
Stable Adaptive Momentum for Rapid
Online Learning in Nonlinear Systems?

Thore Graepel and Nicol N. Schraudolph

Institute of Computational Science
ETH Zürich, Switzerland

{graepel,schraudo}@inf.ethz.ch

Abstract We consider the problem of developing rapid, stable, and
scalable stochastic gradient descent algorithms for optimisation of very
large nonlinear systems. Based on earlier work by Orr et al. on adaptive
momentum—an efficient yet extremely unstable stochastic gradient de-
scent algorithm—we develop a stabilised adaptive momentum algorithm
that is suitable for noisy nonlinear optimisation problems. The stability
is improved by introducing a forgetting factor 0 ≤ λ ≤ 1 that smoothes
the trajectory and enables adaptation in non-stationary environments.
The scalability of the new algorithm follows from the fact that at each
iteration the multiplication by the curvature matrix can be achieved in
O (n) steps using automatic differentiation tools. We illustrate the be-
haviour of the new algorithm on two examples: a linear neuron with
squared loss and highly correlated inputs, and a multilayer perceptron
applied to the four regions benchmark task.

1 Introduction

Optimisation problems arise in a wide variety of fields including science, engi-
neering, and business. We focus on optimisation algorithms for problems with
a twice-differentiable objective function that are large in scale, non-linear, non-
convex, that might be non-stationary, and for which only noisy measurements
of the objective function value and its first and second derivatives w.r.t. the pa-
rameters are available. This is the realm of online stochastic gradient methods.

2 Adaptive Momentum

We consider the problem of minimising a function f : Rn → R with respect to
its parameters w ∈ Rn. In online optimisation the weight vector wt at time step
t is updated according to

wt+1 = wt + vt . (1)

The simplest form of gradient descent is recovered by choosing vt := −µgt

where µ is a scalar learning rate parameter and gt := ∇wft (w)|w=wt
is the

? Proc. Intl. Conf. Artificial Neural Networks, LNCS, Springer Verlag, Berlin 2002

instantaneous gradient measurement of the objective function f with respect to
the parameters w evaluated at wt.

Various improvements over this simple scheme are conceivable. Decreasing
µ := µt deterministically as a function of time aims at quickly traversing the
search space at the beginning of the optimisation and to smoothly converge at
the end. Replacing µ by a diagonal matrix allows the use of individual learning
rates for each parameter. Replacing µ by a full matrix makes it possible to
include local curvature information into the optimisation process.

We follow a different line of development that suggests to introduce a mo-
mentum term,

vt := −µ (ρgt − vt−1) . (2)

The intuition behind this update rule is to stabilise the trajectory through search
space by choosing the new update vt as a linear combination of the previous
update vt−1 and the new gradient gt. The adaptive version of this idea, incor-
porating a curvature matrix C into the update, has been introduced in [2,4],

vt := −µt

(
ρtgt −

(
Ct +

1
µt

I
)

vt−1

)
, (3)

where µt < λ−1
max (Ct) and ρt is annealed from 1 down to 0. Let us assume

µt := µ, ρt = ρ, gt := g, and Ct := C constant for the sake of argument. Setting
vt = vt−1 =: v∞ and solving for v∞ it is easily seen that the update rule (3)
has a fixed-point at

v∞ = −ρC−1g . (4)

Thus, using v∞ instead of vt in (1) and setting ρ := 1 we recover Newton’s meth-
ods if C is the Hessian, Ct := Ht := ∇2

wft (w)
∣∣
w=wt

. For nonlinear problems
it is advisable to use the Gauss-Newton approximation to the Hessian which is
guaranteed to be positive semidefinite while retaining as much information as
possible [6].

3 Stable Adaptive Momentum

The above algorithm turns out to be very efficient, but unstable for practical
non-convex problems such as multilayer perceptrons. As a stabilising mechanism
we suggest to use an exponential average over past values of vt governed by a
forgetting factor 0 ≤ λ ≤ 1, resulting in an update rule

vt := −µt

(
ρtgt − λ

(
Ct +

1
µt

I
)

vt−1

)
. (5)

Clearly, for λ = 1 we recover the matrix momentum update (3) and for λ = 0
standard gradient descent. Again assuming µt := µ, ρt = ρ, gt := g, and Ct := C
constant, the new update rule (5) has a fixed point at

v∞ = −ρ

(
λC + (1− λ)

1
µ
I
)−1

g . (6)

Thus in the limit the effective curvature matrix is a convex combination of C and
λmax (C) I, comparable to the Levenberg-Marquardt approach [3]. In particular,
if we choose 1

µ := λmax (C) as suggested in [1] the condition numberN (C) :=
λmax (C) /λmin (C) is improved to

N
(

λC + (1−λ)
1
µ
I
)

=
λ λmax (C) + 1−λ

µ

λ λmin (C) + 1−λ
µ

=
λmax (C)

λ λmin (C) + (1−λ) λmax (C)
.

