(Proc Par)

E � P : F E � Q : F

E � P | Q : F

(Proc Repl)

E � P : F

E � !P : F

(Proc Input)

E, n1 : W1, . . . , nk : Wk � P : ◦H, W1 × · · · × Wk

E � (n1 : W1, . . . , nk : Wk).P : ◦H, W1 × · · · × Wk

(Proc Output)

E � M1 : W1 . . . E � Mk : Wk H ⊆ dom(E)

E � 〈M1, . . . , Mk〉 :◦H, W1 × · · · × Wk

(Proc Go)

E � N : Cap[◦{ }, Shh] E � M : G[F] E � P : F E � F ′

E � go N .M[P] : F ′

5.2. Subject Reduction

We obtain a subject reduction result.

THEOREM 5.3. If E � P : F and P → Q then there are G1, . . . ,Gk such that G1, . . . , Gk, E � Q : F.

Proof. See the Appendix.

Here is a simple example of a typing derivable in this system:

G, n : G[◦{G}, Shh] � n[0] | open n.0 : ◦{G}, Shh.

This asserts that the whole process n[0] | open n.0 is well typed and opens only ambients in the
group G.

On the other hand, one might expect the following variant to be derivable, but it is not:

G, n : G[◦{ }, Shh] � n[0] | open n.0 : ◦{G}, Shh.

This is because the typing rule (Exp Open) requires the effect unleashed by the open n capability to
be the same as the effect contained within the ambient n. But the opening effect ◦{ } specified by the
type G[◦{ }, Shh] of n cannot be the same as the effect unleashed by open n, because (Exp Open) also
requires the latter to at least include the group G of n.

This feature of (Exp Open) has a positive side-effect: the type G[◦G, T] of an ambient name n not
only tells which opening effects may happen inside the ambient, but also tells whether n may be opened
from outside: it is openable only if G ∈ G, since this is the only case when open n.0 | n[P] may be
well typed. Hence, the presence of G in the set G may mean either that n is meant to be an ambi-
ent within which other ambients in group G may be opened or that it is meant to be an openable
ambient.

More generally, because of the shape of the open rule, the opening effects in the ambient type of n
not only record the openings that may take place inside the ambient, but also the opening effects of any
ambient m which is going to open n, and, recursively, of any ambient which is going to open m as well.
A similar phenomenon occurs with exchange types and with the subjective-crossing effects of the next
section.

While this turns out to be unproblematic for the examples we consider in this paper, one may prefer
to avoid this “inward propagation” of effects by replacing (Exp Open) with the following rule:

E � n : G[◦H, T]

E � open n : Cap[◦({G} ∪ H), T]
.

TYPES FOR THE AMBIENT CALCULUS 175

With this rule, we could derive that the example process above, n[0] | open n.0, has effect ◦{G}, Shh,
with no need of attributing this effect to processes running inside n itself, but unfortunately, subject
reduction fails. To see this, consider the process open n | n[open m], which can be assigned the effect
◦{G, H}, Shh:

G, H, m : G[◦{ }, Shh], n : H [◦{G}, Shh] � open n |n[open m] : ◦{G, H}, Shh.

The process reduces in one step to open m, but we cannot derive the following:

G, H, m : G[◦{ }, Shh], n : H [◦{G}, Shh] � open m : ◦{G, H}, Shh.

To obtain a subject reduction property in the presence of the rule displayed above, we should introduce
a notion of subtyping, such that if G ⊆ H and a process has type ◦G, T , then the process has type ◦H, T
too. This would complicate the type system, as shown in [36]. Moreover, we would lose the indirect
way of declaring ambient openability, so we prefer to stick to the basic approach.

6. CROSSING CONTROL

This section presents the third and final type system of the paper. We obtain it by enriching the type
system of Section 5 with attributes to control the mobility of ambients.

6.1. The System

Movement operators enable an ambient n to cross the boundary of another ambient m either by
entering it via an in m capability or by exiting it via an out m capability. In the type system of this
section, the type of n lists those groups that may be crossed; the ambient n may only cross the boundary
of another ambient m if the group of m is included in this list. In our typed calculus, there are two kinds
of movement, subjective moves and objective moves, for reasons explained in Section 6.2. Therefore,
we separately list those groups that may be crossed by objective moves and those groups that may be
crossed by subjective moves.

We add new attributes to the syntax of ambient types, effects, and capability types. An ambient
type acquires the form G �G′[�G,◦H, T]. An ambient of this type is in group G, may cross ambients
in groups G′ by objective moves, may cross ambients in groups G by subjective moves, may open
ambients in groups H, and may contain exchanges of type T . An effect, F , of a process is now of the
form�G,◦H, T . It asserts that the process may exercise in and out capabilities to accomplish subjective
moves across ambients in groups G, that the process may open ambients in groups H, and that the
process may exchange messages of type T . Finally, a capability type retains the form Cap[F], but with
the new interpretation of F . Exercising a capability of this type may unleash F effects.

Types:

W ::= message type
G �G[F] name in group G for ambients which cross G

objectively and contain processes with F effects
Cap[F] capability (unleashes F effects)

F ::= effect
�G,◦H, T crosses G, opens H, exchanges T

S, T ::= exchange type
Shh no exchange
W1 × · · · × Wk tuple exchange

The definition of free groups is the same as in Section 4 except that we redefine fg(W) by the equations
fg(G �G[F]) = {G} ∪ G ∪ fg(F) and fg(Cap[F]) = fg(F), and we define fg(F) = G ∪ H ∪ fg(T) where
F =�G,◦H, T .

176 CARDELLI, GHELLI, AND GORDON

The format of the five judgments making up the system is the same as in Section 5. We omit the three
rules defining good environments; they are as in Section 4. There are two main changes to the previous
system to control mobility. First, (Exp In) and (Exp Out) change to assign a type Cap[�G,◦H, T] to
capabilities in n and out n only if G ∈ G where G is the group of n. Second, (Proc Go) changes to
allow an objective move of an ambient of type G �G′[F] by a capability of type Cap[�G,◦H, T] only
if G = G′.

Good Types:

(Type Amb)

G ∈ dom(E) G ⊆ dom(E) E � F

E � G �G[F]

(Type Cap)

E � F

E � Cap[F]

(Effect Shh)

G ⊆ dom(E) H ⊆ dom(E) E � �
E � �G,◦H, Shh

(Effect Prod)

G ⊆ dom(E) H ⊆ dom(E) E � W1 . . . E � Wk

E � �G,◦H, W1 × · · · × Wk

Good Messages:

(Exp n)

E ′, n : W, E ′′ � �
E ′, n : W, E ′′ � n : W

(Exp ε)

E � Cap[F]

E � ε : Cap[F]

(Exp.)

E � M : Cap[F] E � M ′ : Cap[F]

E � M.M ′ : Cap[F]

(Exp In)

E � n : G �G′[F] E � �G,◦H, T G ∈ G

E � in n : Cap[�G,◦H, T]

(Exp Out)

E � n : G �G′[F] E � �G,◦H, T G ∈ G

E � out n : Cap[�G,◦H, T]

(Exp Open)

E � n : G �G′[�G,◦H, T] G ∈ H

E � open n : Cap[�G,◦H, T]

Good Processes:

(Proc Action)

E � M : Cap[F] E � P : F

E � M.P : F

(Proc Amb)

E � M : G �G[F] E � P : F E � F ′

E � M[P] : F ′

(Proc Res)

E, n : G �G[F] � P : F ′

E � (νn : G �G[F])P : F ′

(Proc GRes)

E, G � P : F G /∈ fg(F)

E � (νG)P : F

(Proc Zero)

E � F

E � 0 : F

(Proc Par)

E � P : F E � Q : F

E � P | Q : F

(Proc Repl)

E � P : F

E � !P : F

TYPES FOR THE AMBIENT CALCULUS 177

(Proc Input)

E, n1 : W1, . . . , nk : Wk � P : �G,◦H, W1 × · · · × Wk

E � (n1 : W1, . . . , nk : Wk).P : �G,◦H, W1 × · · · × Wk

(Proc Output)

E � M1 : W1 . . . E � Mk : Wk G ⊆ dom(E) H ⊆ dom(E)

E � 〈M1, . . . , Mk〉 : �G,◦H, W1 × · · · × Wk

(Proc Go)

E � N : Cap[�G,◦{ }, Shh] E � M : G �G[F] E � P : F E � F ′

E � go N .M[P] : F ′

THEOREM 6.1. If E � P : F and P → Q then there are G1, . . . ,Gk such that G1, . . . ,Gk, E � Q : F.

Proof. See the appendix.

6.2. The Need for Objective Moves

We can now show how primitive typing rules for objective moves allow us to assign better types in
some crucial situations. Recall the untyped example from Section 2. Suppose we have two groups Ch
and Pk (for channels and packets). Let W be any well-formed type (where Ch and Pk may appear), and
set P to be the example process:

P = a[p[out a.in b.〈c〉]] | b[open p.(x : W).x[]].

Let

E = Ch, Pk,

a : Ch �{ }[�{ },◦{ }, Shh],

b : Ch �{ }[�{Ch},◦{Pk}, W],

c : W,

p : Pk �{ }[�{Ch},◦{Pk}, W]

and we can derive the typings:

E � out a.in b.〈c〉 : �{Ch},◦{Pk}, W

E � open p.(x : W).x[] : �{Ch},◦{Pk}, W

E � P : �{ },◦{ }, Shh.

From the typing a : Ch �{ }[�{ },◦{ }, Shh], we can tell that a is an immobile ambient in which
nothing is exchanged and that cannot be opened. From the typings p : Pk �{ }[�{Ch},◦{Pk}, W],
b : Ch �{ }[�{Ch},◦{Pk}, W], we can tell that the ambients b and p cross only Ch ambients, open
only Pk ambients, and contain W exchanges; the typing of p also tells us it can be opened. This is
not fully satisfactory, since, if b were meant to be immobile, we would like to express this immobility
invariant in its type. However, since b opens a subjectively mobile ambient, then b must be typed as if
it were subjectively mobile itself. The problem is quite general, as it applies to any immobile ambient
wishing to open a subjectively mobile one.

This problem can be solved by replacing the subjective moves by objective moves, since objective
moves are less expressive than subjective moves, but they cannot be inherited by opening another
ambient. Let Q be the example process with objective instead of subjective moves:

Q = a[go(out a.in b).p[〈c〉]] | b[open p.(x : W).x[]].