The denominator of the condition number is proportional to a convex combina-
tion of the largest and smallest eigenvalues of C.

For convenient and efficient implementation of this algorithm automatic dif-
ferentiation tools1 can be used to calculate gradient gt and curvature matrix-
vector product Ctv in O (n) as described in [5]. The Gauss-Newton approxima-
tion of the Hessian should be used to ensure positive semidefiniteness [6].

Algorithm 1 Stable Adaptive Momentum (SAM)
Require: A twice-differentiable objective function f : Rn → R
Require: instantaneous gradient gt = ∇wft (w)|w=wt

and curvature matrix vector
product Ctv

Require: Forgetting factor 0 ≤ λ ≤ 1, learning rates 0 < ρ ≤ 1 and µ > 0, and
objective function convergence criterion εf > 0.

Ensure: Storage for vnew, vold, wnew, wold.
Initialise wold with small random numbers, and vold ← g0

repeat

vnew ← −µ
(
ρgt − λ

(
Ct + 1

µ
I
)
vold

)
wnew ← wold + vnew

until Time-averaged error 〈|ft (wt)− ft (wt)|〉t < εf

4 Numerical Experiments

4.1 The Quadratic Bowl

In order to study the influence of the parameter λ on the behaviour of the
algorithm and to understand its interaction with the learning rate parameter ρ
we considered the unconstrained quadratic optimisation problem of minimising
the function

f (w) =
1
2
wT Hw , H = JJT , J =

(
2 1.6

1.2 3.2

)
.

With eigenvalues of H given by 16.89 and 1.19 this configuration models the
situation of long diagonal valleys in the objective function that often occur in
neural network learning. Obviously the optimal solution is w = 0 with f (0) = 0.
Samples for online learning are drawn from a normal distribution N (0,H).
1 see http://www-unix.mcs.anl.gov/autodiff/

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

ρ

λ

batch size = 1

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

ρ

λ

batch size = 2

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

ρ

λ

batch size = 5

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

ρ

λ

batch size = 10

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

ρ

λ
batch size = 20

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

ρ
λ

batch size = 50

Figure 1. Log-contour plots of objective function value f (w) = wT Hw after 100 steps
of SAM, averaged over starting points {0.0, 0.01, . . . , 4π} on the unit circle, as a function
of the ρ and λ parameters. Each contour corresponds to a 100-fold improvement in f .

Figure 1 shows log-contour plots of the value of the objective function f (wt)
after 100 update steps, averaged over different starting points on the unit circle
at angles {0.0, 0.01, . . . , 4π}, as a function of the ρ and λ parameters, for different
batch sizes. When learning fully online (batch size 1), simple gradient descent
(λ = 0) works best: in this regime the curvature measurements are so noisy that
they do not accelerate convergence. For batch sizes ¿ 1, however, SAM clearly
outperforms both simple gradient descent and standard adaptive momentum
(λ = 1). (Note that each contour on the plot corresponds to a 100-fold improv-
ment in objective function value.) As the batch size increases, the optimal regime
emerges at λ ≈ 0.5 . . . 0.6, ρ = 1 — the latter value illustrating that correctly
stabilized and conditioned (through λ and µ parameters, respectively) SAM in
fact does not require the ρ parameter. Finally, the plot for batch size 50 shows
how lowering λ serves to dampen oscillations observable (as a function of ρ) for
high values of λ.