178 CARDELLI, GHELLI, AND GORDON

Let

E = Ch, Pk,

a : Ch �{ }[�{ },◦{ }, Shh],

b : Ch �{ }[�{ },◦{Pk}, W],

c : W,

p : Pk �{Ch}[�{ },◦{Pk}, W]

and we can derive:

E � out a.in b : Cap[�{Ch},◦{ }, Shh]

E � go(out a.in b).p[〈c〉] : �{ },◦{ }, Shh

E � open p.(x : W).x[] : �{ },◦{Pk}, W

E � Q : �{ },◦{ }, Shh.

The typings of a and c are unchanged, but the new typings of p and b are more informative. We
can tell from the typing p : Pk �{Ch}[�{ },◦{Pk}, W] that movement of p is due to objective rather than
subjective moves. Moreover, as desired, we can tell from the typing b : Ch �{ }[�{ },◦{Pk}, W] that the
ambient b is immobile.

This example suggests that in some situations objective moves lead to more informative typings
than subjective moves. Still, subjective moves are essential for moving ambients containing running
processes. An extended example in Section 8 illustrates the type system of this section; the treatment
of thread mobility makes essential use of subjective moves.

6.3. Relationship to Binary Annotations

The system of this section generalizes our previous system of binary locking and mobility annota-
tions [9]. In that system, the type of a name takes the form AmbY Zo [Zs T], where the locking annotation,
Y , is either locked, •, or unlocked, ◦, and the mobility annotations, Zo and Zs , are each either mobile,
�, or immobile, �. An ambient of this type may be opened if and only if Y = ◦, it may be moved
objectively if and only if Zo = �, and it may be moved subjectively if and only if Zs = �.

That system can be understood as a degenerate form of the current one, where we only use two
groups, L (for Locked) and U (for Unlocked), so that any ambient name will belong to one of these two
groups. Then we understand a type AmbY Zo [Zs T] as a type G �Go[�Gs,

◦H, T ′] as follows:

• If the objective mobility annotation Zo is � (mobile), let Go = �{L , U } (may cross any
ambient). If the objective mobility annotation Zo is � (immobile), let Go = �{ } (may cross nothing).

• We translate the subjective mobility annotation Zs to the effect Gs in the same way.

• If the locking annotation Y is • (locked), let G = L and H = {U } (locked, may open any
unlocked ambient). If the locking annotation Y is ◦ (unlocked), let G = U and H = {U } (unlocked,
may be opened and may open any unlocked ambient).

It is then straightforward to show that � P : T holds in the system of [9] iff L , U � translate(P) :
translate(T) holds in the system of this section, where translate translates T and the types in P as
specified above.

7. EFFECT SAFETY

Like most other type systems for concurrent calculi, ours does not guarantee liveness properties, for
example, the absence of deadlocks. Still, we may regard the effect assigned to a process as a safety
property: an upper bound on the capabilities that may be exercised by the process, and hence on its
behavior. We formalize this idea in the setting of our third type system and explain some consequences.

TYPES FOR THE AMBIENT CALCULUS 179

We say that a process P exercises a capability M , one of in n or out n or open n, just if P ↓ M may
be derived by the following rules:

Exercising a Capability: P ↓ M where M ∈ {in n, out n, open n}
(Ex Cap)

P ≡ M.Q

P ↓ M

(Ex Par 1)

P ↓ M

P | Q ↓ M

(Ex Par 2)

Q ↓ M

P | Q ↓ M

(Ex Res)

P ↓ M n /∈ fn(M)

(νn : W)P ↓ M

(Ex ResG)

P ↓ M

(νG)P ↓ M

The following asserts that the group of the name contained in any capability exercised by a well-typed
process is bounded by the effect assigned to the process. We give the proof in Appendix B.

PROPOSITION 7.1 (Effect safety). Suppose that E � P :�G,◦H, T .

(1) If P ↓ in n then E � n : G �G′[F] for some type G �G′[F] with G ∈ G.

(2) If P ↓ out n then E � n : G �G′[F] for some type G �G′[F] with G ∈ G.

(3) If P ↓ open n then E � n : G �G′[F] for some type G �G′[F] with G ∈ H.

To explain the intuitive significance of this proposition, consider a name m : H �H′[�G,◦H, T] and
a well-typed ambient m[P]. Suppose that m[P] is a subprocess of some well-typed process Q. We
can make two connections between the capabilities exhibited by the process P and the reductions
immediately derivable from the whole process Q. First, within Q, the ambient m[P] can immediately
cross (via subjective moves) the boundary of another ambient named n of some group G only if either
P ↓ in n or P ↓ out n. The typing rule for ambients implies that P must have effect�G,◦H, T . Part (1)
or (2) of the proposition implies that the set G contains G. Second, suppose that P includes a top-level
ambient named n. The boundary of n can be immediately dissolved only if P ↓ open n. Since P has
effect �G,◦H, T , part (3) of the proposition implies that the set H contains G. So the set G includes the
groups of all ambients that can be immediately crossed by m[P], and the set H includes the groups of
all ambients that can be immediately opened within m[P].

A corollary of Theorem 6.1 is that these bounds on ambient behavior apply not just to ambients
contained within Q, but to ambients contained in any process reachable by a series of reductions
from Q.

For the sake of simplicity and brevity, our discussion in this section is fairly informal. In their recent
work on a derivative of the ambient calculus, Bugliesi and Castagna [8] state a formal safety property
induced by a type system for ambients. To do so, they introduce a precise notion of process residuals.

8. ENCODING A DISTRIBUTED LANGUAGE

Several typed and untyped distributed languages have been proposed [22, 35]. They come with notions
of locations, agents, threads, mobility, and so on. Typed translations of procedural and object-oriented
programming languages into formal type systems have been studied for several reasons including type
soundness [2] and compilation optimisations [28]. In the same way, we aim to reduce the constructs of
agent languages to appropriate type systems that capture their fundamental characteristics.

In this section, we consider a particular example, a fragment of a typed, distributed language in which
mobile threads can migrate between immobile network nodes. We obtain a semantics for this form of
thread mobility via a translation into the ambient calculus. In the translation, ambients model both
threads and nodes. The encoding can be typed in all three of the systems presented in this paper; for the
sake of brevity we describe the encoding only for the full system of Section 6. The encoding illustrates
how groups can be used to partition the set of ambient names according to their intended usage, and
how opening and crossing control allows the programmer to state interesting invariants. In particular,
the typing of the translation guarantees that an ambient modeling a node moves neither subjectively
nor objectively. On the other hand, an ambient modeling a thread is free to move subjectively, but is
guaranteed not to move objectively.

180 CARDELLI, GHELLI, AND GORDON

8.1. The Distributed Language

The computational model is that there is an unstructured collection of named network nodes, each
of which hosts a collection of named communication channels and anonymous threads. This is similar
to the computational models underlying various distributed variants of the π -calculus, such as those
proposed by Amadio and Prasad [4], Riely and Hennessy [32], and Sewell [33]. In an earlier paper [12],
we showed how to mimic Telescript’s computational model by translation into the ambient calculus. In
the language fragment we describe here, communication is based on named communication channels (as
in the π -calculus) rather than by direct agent-to-agent communication (as in our stripped down version
of Telescript). As in our previous paper, we focus on language constructs for mobility, synchronization,
and communication. We omit standard constructs for data processing and control flow. They could
easily be added.

To introduce the syntax of our language fragment, here is a simple example:

node a [channel ac | thread[ac〈b, bc〉]] | node b [channel bc] |
node c [thread[go a.ac(x : Node, y : Ch[Node]).go x .ȳ〈a〉].

This program describes a network consisting of three network nodes, named a, b, and c. Node a
hosts a channel ac and a thread running the code ac〈b, bc〉, which simply sends the pair 〈b, bc〉 on the
channel ac. Node b hosts a channel bc. Finally, node c hosts a single thread, running the code:

go a.ac(x : Node, y : Ch[Node]).go x .ȳ〈a〉.

The effect of this is to move the thread from node c to node a. There it awaits a message sent on the
communication channel ac. We may assume that it receives the message 〈b, bc〉 being sent by the thread
already at a. (If there were another thread at node a sending another message, the receiver thread would
end up receiving one or other of the messages.) The thread then migrates to node b, where it transmits
a message a on the channel bc.

Messages on communication channels are assigned types, ranged over by Ty. The type Node is the
type of names of network nodes. The type Ch[Ty1, . . . , Tyk] is the type of a polyadic communication
channel. The messages communicated on such a channel are k-tuples whose components have types
Ty1, . . . , Tyk . In the setting of the example above, channel ac has type Ch[Node, Ch[Node]], and channel
bc has type Ch[Node].

Next, we describe the formal grammar of our language fragment. A network, Net, is a collection of
nodes, built up using composition Net | Net and restrictions (νn : Ty)Net. A crowd, Cro, is the group of
threads and channels hosted by a node. Like networks, crowds are built up using composition Cro | Cro
and restriction (νn : Ty)Cro. A thread, Th, is a mobile thread of control. As well as the constructs
illustrated above, a thread may include the contructs fork(Cro).Th and spawn n [Cro].Th. The first
forks a new crowd Cro inside the current node and continues with Th. The second spawns a new node
node n [Cro] outside the current node at the network level, and continues with Th.

A Fragment of a Typed, Distributed Programming Language:

Ty ::= type
Node name of a node
Ch[Ty1, . . . , Tyk] name of a channel

Net ::= network
(νn : Ty)Net restriction
Net | Net network composition
node n [Cro] node

Cro ::= crowd of channels and threads
(νn : Ty)Cro restriction
Cro | Cro crowd composition
channel c channel
thread[Th] thread

TYPES FOR THE AMBIENT CALCULUS 181

Th ::= thread
go n.Th migration
c̄〈n1, . . . , nk〉 output to a channel
c(x1 : Ty1, . . . , xk : Tyk).Th input from a channel
fork(Cro).Th fork a crowd
spawn n [Cro].Th spawn a new node

In the phrases (νn : Ty)Net and (νn : Ty)Cro, the name n is bound; its scope is Net and Cro, respectively.
In the phrase c(x1 : Ty1, . . . , xk : Tyk).Th, the names x1, . . . , xk are bound; their scope is the phrase Th.

The type system of our language controls the typing of messages on communication channels, much
as in previous schemes for the π -calculus [27]. We formalize the type system as five judgments defined
by the following rules.

Judgments:

E � � good environment
E � n : Ty name n has type Ty
E � Net good network
E � Cro good crowd
E � Th good thread

Good Environment:

∅ � �
E � � n /∈ dom(E)

E, n : Ty � �

Name has Type:

E, n : Ty, E ′ � �
E, n : Ty, E ′ � n : Ty

Good Network:

E, n : Ty � Net

E � (νn : Ty)Net

E � Net E � Net′

E � Net | Net′
E � n : Node E � Cro

E � node n [Cro]

Good Crowd:

E, n : Ty � Cro

E � (νn : Ty)Cro

E � Cro E � Cro′

E � Cro | Cro′

E � c : Ch[Ty1, . . . , Tyk]

E � channel c

E � Th

E � thread[Th]

Good Thread:

E � n : Node E � Th

E � go n.Th

E � c : Ch[Ty1, . . . , Tyk] E � ni : Tyi ∀i ∈ 1 . . k

E � c̄〈n1, . . . , nk〉

182 CARDELLI, GHELLI, AND GORDON

E � c : Ch[Ty1, . . . , Tyk] E, x1 : Ty1, . . . , xk : Tyk � Th

E � c(x1 : Ty1, . . . , xk : Tyk).Th

E � Cro E � Th

E � fork(Cro).Th

E � n : Node E � Cro E � Th

E � spawn n [Cro].Th

8.2. Typed Translation to the Ambient Calculus

In this section, we translate our distributed language to the typed ambient calculus of Section 6.
The basic idea of the translation is that ambients model nodes, channels, and threads. For each

channel, there is a name for a buffer ambient, of group Chb, and there is a second name, of group Chp,
for packets exchanged within the channel buffer. Similarly, for each node, there is a name, of group
Nodeb, for the node itself, and a second name, of group Nodep, for short-lived ambients that help fork
crowds within the node, or to spawn other nodes. Finally, there is a group Thr to classify the names of
ambients that model threads. The following table summarizes these five groups:

Global Groups Used in the Translation:

Nodeb ambients that model nodes
Nodep ambients to help fork crowds or spawn nodes
Chb ambients that model channel buffers
Chp ambients that model packets on a channel
Thr ambients that model threads

We begin the translation by giving types in the ambient calculus corresponding to types in the
distributed language. Each type Ty gets translated to a pair [[Ty]]b, [[Ty]]p of ambient calculus types.
Throughout this section, we omit the curly braces when writing singleton group sets; for example, we
write �Nodeb as a shorthand for �{Nodeb}.

First, if Ty is a node type, [[Ty]]b is the type of an ambient (of group Nodeb) modeling a node, and [[Ty]]p

is the type of helper ambients (of group Nodep). Second, if Ty is a channel type, [[Ty]]b is the type of an am-
bient (of group Chb) modeling a channel buffer, and [[Ty]]p is the type of a packet ambient (of group Chp).

Translations [[Ty]]b, [[Ty]]p of a Type Ty:

[[Node]]b �= Nodeb �Nodeb[�{ },◦Nodep, Shh]
[[Node]]p �= Nodep �Thr[�{ },◦Nodep, Shh]
[[Ch[Ty1, . . . , Tyk]]]b �= Chb �{ }[�{ },◦Chp, [[Ty1]]b × [[Ty1]]p × · · · × [[Tyk]]b × [[Tyk]]p]
[[Ch[Ty1, . . . , Tyk]]]p �= Chp �{Thr, Chb}[�{ },◦Chp, [[Ty1]]b × [[Ty1]]p × · · · × [[Tyk]]b × [[Tyk]]p]

These typings say a lot about the rest of the translation, because of the presence of five different groups.
Nodes and helpers are silent ambients, whereas tuples of ambient names are exchanged within both
channel buffers and packets. None of these ambients is subjectively mobile. On the other hand, nodes
may objectively cross nodes, helpers may objectively cross threads, buffers are objectively immobile,
and packets objectively cross both threads and buffers. Finally, both nodes and helpers may open only
helpers, and both buffers and packets may open only packets. (Actually, as discussed in Section 5.2, the
◦Chp annotation inside the type of a packet cp of group Chp means that cp can be opened, and similarly
for helpers.)

Next, we translate networks to typed processes. A restriction of a single name is mapped to restrictions
of a couple of names: either names for a node and helpers, if the name is a node, or names for a buffer
and packets, if the name is a channel. A composition is simply translated to a composition. A network
node n is translated to an ambient named nb representing the node, containing a replicated open n p,
where n p is the name of helper ambients for that node.

TYPES FOR THE AMBIENT CALCULUS 183

Translation [[Net]] of a Network Net:

[[(νn : Ty)Net]]
�= (νnb : [[Ty]]b)(νn p : [[Ty]]p)[[Net]]

[[Net | Net]]
�= [[Net]] | [[Net]]

[[node n [Cro]]]
�= nb[!open n p | [[Cro]]n]

The translation [[Cro]]n of a crowd is indexed by the name n of the node in which the crowd is located.
Restrictions and compositions in crowds are translated like their counterparts at the network level. A
channel c is represented by a buffer ambient cb of group Chb. It is initially empty but for a replicated
open cp, where cp is the name, of group Chp, of packets on the channel. The replication allows inputs
and outputs on the channel to meet and exchange messages.

An ambient of the following type models each thread:

Thr �{ }[�Nodeb,◦Sync, Shh.]

From the type, we know that a thread ambient is silent, that it crosses node boundaries by subjective
moves but crosses nothing by objective moves, and that it may only open ambients in the Sync group.
Such ambients help synchronize parallel processes in thread constructs such as receiving on a channel.
A fresh group named Sync is created by a (νSync) in the translation of each thread. The existence of a
separate lexical scope for Sync in each thread implies there can be no accidental transmission between
threads of the names of private synchronization ambients.

Translation [[Cro]]n of a Crowd Cro Located at Node n:

[[(νm : Ty)Cro]]n
�= (νmb : [[Ty]]b)(νm p : [[Ty]]p)[[Cro]]n

[[Cro | Cro]]n
�= [[Cro]]n | [[Cro]]n

[[channel c]]n
�= cb[!open cp]

[[thread Th]]n
�= (νSync)(νt : Thr �{ }[�Nodeb,◦Sync, Shh])t[[[Th]]t

n]
for t /∈ {n} ∪ {m p, mb | m free in Th}

The translation [[Th]]t
n of a thread is indexed by the name t of the thread and by the name n of the

node in which the thread is enclosed. Each thread t is given a different name (this constraint can be
formalized in many different ways).

A migration go m.Th is translated to subjective moves taking the thread t out of the current node n
and into the target node m.

An output c̄〈n1, . . . , nk〉 is translated to a packet ambient cp that travels to the channel buffer cb,
where it is opened and outputs a tuple of names.

An input c(x1 : Ty1, . . . , xk : Tyk).Th is translated to a packet ambient cp that travels to the channel
buffer cb, where it is opened and inputs a tuple of names; the tuple is returned to the host thread t by
way of a synchronization ambient s that exits the buffer and then returns to the thread.

A fork fork(Cro).Th is translated to a helper ambient n p that exits the thread t and gets opened within
the enclosing node n. This unleashes the crowd Cro and allows a synchronization ambient s to return
to the thread t , where it triggers the continuation Th.

A spawn spawn m [Cro].Th is translated to a helper ambient n p that exits the thread t and gets opened
within the enclosing node nb. This unleashes an objective move go(out nb).mb[!open m p | [[Cro]]m]]
that travels out of the node to the top, network level, where it starts the fresh node mb[!open m p |
[[Cro]]m]]. Concurrently, a synchronization ambient s returns to the thread t , where it triggers the
continuation Th.

Translation [[Th]]t
n of a Thread Th Named t Located at Node n:

[[go m.Th]]t
n

�= out nb.in mb.[[Th]]t
m

[[c̄〈n1, . . . , nk〉]]t
n

�= go(out t.in cb).cp[〈nb
1, n p

1 , . . . , nb
k , n p

k 〉]

184 CARDELLI, GHELLI, AND GORDON

[[c(x1 : Ty1, . . . , xk : Tyk).Th]]t
n

�= (νs : Sync �{Thr, Chb}[�Nodeb,◦Sync, Shh])
(go(out t.in cb).

cp[(xb
1 : [[Ty1]]b, x p

1 : [[Ty1]]p, . . . , xb
k : [[Tyk]]b, x p

k : [[Tyk]]p).
go(out cb.in t).s[open s.[[Th]]t

n]] | open s.s[])
for s /∈ {t, cb, cp} ∪ fn([[Th]]t

n)

[[fork(Cro).Th]]t
n

�= (νs : Sync �Thr[�Nodeb,◦Sync, Shh])
(go out t.n p[go in t.s[] | [[Cro]]n] | open s.[[Th]]t

n)
for s /∈ {t, n p} ∪ [[Cro]]n ∪ [[Th]]t

n

[[spawn m [Cro].Th]]t
n

�= (νs : Sync �Thr[�Nodeb,◦Sync, Shh])
(go out t.n p[go in t.s[] | go out nb.mb[!open m p | [[Cro]]m]] | open s.[[Th]]t

n)
for s /∈ {t, nb, n p, mb, m p} ∪ fn([[Cro]]m) ∪ fn([[Th]]t

n)

Finally, we translate typing environments as follows.

Translation [[E]] of an Environment E:

[[∅]]
�= Nodeb, Nodep, Chb, Chp, Thr

[[E, c : Ty]]
�= [[E]], cb : [[Ty]]b, cp : [[Ty]]p

Our translation preserves typing judgments:

PROPOSITION 8.1.

(1) If E � Net then [[E]] � [[Net]] : �{ },◦{ }, Shh.

(2) If E � Cro and E � n : Node then [[E]] � [[Cro]]n : �{ },◦{ }, Shh.

(3) If E � Th, E � n : Node, t /∈ dom(E) then

[[E]], Sync, t : Thr �{ }[�Nodeb,◦Sync, Shh] � [[Th]]t
n : �Nodeb,◦Sync, Shh .

Proof. By inductions on derivations.

Apart from having more refined types, this translation is the same as a translation to the type system
with binary annotations of [9]. (We discussed the same binary system in Section 6.3.) The translation
shows that ambients can model a variety of concepts arising in mobile computation: nodes, threads,
communication packets, and buffers. Groups admit more precise typings for this translation than were
possible in the system with binary annotations. For example, here we can tell that a thread ambient
subjectively crosses only node ambients, but never crosses helpers, buffers, or packets, and that it is
objectively immobile; in the binary system, all we can say is that a thread ambient was subjectively
mobile and objectively immobile.