4.2 The Four Regions Task

As a more realistic and difficult test example we use the four regions classifi-
cation task [7] to be solved by a multi-layer perceptron, as shown in Figure 2

�

OO >>|||||||||||

66nnnnnnnnnnnnnnnnnn

44iiiiiiiiiiiiiiiiiiiiiiiiii �

UU++++++++

CC���������

88pppppppppppppppp

44jjjjjjjjjjjjjjjjjjjjjjjj �

[[777777777

II��������

::uuuuuuuuuuuuu

55kkkkkkkkkkkkkkkkkkkkk �

aaBBBBBBBBBBB

OO >>|||||||||||

66nnnnnnnnnnnnnnnnnn �

ddIIIIIIIIIIIII

UU++++++++

CC���������

88pppppppppppppppp �

ffNNNNNNNNNNNNNNNN

[[777777777

II��������

::uuuuuuuuuuuuu �

hhQQQQQQQQQQQQQQQQQQ

aaBBBBBBBBBBB

OO >>||||||||||| �

iiSSSSSSSSSSSSSSSSSSSSS

ddIIIIIIIIIIIII

UU++++++++

CC��������� �

jjTTTTTTTTTTTTTTTTTTTTTTTT

ffNNNNNNNNNNNNNNNN

[[777777777

II�������� �

jjUUUUUUUUUUUUUUUUUUUUUUUUUU

hhQQQQQQQQQQQQQQQQQQ

aaBBBBBBBBBBB

OO

�

OO II��������

CC���������

>>|||||||||||

::uuuuuuuuuuuuu

88pppppppppppppppp

66nnnnnnnnnnnnnnnnnn

55kkkkkkkkkkkkkkkkkkkkk

44jjjjjjjjjjjjjjjjjjjjjjjj

44iiiiiiiiiiiiiiiiiiiiiiiiii �

UU++++++++

OO II��������

CC���������

>>|||||||||||

::uuuuuuuuuuuuu

88pppppppppppppppp

66nnnnnnnnnnnnnnnnnn

55kkkkkkkkkkkkkkkkkkkkk

44jjjjjjjjjjjjjjjjjjjjjjjj �

[[777777777

UU++++++++

OO II��������

CC���������

>>|||||||||||

::uuuuuuuuuuuuu

88pppppppppppppppp

66nnnnnnnnnnnnnnnnnn

55kkkkkkkkkkkkkkkkkkkkk �

aaBBBBBBBBBBB

[[777777777

UU++++++++

OO II��������

CC���������

>>|||||||||||

::uuuuuuuuuuuuu

88pppppppppppppppp

66nnnnnnnnnnnnnnnnnn �

ddIIIIIIIIIIIII

aaBBBBBBBBBBB

[[777777777

UU++++++++

OO II��������

CC���������

>>|||||||||||

::uuuuuuuuuuuuu

88pppppppppppppppp �

ffNNNNNNNNNNNNNNNN

ddIIIIIIIIIIIII

aaBBBBBBBBBBB

[[777777777

UU++++++++

OO II��������

CC���������

>>|||||||||||

::uuuuuuuuuuuuu �

hhQQQQQQQQQQQQQQQQQQ

ffNNNNNNNNNNNNNNNN

ddIIIIIIIIIIIII

aaBBBBBBBBBBB

[[777777777

UU++++++++

OO II��������

CC���������

>>||||||||||| �

iiSSSSSSSSSSSSSSSSSSSSS

hhQQQQQQQQQQQQQQQQQQ

ffNNNNNNNNNNNNNNNN

ddIIIIIIIIIIIII

aaBBBBBBBBBBB

[[777777777

UU++++++++

OO II��������

CC��������� �

jjTTTTTTTTTTTTTTTTTTTTTTTT

iiSSSSSSSSSSSSSSSSSSSSS

hhQQQQQQQQQQQQQQQQQQ

ffNNNNNNNNNNNNNNNN

ddIIIIIIIIIIIII

aaBBBBBBBBBBB

[[777777777

UU++++++++

OO II�������� �

jjUUUUUUUUUUUUUUUUUUUUUUUUUU

jjTTTTTTTTTTTTTTTTTTTTTTTT

iiSSSSSSSSSSSSSSSSSSSSS

hhQQQQQQQQQQQQQQQQQQ

ffNNNNNNNNNNNNNNNN

ddIIIIIIIIIIIII

aaBBBBBBBBBBB

[[777777777

UU++++++++

OO

�

�

aaBBBBBBBBBBB

[[777777777

UU++++++++

OO II��������

CC���������

>>|||||||||||

::uuuuuuuuuuuuu

88pppppppppppppppp

66nnnnnnnnnnnnnnnnnn �

�

hhQQQQQQQQQQQQQQQQQQ

ffNNNNNNNNNNNNNNNN

ddIIIIIIIIIIIII

aaBBBBBBBBBBB

[[777777777

UU++++++++

OO II��������

CC���������

>>||||||||||| 10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

learning steps t

<
f(

 w
t)>

λ=0 (gradient descent)
λ=0.2
λ=0.4
λ=0.6
λ=0.8
λ=0.9
λ=0.95

Figure 2. Four regions task (top left) and corresponding learning curves (right) us-
ing stable adaptive momentum with different values of λ applied to a 2-10-10-4 fully
connected feed-forward neural network (bottom left) with tanh activation functions,
softmax output, and cross-entropy loss function.

(left). The network has two input units, four output units and two layers of
10 hidden units (with tanh transfer function) each, with neighbouring layers
fully connected, resulting in n = 184 weights. The classification is implemented