9. CONCLUSIONS

Our contribution is a type system for tracking the behavior of mobile computations. The system
tracks the communication, mobility, and opening behavior of ambients, which are classified by groups.
A group represents a collection of ambient names; ambient names belong to groups in the same sense
that values belong to types. We studied the properties of a new process operator (νG)P that lexically
scopes groups. Using groups, our type system can impose behavioral constraints such as “this ambient
crosses only ambients in one set of groups, and only dissolves ambients in another set of groups.”
Although we have not implemented our type system, we assessed its expressiveness by encoding a
distributed language featuring mobility of threads between network nodes. The encoding shows the
usefulness of the type system in expressing properties of simple protocols for thread mobility.

Our ambient calculus is related to earlier distributed variants of the π -calculus, some of which have
been equipped with type systems. The type system of Amadio [3] prevents a channel from being

TYPES FOR THE AMBIENT CALCULUS 185

defined at more than one location. Sewell’s system [33] tracks whether communications are local or
nonlocal, so as to allow efficient implementation of local communication. In Riely and Hennessy’s
calculus [32], processes need appropriate permissions to perform actions such as migration; a well-
typed process is guaranteed to possess the appropriate permission for any action it attempts. Other work
on typing for mobile agents includes a type system by De Nicola et al. [16] that tracks the access rights
an agent enjoys at different localities; type-checking ensures that an agent complies with its access
rights.

Our groups are similar to the sorts used as static classifications of names in the π -calculus [27]. Our
basic system of Section 4 is comparable to Milner’s sort system for π , except that sorts in the π -calculus
are mutually recursive; we would have to add a recursion operator to achieve a similar effect. Another
difference is that an operator for sort creation does not seem to have been considered in the π -calculus
literature. Our operator for group creation can guarantee secrecy properties, as we show in the setting
of a typed π -calculus equipped with groups [11]. Our systems of Sections 5 and 6 depend on groups
to constrain the opening and crossing behavior of processes. We are not aware of any uses of Milner’s
sorts to control process behavior beyond controlling the sorts of communicated names.

Apart from Milner’s sorts, other static classifications of names occur in derivatives of the π -calculus.
We mention two examples. In the type system of Abadi [1] for the spi calculus, names are classified
by three static security levels—Public, Secret, and Any—to prevent insecure information flows. In the
flow analysis of Bodei et al. [6] for the π -calculus, names are classified by static channels and binders,
again with the purpose of establishing security properties. Although there is a similarity between these
notions and groups, and indeed to sorts, nothing akin to our (νG) operator appears to have been studied.

There is a connection between groups and the region variables in the work of Tofte and Talpin [34] on
region-based implementation of the λ-calculus. The store is split into a set of stack-allocated regions,
and the type of each stored value is labelled with the region in which the value is stored. The scoping
construct letregion ρ in e allocates a fresh region, binds it to the region variable ρ, evaluates e, and on
completion, deallocates the region bound to ρ. The constructs letregion ρ in e and (νG)P are similar in
that they confer static scopes on the region variable ρ and the group G, respectively. One difference is
that in our operational semantics (νG)P is simply a scoping construct; it allocates no storage. Another
is that scope extrusion laws do not seem to have been explicitly investigated for letregion. Still, we can
interpret letregion in terms of (νG), as is reported elsewhere [15].

As noted in the Introduction, the type systems presented in this article were first reported in conference
papers on exchange types [12], mobility types [9], and ambient groups [10]. We conclude the article
with a survey of other static analyses for the ambient calculus.

• Several papers examine the problem of computing safe approximations to the hierarchical
structure of ambients, that is, of determining an approximation to the sets of ambients that may occur
as children of other ambients. Nielson et al. [29] present the first control flow analysis to address this
problem. They present an algorithm for validating firewalls programmed in the ambient calculus. In
subsequent work, Nielson and Nielson [31] and Nielson et al. [30] present more accurate but also more
expensive algorithms based, respectively, on regular tree grammars and on an interpretation in Kleene’s
three-valued logic.

• Abstract interpretation is a methodology for deriving program analyses systematically from
the semantics of a programming language. Hansen et al. [20] describe a constraint-based framework
for abstract interpretation of mobile ambients; instances of the framework include an analysis counting
occurrences of ambients and also the original control flow analysis for the ambient calculus [29]. Levi
and Maffeis [24] and Feret [19] present abstract interpretations based on alternative semantics of the
ambient calculus.

• Some analyses have been developed in the setting of Levi and Sangiorgi’s calculus of safe
ambients [25], a generalization of the original ambient calculus that gives processes greater control over
synchronization, and hence avoids certain kinds of nondeterminism. In their paper, Levi and Sangiorgi
propose a type system to guarantee immobility and single-threadedness.

• Security properties are considered by several authors. Bugliesi and Castagna [8] describe a
type system for safe ambients that checks security properties, including security in a distributed setting.
They rely on a notion of ambient domain that is similar to the notion of an ambient group, but have

186 CARDELLI, GHELLI, AND GORDON

no counterpart to the group creation operator. Dezani-Ciancaglini and Salvo [18] present a type system
for safe ambients where each ambient has a security level, akin to a group. Unlike our system, security
levels are partially ordered, allowing the system to express trust relationships. Degano, Levi, and Bodei
[17, 23] refine Nielson and Nielson’s original flow analysis [29] for the calculus of safe ambients. The
analysis allows the proof of simple secrecy properties; they formally distinguish between trustworthy
and untrustworthy ambients and show that no trustworthy ambient may be opened immediately inside
an untrustworthy ambient.

• Finally, Amtoft et al. [5] propose a polymorphic ambient calculus, a conservative extension of
our system of exchange types [12].

APPENDIX A

Proof of Subject Reduction

In this Appendix we prove Theorem 6.1, the subject reduction property for the type system of
Section 6, the richest of the three type systems presented in this paper. Proofs of subject reduction for
the other two systems can be obtained as simplifications of this Appendix.

We begin by stating some basic properties of the type system. The lemmas we state without proof
can be proved by straightforward inductions on derivations. We use the notation E � J to stand for
an instance of any of the five different judgments of the system. We write fn(J) and fg(J) to stand for
the names and groups, respectively, that occur free in J . Moreover, if G = {G1, . . . , Gk} we write the
notation G, E � J as a shorthand for G1, . . . , Gk, E � J .

LEMMA A.1. If E, E ′ � J then E � � and dom(E) ∩ dom(E ′) = ∅.

Proof. The proof is by induction on the depth of the derivation of E, E ′ � J .

LEMMA A.2. If E ′, n : W, E ′′ � J then E ′ � W .

Proof. By Lemma A.1 we have E ′, n : W, E ′′ �J ⇒ E ′, n : W � �, which must have been derived
from E ′ � W .

We have two weakening lemmas:

LEMMA A.3. If E ′, E ′′ �J and n /∈ dom(E ′, E ′′) and E ′ � W then E ′, n : W, E ′′ �J .

LEMMA A.4. If E ′, E ′′ �J and G /∈ dom(E ′, E ′′) then E ′, G, E ′′ �J .

LEMMA A.5. If E � M : W then E � W .

Proof. By induction on the derivation of E � M : W , using Lemmas A.2, A.3, and A.4 in case
(Exp n).

We state a useful corollary:

LEMMA A.6. If E ′, E ′′ �J and E ′, G, E ′′ �J ′ then E ′, G, E ′′ �J .

Proof. By Lemma A.1, E ′, G, E ′′ �J ′ implies that G ∩ dom(E ′, E ′′) = ∅. By Lemma A.4, this
implies that E ′, G, E ′′ �J .

LEMMA A.7. If E � n : W and E � n : W ′ then W = W ′.

Proof. Use Lemma A.1.

LEMMA A.8. If E � J then fn(J) ⊆ dom(E) and fg(J) ⊆ dom(E).

Proof. By induction on the derivation of E � J .

LEMMA A.9. If E � � and fg(W) ⊆ dom(E) then E � W ; if E � � and fg(F) ⊆ dom(E) then
E � F.

Proof. By mutual induction on the structure of W and F .

Hereafter, let fg(E ′′) be the set of all groups that occur either in the domain of E ′′ or in types occur-
ring in E ′′.

TYPES FOR THE AMBIENT CALCULUS 187

LEMMA A.10. If E � M : G �G[F] then M = n for some n.

Proof. (Exp n) is the only rule that can derive E � M : G �G[F].

LEMMA A.11. If E ′, G, E ′′ � n : W and G ∈ fg(W) then G ∈ fg(E ′′).

Proof. If n were defined in E ′, then, by Lemmas A.2 and A.8, we would have G ∈ dom(E ′), which
contradicts Lemma A.1. Hence n is defined in E ′′, and the thesis follows by Lemma A.7.

We have two strengthening lemmas.

LEMMA A.12. If E ′, n : W, E ′′ � J and n /∈ fn(J) then E ′, E ′′ � J .

LEMMA A.13. If E ′, G, E ′′ � J and G /∈ fg(J) ∪ fg(E ′′) then E ′, E ′′ � J .

Proof. By induction on the derivation of E ′, G, E ′′ � J . Needs Lemma A.11 in cases (Exp In),
(Exp Out), (Exp Open), and (Proc Amb). Lemma A.10 is also used for (Proc Amb) and (Proc Go).

LEMMA A.14. If E � P : F then E � F.

Proof. By induction on the derivation of E � P : F . Needs Lemmas A.12 and A.13 in cases (Proc
Res), (Proc GRes), and (Proc Input) and Lemma A.5 in case (Proc Output).

Next, we have four exchange lemmas. They are all proved by induction on the derivation, exploiting
the weakening and strengthening lemmas in the crucial cases (Env n) and (Env G).

LEMMA A.15. If E ′, n : W ′, m : W ′′, E ′′ � J then E ′, m : W ′′, n : W ′, E ′′ � J .

LEMMA A.16. If E ′, n : W ′, G, E ′′ � J then E ′, G, n : W ′, E ′′ � J .

LEMMA A.17. If E ′, G, n : W ′, E ′′ � J and G /∈ fg(W ′) then E ′, n : W ′, G, E ′′ � J .

LEMMA A.18. If E ′, G, H, E ′′ � J then E ′, H, G, E ′′ � J .

We have a substitution lemma:

LEMMA A.19. If E ′, n : W, E ′′ � J and E ′ � M : W then E ′, E ′′ � J {n ← M}.
Proof. By induction on the derivation of E ′, n : W, E ′′ � J . Most cases are straightforward, with

the exception of (Exp n), (Exp In), (Exp Out), and (Exp Open), when the name that appears in the rule is
exactly n. For the case (Exp n), we get the desired judgment E ′, E ′′ � M : W from E ′ � M : W by the
weakening lemmas, Lemmas A.3 and A.4. For the cases (Exp In), (Exp Out), and (Exp Open), we use
Lemma A.10 to show that M is actually a name m. By the weakening lemmas, we get E ′, E ′′ � m : W ,
and then may draw the desired conclusion with (Exp In), (Exp Out), or (Exp Open), respectively.

Next, we prove that structural congruence preserves typing judgments, possibly with the inclusion
of fresh group names.

PROPOSITION A.1. If E � P : F and P ≡ Q then there are groups G1, . . . , Gk such that G1, . . . , Gk,

E � Q : F.

Proof. The proposition follows by showing that P ≡ Q implies:

(1) If E � P : F then ∃G such that G, E � Q : F .

(2) If E � Q : F then ∃G such that G, E � P : F .

We proceed by induction on the derivation of P ≡ Q.

(Struct Refl) Trivial.

(Struct Symm) Then Q ≡ P . For (1), assume E � P : F . By induction hypothesis (2), Q ≡ P
implies that ∃G such that G, E � Q : F . Part (2) is symmetric.

(Struct Trans) Then P ≡ R, R ≡ Q for some R. For (1), assume E � P : F . By induction
hypothesis (1), ∃G. G, E � R : F . Again by induction hypothesis (1), ∃H. H, G, E � Q : F . Part (2) is
symmetric.

188 CARDELLI, GHELLI, AND GORDON

(Struct Res) Then P = (νn : W)P ′ and Q = (νn : W)Q′, with P ′ ≡ Q′. For (1), assume E � P : F .
This must have been derived from (Proc Res), with E, n : G �G′[F ′] � P ′ : F , where W = G �G′[F ′].
By induction hypothesis (1), ∃G. G, E, n : G �G′[F ′] � Q′ : F . By (Proc Res), G, E � (νn : W)Q′ : F .
Part (2) is symmetric.

(Struct GRes) Then P = (νG)P ′ and Q = (νG)Q′, with P ′ ≡ Q′. For (1), assume E � P : F .
This must have been derived from (Proc GRes), with E, G � P ′ : F where G /∈ fg(F). By induction
hypothesis (1), ∃G. G, E, G � Q′ : F . By (Proc GRes), G, E � (νG)Q′ : F . Part (2) is symmetric.

(Struct Par) Then P = P ′ | R, Q = Q′ | R, and P ′ ≡ Q′. For (1), assume E � P ′ | R : F . This
must have been derived from (Proc Par), with E � P ′ : F , E � R : F . By induction hypothesis (1),
∃G.G, E � Q′ : F . By Lemma A.6, G, E � R : F . By (Proc Par), G, E � Q′ | R : F . Part (2) is symmetric.

(Struct Repl) Then P = !P ′, Q = !Q′, and P ′ ≡ Q′. For (1), assume E � P : F . This must have
been derived from (Proc Repl), with E � P ′ : F . By induction hypothesis (1), ∃G. G, E � Q′ : F . By
(Proc Repl), G, E � !Q′ : F . Part (2) is symmetric.

(Struct Amb) Then P = M[P ′], Q = M[Q′], and P ′ ≡ Q′. For (1), assume E � P : F . This must
have been derived from (Proc Amb), with E � F , E � M : G �G′[F ′] and E � P ′ : F ′, for some G, F ′, G′.
By induction hypothesis (1),∃G.G, E � Q′ : F ′. By Lemma A.6, G, E � F and G, E � M : G �G′[F ′].
By (Proc Amb), G, E � M[Q′] : F . Part (2) is symmetric.

(Struct Action) Then P = M.P ′, Q = M.Q′, and P ′ ≡ Q′. For (1), assume E � P : F . This must
have been derived from (Proc Action), with E � M : Cap[F] and E � P ′ : F . By induction hypothesis
(1), ∃G. G, E � Q′ : F . By Lemma A.6, G, E � M : Cap[F]. By (Proc Action), G, E � M.Q′ : F .
Part (2) is symmetric.

(Struct Input) Then P = (n1 : W1, . . . , nk : Wk).P ′, Q = (n1 : W1, . . . , nk : Wk).Q′, and P ′ ≡
Q′. For (1), assume E � P : F . This must have been derived from (Proc Input), with E, n1 : W1, . . . , nk :
Wk � P ′ : F , where F = �G′,◦H, W1 × · · · × Wk . By induction hypothesis, ∃G. G, E, n1 : W1, . . . ,

nk : Wk � Q′ : F . By (Proc Input), G, E � (n1 : W1, . . . , nk : Wk).Q′ : F . Part (2) is symmetric.

(Struct Go) Then P = go N .M[P ′], Q = go N .M[Q′], and P ′ ≡ Q′. For (1), assume E � P : F .
This must have been derived from (Proc Go), with E � F , E � N : Cap[F ′′], E � M : G �G′[F ′] and
E � P ′ : F ′, with F ′′ = �G′,◦{ }, Shh, for some G, G′, F ′. By induction hypothesis (1), ∃G. G,

E � Q′ : F ′. By Lemma A.6, G, E � F and G, E � N : Cap[F ′′] and G, E � M : G �G′[F ′]. By (Proc
Go), G, E � go N .M[Q′] : F . Part (2) is symmetric.

(Struct Par Comm) Then P = P ′ | P ′′ and Q = P ′′ | P ′. For (1), assume E � P ′ | P ′′ : F . This
must have been derived from E � P ′ : F and E � P ′′ : F . By (Proc Par), E � P ′′ | P ′ : F . Hence, E � Q : F .
Part (2) is symmetric.

(Struct Par Assoc) Then P = (P ′ | P ′′) | P ′′′ and Q = P ′ | (P ′′ | P ′′′). For (1), assume E �
(P ′ | P ′′) | P ′′′ : F . This must have been derived from (Proc Par) twice, with E � P ′ : F , E � P ′′ : F ,
and E � P ′′′ : F . By (Proc Par) twice, E � P ′ | (P ′′ | P ′′′) : F . Hence E � Q : F . Part (2) is symmetric.

(Struct Repl Par) Then P = !P ′ and Q = P ′ | !P ′. For (1), assume E � !P ′ : F . This must have
been derived from (Proc Repl), with E � P ′ : F . By (Proc Par), E � P ′ | !P ′ : F . Hence, E � Q : F .
For (2), assume E � P ′ | !P ′ : F . This must have been derived from (Proc Par), with E � P ′ : F and
E � !P ′ : F . Hence, E � P : F .

(Struct Res Res) Then P = (νn1 : W1)(νn2 : W2)P ′ and Q = (νn2 : W2)(νn1 : W1)P ′ with n1 �= n2.
For (1), assume E � (νn1 : W1)(νn2 : W2)P ′ : F . This must have been derived from (Proc Res) twice,
with E, n1 : G1

�G1[F1], n2 : G2
�G2[F2] � P ′ : F , where W1 = G1

�G1[F1] and W2 = G2
�G2[F2].

By Lemma A.15, we have E, n2 : G2
�G2[F2], n1 : G1

�G1[F1] � P ′ : F . By (Proc Res) twice we have
E � (νn2 : W2)(νn1 : W1)P ′ : F . Part (2) is symmetric.

(Struct Res Par) Then P = (νn : W)(P ′ | P ′′) and Q = P ′ | (νn : W)P ′′, with n /∈ fn(P ′). For (1),
assume E � P : F . This must have been derived from (Proc Res), with E, n : G �G[F ′] � P ′ | P ′′ : F
and W = G �G[F ′], and from (Proc Par), with E, n : G �G[F ′] � P ′ : F and E, n : G �G[F ′] �
P ′′ : F . By Lemma A.12, since n /∈ fn(P ′), we have E � P ′ : F . By (Proc Res) we have E � (νn :
G �G[F ′])P ′′ : F . By (Proc Par) we have E � P ′ | (νn : G �G[F ′])P ′′ : F , that is, E � Q : F . For (2), as-
sume E � Q : F . This must have been derived from (Proc Par), with E � P ′ : F and E � (νn : W)P ′′ : F ,
and from (Proc Res), with E, n : G �G[F ′] � P ′′ : F and W = G �G[F ′]. By Lemma A.1, n /∈ dom(E).

TYPES FOR THE AMBIENT CALCULUS 189

By Lemma A.2, E � G �G[F ′]. By Lemma A.3, E, n : G �G[F ′] � P ′ : F . By (Proc Par), E, n :
G �G[F ′] � P ′ | P ′′ : F . By (Proc Res), E � (νn : G �G[F ′])(P ′ | P ′′) : F , that is, E � P : F .

(Struct Res Amb) Then P = (νn : W)m[P ′] and Q = m[(νn : W)P ′], with n �= m. For (1), assume
E � P : F . This must have been derived from (Proc Res) with E, n : G �G[F ′] � m[P ′] : F with
W = G �G[F ′], and from (Proc Amb) with E, n : G �G[F ′] � F and E, n : G �G[F ′] � m : H �G′[F ′′]
and E, n : G �G[F ′] � P ′ : F ′′ for some H , F ′′, G′. By (Proc Res) we have E � (νn : G �G[F ′])P ′ : F ′′.
By Lemma A.12, E � F , and E � m : H �G′[F ′′] (by n �= m). By (Proc Amb), E � m[(νn : G �G[F ′])
P ′] : F , that is, E � Q : F . For (2), assume E � Q : F . This must have been derived from (Proc Amb)
with E � F , E � m : H �G′[F ′′] and E � (νn : W)P ′ : F ′′, and from (Proc Res), with E, n : G �G[F ′] �
P ′ : F ′′ and W = G �G[F ′]. By Lemma A.1, n /∈ dom(E). By Lemma A.2, E, n : G �G[F ′] � P ′ : F ′′

implies E � G �G[F ′]. By Lemma A.3, E, n : G �G[F ′]� F and E, n : G �G[F ′] � m : H �G′[F ′′].
By (Proc Amb), E, n : G �G[F ′]�m[P ′] : F . By (Proc Res), E � (νn : G �G[F ′])m[P ′] : F , that is,
E � P : F .

(Struct GRes Res) Then P = (νG)(νn : W)P ′ and Q = (νn : W)(νG)P ′ with G /∈ fg(W). For (1),
assume E � (νG)(νn : W)P ′ : F . This must have been derived from (Proc GRes), with E, G � (νn : W)
P ′ : F and G /∈ fg(F), and from (Proc Res), with E, G, n : G ′ �G[F ′] � P ′ : F , where W = G ′ �G[F ′].
Since G /∈ fg(W) by hypothesis, by Lemma A.17 we have E, n : G ′ �G[F ′], G � P ′ : F . We know that
G /∈ fg(F), hence by (Proc GRes) we have E, n : G ′ �G[F ′] � (νG)P ′ : F . Finally from (Proc Res) we
have E � (νn : W)(νG)P ′ : F . For (2), assume E � (νn : W)(νG)P ′ : F . This must have been derived
from (Proc Res), with E, n : G ′ �G[F ′] � (νG)P ′ : F , where W = G ′ �G[F ′], and from (Proc GRes),
with E, n : G ′ �G[F ′], G � P ′ : F , with G /∈ fg(F). By Lemma A.16, E, G, n : G ′ �G[F ′] � P ′ : F .
The thesis follows by applying (Proc Res) and (Proc GRes).