through a softmax function applied to the outputs and a cross-entropy loss func-
tion. For each run the weights are initialised to uniformly random values in the
interval [−0.3, 0.3]. Training patterns are generated online by drawing indepen-
dent, uniformly random input samples; since each pattern is seen only once, the
empirical loss provides an unbiased estimate of generalisation ability. Patterns
are presented in mini-batches of ten each.

We compare SAM (with ρ = 1) to standard gradient descent with constant
learning rate µ. The learning rate µ = 0.01 was chosen such that standard
gradient descent achieves the lowest value of f (w) after 25 000 update steps.
Figure 2 (right) shows learning curves for different values of λ in the range
[0.0, 0.95]. To put these results in perspective, note that the original adaptive
momentum algorithm (corresponding to λ = 1) diverges immediately everytime,
as observed already in [4]. This can also be seen from the curve for λ = 0.95 in
Figure 2 (right) that illustrates this problem of divergence for values greater than
λ = 0.9. Compared to simple gradient descent (λ = 0), increasing λ generally
results in a faster transient reduction of f while the asymptotic quality of the
solution becomes worse.

We found that the ad-hoc annealing schedule λ(t) = 0.9/(1 + exp t−5000
1000),

which decreases λ logistically from 0.9 in the search phase to zero in the conver-

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

learning steps t

<f
(w

t)>

λ=0 (gradient descent)
λ=0.9
λ = 0.9/(1+(exp((t−5000)/1000)))
λ(t)

Figure 3. Learning curves for the four regions task illustrating an ad-hoc annealing
scheme for λ that accelerates convergence but retains good asymptotic performance.

gence phase, is capable of combining the advantages of fast transient and good
asymptotic performance (Figure 3). We are now investigating how to control λ
adaptatively so as to automate this annealing process.

References

1. Y. LeCun, P. Y. Simard, and B. Pearlmutter. Automatic learning rate maximiza-
tion in large adaptive machines. In S. J. Hanson, J. D. Cowan, and C. L. Giles,
editors, Advances in Neural Information Processing Systems, volume 5, pages 156–
163. Morgan Kaufmann, San Mateo, CA, 1993.

2. T. K. Leen and G. B. Orr. Optimal stochastic search and adaptive momentum. In
J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information
Processing Systems, volume 6, pages 477–484. Morgan Kaufmann, San Francisco,
CA, 1994.

3. D. Marquardt. An algorithm for least-squares estimation of non-linear parameters.
Journal of the Society of Industrial and Applied Mathematics, 11(2):431–441, 1963.

4. G. B. Orr. Dynamics and Algorithms for Stochastic Learning. PhD thesis, Depart-
ment of Computer Science and Engineering, Oregon Graduate Institute, Beaverton,
OR 97006, 1995. ftp://neural.cse.ogi.edu/pub/neural/papers/orrPhDch1-5.

ps.Z, orrPhDch6-9.ps.Z.
5. B. A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation,

6(1):147–160, 1994.
6. N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient

descent. Neural Computation, 14(7), 2002. http://www.inf.ethz.ch/~schraudo/

pubs/mvp.ps.gz.
7. S. Singhal and L. Wu. Training multilayer perceptrons with the extended Kalman

filter. In D. S. Touretzky, editor, Advances in Neural Information Processing Sys-
tems. Proceedings of the 1988 Conference, pages 133–140, San Mateo, CA, 1989.
Morgan Kaufmann.