(Struct GRes GRes) Then P = (νG1)(νG2)P ′ and Q = (νG2)(νG1)P ′. For (1), assume E � (νG1)
(νG2)P ′ : F . This must have been derived from (Proc GRes) twice, with E, G1, G2 � P ′ : F and
G2 /∈ fg(F), G1 /∈ fg(F). By Lemma A.18 we have E, G2, G1 � P ′ : F . By (Proc Res) twice we have
E � (νG2)(νG1)P ′ : F . Part (2) is symmetric.

(Struct GRes Par) Then P = (νG)(P ′ | P ′′) and Q = P ′ | (νG)P ′′, with G /∈ fg(P ′). For (1), as-
sume E � P : F . This must have been derived from (Proc GRes), with E, G � P ′ | P ′′ : F and G /∈ fg(F),
and from (Proc Par), with E, G � P ′ : F and E, G � P ′′ : F . By Lemma A.13, since G /∈ fg(P ′) ∪ fg(F),
we have E � P ′ : F . By (Proc GRes) we have E � (νG)P ′′ : F . By (Proc Par) we have E � P ′ | (νG)P ′′ : F ,
that is, E � Q : F . For (2), assume E � Q : F . This must have been derived from (Proc Par), with
E � P ′ : F and E � (νG)P ′′ : F , and from (Proc GRes), with E, G � P ′′ : F and G /∈ fg(F). By
Lemma A.1, G /∈ dom(E). By Lemma A.4, E, G � P ′ : F . By (Proc Par), E, G � P ′ | P ′′ : F . By
(Proc GRes), since G /∈ fg(F), E � (νG)(P ′ | P ′′), that is, E � P : F .

(Struct GRes Amb) Then P = (νG)m[P ′] and Q = m[(νG)P ′]. For (1), assume E � P : F . This
must have been derived from (Proc GRes) with E, G � m[P ′] : F with G /∈ fg(F), and from (Proc
Amb) with E, G � F , E, G � m : G ′ �G[F ′], and E, G � P ′ : F ′ for some G ′, G, F ′. By Lemma A.13,
E, G � F and G /∈ fg(F) imply E � F . The judgment E, G � m : G ′ �G[F ′] must have been derived
from (Exp n); hence m ∈ dom(E). Hence, by (Exp n) and by Lemma A.7, E � m : G ′ �G[F ′]. By
Lemma A.1, G /∈ dom(E). Hence, by E � m : G ′ �G[F ′] and Lemma A.8, G /∈ fg(G ′ �G[F ′]) and
so G /∈ fg(F ′). By (Proc GRes) we have E � (νG)P ′ : F ′. By (Proc Amb), E � m[(νG)P ′] : F , that
is, E � Q : F . For (2), assume E � Q : F . This must have been derived from (Proc Amb) with E � F ,
E � m : G ′ �G[F ′], and E � (νG)P ′ : F ′, for some G ′, G, F ′, and from (Proc GRes), with E, G � P ′ : F ′

and G /∈ fg(F ′). By Lemma A.1, G /∈ dom(E). By Lemma A.4, E, G � m : G ′ �G[F ′] and E, G � F .
By (Proc Amb), E, G � m[P ′] : F . By Lemma A.8, E � F and G /∈ dom(E) imply G /∈ fg(F). By (Proc
GRes), E � (νG)m[P ′] : F , that is, E � P : F .

(Struct Zero Par) Then P = P ′ | 0 and Q = P ′. For (1), assume E � P : F . This must have been
derived from (Proc Par) with E � P ′ : F and E � 0 : F . Hence, E � Q : F . For (2), assume E � P ′ : F .
By Lemma A.14, E � F . By (Proc Zero), E � 0 : F . By (Proc Par), E � P ′ | 0 : F , that is, E � P : F .

(Struct Zero Res) Then P = (νn : G �G′[F ′])0 and Q = 0. For (1), assume E � P : F . This must
have been derived from (Proc Res) with E, n : G �G′[F ′] � 0 : F . By Lemma A.12, E � 0 : F , that
is, E � Q : F . For (2), assume E � 0 : F . We identify processes up to consistent renaming of bound
names and groups, hence we may assume that the bound name n does not occur in dom(E). Let

190 CARDELLI, GHELLI, AND GORDON

G be fg(G �G′[F ′]) − dom(E). By Lemma A.4, G, E � �. By Lemma A.9, G, E � G �G′[F ′]. By
Lemma A.14, E � F . By repeated application of Lemma A.4, G, E � F . By Lemma A.3, G, E,

n : G �G′[F ′]� F . By (Proc Zero), G, E, n : G �G′[F ′]�0 : F . By (Proc Res), G, E � (νn : G �G′[F ′])
0 : F , that is, G, E � P : F .

(Struct Zero GRes) Then P = (νG)0 and Q = 0. For (1), assume E � P : F . This must have been
derived from (Proc GRes) with E, G � 0 : F and G /∈ fg(F). By Lemma A.13, E � 0 : F , that is,
E � Q : F . For (2), assume E � 0 : F . We may assume that the bound name G does not occur in dom(E).
Hence, by Lemma A.8, G /∈ fg(F), and by Lemma A.4, E, G � 0 : F . By (Proc GRes), E � (νG)0 : F ,
that is, E � P : F .

(Struct Zero Repl) Then P = !0 and Q = 0. For (1), assume E � P : F . This must have been
derived from (Proc Repl) with E � 0 : F , that is, E � Q : F . For (2), assume E � 0 : F . By (Proc Repl),
E � !0 : F , that is, E � P : F .

(Struct ε) Then P = ε.P ′ and Q = P ′. For (1), assume E � P : F . This must have been derived
from (Proc Action) with E � ε : Cap[F] and E � P ′ : F , that is, E � Q : F . For (2), assume E � P ′ : F .
By Lemma A.14, E � F . By (Type Cap), E � Cap[F]. By (Exp ε), E � ε : Cap[F]. By (Proc Action),
E � ε.P ′ : F , that is, E � P : F .

(Struct.) Then P = (M.M ′).P ′ and Q = M.M ′.P ′. For (1), assume E � P : F . This must have
been derived from (Proc Action) with E � P ′ : F and E � M.M ′ : Cap[F]. The latter must have come
from (Exp.) with E � M : Cap[F] and E � M ′ : Cap[F], By (Proc Action) twice, E � M.(M ′.P ′) : F ,
that is, E � Q : F . For (2), assume E � Q : F . This must have been derived from (Proc Action), twice,
with E � M : Cap[F], E � M ′ : Cap[F], and E � P ′ : F . By (Exp.), E � M.M ′ : Cap[F]. By (Proc Ac-
tion), E � (M.M ′).P ′ : F , that is, E � P : F .

(Struct Go ε) Then P = go ε.M[P ′] and Q = M[P ′]. For (1), assume E � P : F . This must
have been derived using (Proc Go), with E � F , E � ε : Cap[�G,◦{ }, Shh], E � M : G �G[F ′], and
E � P ′ : F ′. By (Proc Amb), E � M[P ′] : F , that is, E � Q : F . For (2), assume E � Q : F . This must
have been derived using (Proc Amb), with E � F , E � P ′ : F ′ and E � M : G �G[F ′]. By Lemma A.5,
E � G �G[F ′]. This must have been derived using (Type Amb), with G ⊆ dom(E), and E � F ′. By
(Effect Shh) and Lemma A.1, E ��G,◦{ }, Shh. By (Type Cap), E � Cap[�G,◦{ }, Shh]. By (Exp ε),
E � ε : Cap[�G,◦{ }, Shh]. By (Proc Go), E � go ε.M[P ′] : F , that is, E � P : F .

(Struct Go ε.) Then P = go(ε.M).N [P ′] and Q = goM.N [P ′]. This case follows by an argument
very similar to the case for (Struct Go ε). We omit the details.

(Struct Go . ε) Then P = go (M.ε).N [P ′] and Q = go M.N [P ′]. For (1), assume E � P : F . This
must have been derived using (Proc Go), with E � F , E � M.ε : Cap[F ′′], E � N : G �G[F ′], and
E � P ′ : F ′, with F ′′ =�G,◦{ }, Shh. The judgment E � M.ε : Cap[F ′′] must have been derived using
(Exp.) from E � M : Cap[F ′′] and E � ε : Cap[F ′′]. By (Proc Go), we can derive E � go M.N [P ′] : F ,
that is, E � Q : F . For (2), assume E � Q : F . This must have been derived using (Proc Go), with
E � F , E � M : Cap[F ′′], E � N : G �G[F ′], and E � P ′ : F ′, with F ′′ = �G,◦{ }, Shh. By (Exp ε)
and (Exp.), we get E � M.ε : Cap[F ′′]. By (Proc Go), we can derive E � go (M.ε).N [P ′] : F , that is,
E � P : F .

(Struct Go . Assoc) In this case, we have P = go ((M.M ′).M ′′).N [P ′] and Q = go (M.(M ′.M ′′)).
N [P ′]. For (1), assume E � P : F . This must have been derived using (Proc Go), with E � F , E �
(M.M ′).M ′′ : Cap[F ′′], E � N : G �G[F ′], and E � P ′ : F ′, with F ′′ = �G,◦{ }, Shh. The judgment
E � (M.M ′).M ′′ : Cap[F ′′] must have been derived using (Exp .), twice from E � M : Cap[F ′′] and
E � M ′ : Cap[F ′′] and E � M ′′ : Cap[F ′′]. By (Exp .), we can derive E � M.(M ′.M ′′) : Cap[F ′′], and
then, by (Proc Go), we can derive E � go (M.(M ′.M ′′)).N [P ′] : F , that is, E � Q : F . For (2), assume
E � Q : F . This must have been derived using (Proc Go), with E � F , E � M.(M ′.M ′′) : Cap[F ′′],
E � N : G �G[F ′], and E � P ′ : F ′, with F ′′ =�G,◦{ }, Shh. The judgment E � M.(M ′.M ′′) : Cap[F ′′]
must have been derived using (Exp .), twice from E � M : Cap[F ′′] and E � M ′ : Cap[F ′′] and E � M ′′ :
Cap[F ′′]. By (Exp .), we can derive E � (M.M ′).M ′′ : Cap[F ′′], and then, by (Proc Go), we can derive
E � go ((M.M ′).M ′′).N [P ′] : F , that is, E � P : F .

Proof of Theorem 6.1. If E � P : F and P → Q then there are G1, . . . ,Gk such that G1, . . . ,Gk,

E � Q : F .

TYPES FOR THE AMBIENT CALCULUS 191

Proof. For the sake of conciseness, throughout this proof the fact that E � P : F implies E � F
(Lemma A.14) will be used several times, without any further explicit acknowledgment. We proceed
by induction on the derivation of P → Q.

(Red In) Then P = n[in m.P ′ | P ′′] | m[P ′′′] and Q = m[n[P ′ | P ′′] | P ′′′]. Assume E � P : F . This
must have been derived from (Proc Par), with E � n[in m.P ′ | P ′′] : F and E � m[P ′′′] : F . The former
must have been derived from (Proc Amb), with E � F , E � n : Gn

�Gn[Fn] and E � in m.P ′ | P ′′ : Fn ,
for some Gn , Gn , Fn , while the latter must have been derived from (Proc Amb) with E � F , E � m :
Gm

�Gm[Fm] and E � P ′′′ : Fm , for some Gm , Gm , Fm . Moreover, E � in m.P ′ | P ′′ : Fn must come
from (Proc Par) with E � in m.P ′ : Fn and E � P ′′ : Fn . Finally, E � in m.P ′ : Fn must come from
E � in m : Cap[Fn] and E � P ′ : Fn . By (Proc Par), we have E � P ′ | P ′′ : Fn , and by (Proc Amb) we can
derive E � n[P ′ | P ′′] : Fm . Then, by (Proc Par), we have E � n[P ′ | P ′′] | P ′′′ : Fm . By (Proc Amb) we
can derive E � m[n[P ′ | P ′′] | P ′′′] : F , that is, E � Q : F .

(Red Out) Then P =m[n[outm.P ′ | P ′′] | P ′′′] and Q = n[P ′ | P ′′] | m[P ′′′]. Assume E � P : F . This
must have been derived using (Proc Amb) from E � F , E � m : Gm

�Gm[Fm] and E � n[outm.P ′ | P ′′] |
P ′′′ : Fm for some Gm , Gm , Fm , and from (Proc Par) using E � n[out m.P ′ | P ′′] : Fm and E � P ′′′ : Fm .
The former must have been derived using (Proc Amb) from E � Fm , E � n : Gn

�Gn[Fn] and E � outm.

P ′ | P ′′ : Fn for some Gn , Gn , Fn , and using (Proc Par) from E � out m.P ′ : Fn and E � P ′′ : Fn . The
former must have been derived using (Proc Action) from E � out m : Cap[Fn] and E � P ′ : Fn . By (Proc
Par), E � P ′ | P ′′ : Fn . By (Proc Amb), E � n[P ′ | P ′′] : F . By (Proc Amb), E � m[P ′′′] : F . By (Proc
Par), E � n[P ′ | P ′′] | m[P ′′′] : F , that is, E � Q : F .

(Red Open) Then P = open n.P ′ | n[P ′′] and Q = P ′ | P ′′. Assume E � P : F . This must have been
derived using (Proc Par) from E � open n.P ′ : F and E � n[P ′′] : F . The former must have been de-
rived using (Proc Action) with E � open n : Cap[F] and E � P ′ : F , while the latter must have been
derived using (Proc Amb) with E � F , E � n : G ′ �G′[F ′] and E � P ′′ : F ′ for some G ′, G′, F ′. The
judgment E � open n : Cap[F] must have been derived using (Exp Open) from E � n : G �G[F] for
some G, G. By Lemma A.7, G ′ �G′[F ′] = G �G[F], and so, in particular, F ′ = F . Hence, by (Proc
Par), E � P ′ | P ′′ : F , that is, E � Q : F .

(Red I/O) In this case we have P = (n1 : W1, . . . , nk : Wk).P ′ | 〈M1, . . . , Mk〉 and Q = P ′{n1←
M1, . . . , nk ← Mk}. Assume E � P : F . This must have been derived from (Proc Par) with E �
(n1 : W1, . . . , nk : Wk).P ′ : F and E � 〈M1, . . . , Mk〉 : F . The former can only have been derived from
(Proc Input) with E, n1 : W1, . . . , nk : Wk � P ′ : F and F =�G,◦H, W1 × · · · × Wk for some G, H. The
latter judgment E � 〈M1, . . . , Mk〉 : F must have been derived from (Proc Output) with E � Mi : W ′

i for
each i ∈ 1 . . k, and F =�G,◦H, W ′

1 × · · · × W ′
k . Hence W ′

i = Wi for each i ∈ 1 . . k. By k applications
of Lemma A.19, we get E � P ′{n1 ← M1, . . . , nk ← Mk} : F .

(Red Go In) Here P = go(in m.N).n[Pn] | m[Pm] and Q = m[go N .n[Pn] | Pm]. Assume E � P : F .
This must have been derived using (Proc Par) from E � go(in m.N).n[Pn] : F and E � m[Pm] : F .
The former must have been derived using (Proc Go) with E � F , E � in m.N : Cap[�Gn,

◦{ }, Shh],
E � n : Gn

�Gn[Fn], and E � Pn : Fn for some Gn , Gn , Fn and the latter must have been derived
using (Proc Amb) with E � F , E � m : Gm

�Gm[Fm] and E � Pm : Fm for some Gm , Gm , Fm . Moreover,
the judgment E � in m.N : Cap[�Gn,

◦{ }, Shh] must have been derived using (Exp.) from E � in m :
Cap[�Gn,

◦{ }, Shh] and E � N : Cap[�Gn,
◦{ }, Shh]. By (Proc Go) and (Proc Par), E � go N .n[Pn] |

Pm : Fm . By (Proc Amb), we get E � m[go N .n[Pn] | Pm] : F , that is, E � Q : F .

(Red Go Out) Here P = m[go(outm.N).n[Pn] | Pm] and Q = goN .n[Pn] | m[Pm].Assume E � P : F .
This must have been derived using (Proc Amb) from E � F , E � m : Gm

�Gm[Fm] and E � go(outm.N).
n[Pn] | Pm : Fm for some Gm , Gm , Fm , and from (Proc Par) with E � go(out m.N).n[Pn] : Fm and
E � Pm : Fm . The former must have been derived using (Proc Go) from E � Fm , E � out m.N :
Cap[�Gn,

◦{ }, Shh], E � n : Gn
�Gn[Fn], and E � Pn : Fn for some Gn , Gn , Fn . The judgment E � outm.

N : Cap[�Gn,
◦{ }, Shh] must have been derived using (Proc .) from E � out m : Cap[�Gn,

◦{ }, Shh] and
E � N : Cap[�Gn,

◦{ }, Shh]. By (Proc Go), E � go N .n[Pn] : F . By (Proc Amb), E � m[Pm] : F . By
(Proc Par), E � go N .n[Pn] | m[Pm] : F , that is, E � Q : F .

(Red Res) Here P = (νn : W)P ′ and Q = (νn : W)Q′ with P ′ → Q′. Assume E � P : F . This must
have been derived using (Proc Res) from E, n : G �G′[F ′] � P ′ : F with W = G �G′[F ′]. By induction

192 CARDELLI, GHELLI, AND GORDON

hypothesis, ∃G such that G, E, n : G �G′[F ′] � Q′ : F . By (Proc Res), G, E � (νn : G �G′[F ′])Q′ : F ,
that is, G, E � Q : F .

(Red GRes) Here P = (νG)P ′ and Q = (νG)Q′ with P ′ → Q′. Assume E � P : F . This must have
been derived using (Proc GRes) from E, G � P ′ : F with G /∈ fg(F). By induction hypothesis, ∃G such
that G, E, G � Q′ : F . By (Proc GRes), G, E � (νG)Q′ : F , that is, G, E � Q : F .

(Red Amb) Here P = n[P ′] and Q = n[Q′] with P ′ → Q′. Assume E � P : F . This must have been
derived using (Proc Amb) from E � F , E � n : G �G′[F ′], and E � P ′ : F ′. By induction hypothesis,
∃G such that G, E � Q′ : F ′. By Lemma A.6, G, E � F and G, E � n : G �G′[F ′]. By (Proc Amb),
G, E � n[Q′] : F , that is, G, E � Q : F .

(Red Par) Here P = P ′ | R and Q = Q′ | R with P ′ → Q′. Assume E � P : F . This must have
been derived using (Proc Par) from E � P ′ : F and E � R : F . By induction hypothesis, ∃G such that
G, E � Q′ : F . By Lemma A.6, G, E � R : F . By (Proc Par), G, E � Q′ | R : F , that is, G, E � Q : F .

(Red ≡) Here P ≡ P ′, P ′ → Q′, and Q′ ≡ Q. Assume E � P : F . By Proposition A.1, ∃G1 such
that G1, E � P ′ : F . By induction hypothesis, ∃G2 such that G2, G1, E � Q′ : F . By Proposition A.1,
∃G3 such that G3, G2, G1, E � Q : F .

APPENDIX B

Proof of Effect Safety

In this appendix we prove the effect safety property stated in Section 7.

Proof of Proposition 7.1 Suppose that E � P :�G,◦H, T .

(1) If P ↓ in n then E � n : G �G′[F] for some type G �G′[F] with G ∈ G.

(2) If P ↓ out n then E � n : G �G′[F] for some type G �G′[F] with G ∈ G.

(3) If P ↓ open n then E � n : G �G′[F] for some type G �G′[F] with G ∈ H.

Proof. We prove part (1) in detail; the other parts follow by similar arguments. We proceed by
induction on the derivation of P ↓ in n.

(Ex Cap) We have P ↓ in n derived from P ≡ in n.Q. By Proposition A.1, E � P :�G,◦H, T and
P ≡ inn.Q imply there are groups G1, . . . , Gk such that G1, . . . , Gk, E � inn.Q :�G,◦H, T . This must
have been derived using (Proc Action) from G1, . . . , Gk, E � in n : Cap[�G,◦H, T], which itself must
have been derived using (Exp In) from G1, . . . , Gk, E � n : G �G′[F] for some type G �G′[F] with G ∈
G. The latter judgment must have been derived using (Exp n), and therefore E = E ′, n : G �G′[F], E ′′.
By Lemma A.1, E � P :�G,◦H, T implies E � �, and therefore E � n : G �G′[F], by (Exp n).

(Ex Par 1) We have P | Q ↓ in n derived from P ↓ in n. The judgment E � P | Q :�G,◦H, T must
have been derived using (Proc Par) from E � P :�G,◦H, T . By induction hypothesis, this and P ↓ in n
imply the required result.

(Ex Par 2) We have P | Q ↓ in n derived from Q ↓ in n. The judgment E � P | Q :�G,◦H, T must
have been derived using (Proc Par) from E � Q :�G,◦H, T . By induction hypothesis, this and Q ↓ in n
imply the required result.

(Ex Res) We have (νm : W)P ↓ in n derived from P ↓ in n and m /∈ fn(in n). The judgment
E � (νm : W)P : �G,◦H, T must have been derived using (Proc Res) from E, m : W � P : �G,◦H, T .
By induction hypothesis, this and P ↓ inn imply that E, m : W � n : G �G′[F] for some type G �G′[F]
with G ∈ G. By Lemma A.12, m �= n and E, m : W � n : G �G′[F] imply E � n : G �G′[F].

(Ex ResG) We have (νH)P ↓ in n derived from P ↓ in n. The judgment E � (νH)P : �G,◦H, T
must have been derived using (Proc GRes) from E, H � P : �G,◦H, T with H /∈ fg(�G,◦H, T).
By induction hypothesis, the latter and P ↓ in n imply that E, H � n : G �G′[F] for some type
G �G′[F] with G ∈ G. By Lemma A.13, H /∈ fg(�G,◦H, T) and E, H � n : G �G′[F] imply E � n :
G �G′[F].

TYPES FOR THE AMBIENT CALCULUS 193

ACKNOWLEDGMENT

Silvano Dal Zilio commented on a draft of this paper. Ghelli acknowledges the support of Microsoft Research during the
writing of this paper. The same author has also been partially supported by grants from the E.U. workgroup APPSEM and by
“Ministero dell’Università e della Ricerca Scientifica e Tecnologica,” Project DATA-X. Comments from the anonymous referees
were invaluable.

REFERENCES

1. Abadi, M. (1999), Secrecy by typing in security protocols, J. Assoc. Comput. Mach. 46, 749–786.
2. Abadi, M., and Cardelli, L. (1996), “A Theory of Objects,” Springer-Verlag, Berlin.
3. Amadio, R. M. (1997), An asynchronous model of locality, failure, and process mobility, in “COORDINATION 97,” Lecture

Notes in Computer Science, Vol. 1282, Springer-Verlag, Berlin.
4. Amadio, R. M., and Prasad, S. (1994), Localities and failures, in “Foundations of Software Technology and Theoretical

Computer Science (FSTTCS’94),” Lecture Notes in Computer Science, Vol. 880, pp. 205–216, Springer-Verlag, Berlin.
5. Amtoft, T., Kfoury, A. J., and Pericas-Geertsen, S. M. (2001), What are polymorphically-typed ambients? in “Programming

Languages and Systems: 10th European Symposium on Programming (ESOP 2001),” Lecture Notes in Computer Science,
pp. 206–220, Springer-Verlag, Berlin.

6. Bodei, C., Degano, P., Nielson, F., and Riis Nielson, H. (1998), Control flow analysis for the π -calculus, in “Concurrency
Theory (Concur’98),” Lecture Notes in Computer Science, Vol. 1466, pp. 84–98, Springer-Verlag, Berlin.

7. Boudol, G. (1992), “Asynchrony and the π -Calculus (Note),” Rapport de Recherche 1702, INRIA Sophia-Antipolis, May.
8. Bugliesi, M., and Castagna, G. (2001), Secure safe ambients, in “28th ACM Symposium on Principles of Programming

Languages (POPL’01),” pp. 222–235.
9. Cardelli, L., Ghelli, G., and Gordon, A. D. (1999), Mobility types for mobile ambients, in “26th International Colloquium

on Automata, Languages, and Programming (ICALP’99),” Lecture Notes in Computer Science, Vol. 1644, pp. 230–239,
Springer-Verlag, Berlin.

10. Cardelli, L., Ghelli, G., and Gordon, A. D. (2000), Ambient groups and mobility types, in “Theoretical Computer Science
(IFIP TCS 2000),” Lecture Notes in Computer Science, Vol. 1872, pp. 333–347, Springer-Verlag, Berlin.

11. Cardelli, L., Ghelli, G., and Gordon, A. D. (2000), Secrecy and group creation, in “CONCUR 2000—Concurrency Theory”
(C. Palamidessi, Ed.), Lecture Notes in Computer Science, Vol. 1877, pp. 365–379, Springer-Verlag, Berlin.

12. Cardelli, L., and Gordon, A. D. (1999), Types for mobile ambients, in “26th ACM Symposium on Principles of Programming
Languages (POPL’99),” pp. 79–92.

13. Cardelli, L., and Gordon, A. D. (2000), Mobile ambients, Theoret. Comput. Sci. 240, 177–213.
14. Coquand, T., and Huet, G. (1988), The calculus of constructions, Inform. and Comput. 76, 95–120.
15. Dal Zilio, S., and Gordon, A. D. (2000), Region analysis and a π -calculus with groups, in “Mathematical Foundations of

Computer Science 2000,” Lecture Notes in Computer Science, Vol. 1893, pp. 1–20, Springer-Verlag, Berlin. Accepted for
publication in J. Funct. Program.

16. De Nicola, R., Ferrari, G., and Pugliese, R. (1999), Types as specifications of access policies, in “Secure Internet Programming
1999,” Lecture Notes in Computer Science, Vol. 1603, pp. 117–146, Springer-Verlag, Berlin.

17. Degano, P., Levi, F., and Bodei, C. (2000), Safe ambients: Control flow analysis and security, in “Advances in Computing
Science (ASIAN’00),” Lecture Notes in Computer Science, Vol. 1961, pp. 199–214, Springer-Verlag, Berlin.

18. Dezani-Ciancaglini, M., and Salvo, I. (2000), Security types for mobile safe ambients, in “Advances in Computing Science
(ASIAN’00),” Lecture Notes in Computer Science, Vol. 1961, pp. 215–236, Springer-Verlag, Berlin.

19. Feret, J. (2001), Abstract interpretation-based static analysis of mobile ambients, in “Static Analysis (SAS’01),” Lecture
Notes in Computer Science, Vol. 2126, pp. 412–430, Springer-Verlag, Berlin.

20. Hansen, R. R., Jensen, J. G., Nielson, F., and Riis Nielson, H. (1999), Abstract interpretation of mobile ambients, in “Static
Analysis (SAS’99),” Lecture Notes in Computer Science, Vol. 1694, pp. 134–148, Springer-Verlag, Berlin.

21. Honda, K., and Tokoro, M. (1991), An object calculus for asynchronous communication, in “European Conference
on Object-Oriented Programming (ECOOP’91),” Lecture Notes in Computer Science, pp. 133–147, Springer-Verlag,
Berlin.

22. Lange, D., and Oshima, M. (1998), “Programming and Deploying Java Mobile Agents with Aglets,” Addison-Wesley,
Reading, MA.

23. Levi, F., and Bodei, C. (2000), Security analysis for mobile ambients, in “Workshop on Issues in the Theory of Security
(WITS’00),” pp. 18–23.

24. Levi, F., and Maffeis, S. (2001), An abstract interpretation framework for analysing mobile ambients, in “Static Analysis
(SAS’01),” Lecture Notes in Computer Science, Vol. 2126, pp. 395–411, Springer-Verlag, Berlin.

25. Levi, F., and Sangiorgi, D. (2000), Controlling interference in ambients, in “27th ACM Symposium on Principles of
Programming Languages (POPL’00),” pp. 352–364.

26. Lindholm, T., and Yellin, F. (1997), “The Java Virtual Machine Specification,” Addison-Wesley, Reading, MA.
27. Milner, R. (1999), “Communicating and Mobile Systems: The π -Calculus,” Cambridge Univ. Press, Cambridge, UK.
28. Morrisett, G., Walker, D., Crary, K., and Glew, N. (1999), From system F to typed assembly language, ACM Trans. Program.

Lang. System 21, 528–569.
29. Nielson, F., Riis Nielson, H., Hansen, R. R., and Jensen, J. G. (1999), Validating firewalls in mobile ambients, in “Concurrency

Theory (Concur’99),” Lecture Notes in Computer Science, Vol. 1664, pp. 463–477, Springer-Verlag, Berlin.

194 CARDELLI, GHELLI, AND GORDON

30. Nielson, F., Riis Nielson, H., and Sagiv, M. (2000), A Kleene analysis of mobile ambients, in “Programming Languages
and Systems: 9th European Symposium on Programming (ESOP’00),” Lecture Notes in Computer Science, Vol. 1782,
pp. 305–319, Springer-Verlag, Berlin.

31. Riis Nielson, H., and Nielson, F. (2000), Shape analysis for mobile ambients, in “27th ACM Symposium on Principles of
Programming Languages (POPL’00),” pp. 135–148.

32. Riely, J., and Hennessy, M. (1998), A typed language for distributed mobile processes, in “25th ACM Symposium on
Principles of Programming Languages (POPL’98),” pp. 378–390.

33. Sewell, P. (1998), Global/local subtyping and capability inference for a distributed π -calculus, in “25th International
Colloquium on Automata, Languages, and Programming (ICALP’98),” Lecture Notes in Computer Science, Vol. 1443,
pp. 695–706, Springer-Verlag, Berlin.

34. Tofte, M., and Talpin, J.-P. (1997), Region-based memory management, Inform. and Comput. 132, 109–176.
35. White, J. E. (1996), Mobile agents, in “Software Agents” (J. Bradshaw, Ed.), AAAI Press/MIT Press, Menlo Park,

CA/Cambridge, MA.
36. Zimmer, P. (2000), Subtyping and typing algorithms for mobile ambients, in “Foundations of Software Science and Compu-

tation Structures (FOSSACS’00),” Lecture Notes in Computer Science, Vol. 1784, pp. 375–390, Springer-Verlag, Berlin.

	1. INTRODUCTION
	2. THE POLYADIC AMBIENT CALCULUS (REVIEW)
	3. INTRODUCTION TO EXCHANGE TYPES
	4. TYPED AMBIENT CALCULUS
	5. OPENING CONTROL
	6. CROSSING CONTROL
	7. EFFECT SAFETY
	8. ENCODING A DISTRIBUTED LANGUAGE
	9. CONCLUSIONS
	APPENDIX A
	APPENDIX B
	ACKNOWLEDGMENT
	REFERENCES

