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The ambient calculus is a concurrent calculus where the unifying notion
of ‘ambient’ is used to model many different constructs for distributed
and mobile computation. We study a type system that describes several
properties of ambient behavior. The type system allows ambients to be
partitioned in disjoint sets (groups), according to the intended design of
a system, in order to specify both the communication and the mobility
behavior of ambients.
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1. INTRODUCTION

The ambient calculus [13] is a process calculus whose basic abstraction, the am-
bient, represents mobile, nested, computational environments, with local communi-
cations. Ambients can represent the standard components of distributed systems,
such as nodes, channels, messages, and mobile code. They can also represent situa-
tions where entire active computational environments are moved, as happens with
mobile computing devices, and with multithreaded mobile agents.

We define here a set of type systems for the ambient calculus, which are based
on the idea of partitioning ambients in progammer defined groups, and tracking
communication and mobility properties.

Type systems are, today, a widely applied technique allowing programmers to
describe the key properties of their code, and to have these properties mechanically
and efficiently checked. Mobile code makes types, and machine-checkable properties
in general, useful for security reasons too, as has been demonstrated by the checking
performed on Java applets [26].



In standard languages, the key invariants that are maintained by type systems
have mainly to do with the contents of variables and with the interfaces of functions,
procedures, or methods. In the ambient calculus, the basic properties of a piece
of code are those related to its mobility, to the possibility of opening an ambient
and exposing its content, and to the type of data which may be exchanged inside
an ambient. To understand how groups arise in this context, consider a typical
static property we may want to express in a type system for the ambient calculus;
informally:

The ambient named n can enter the ambient named m.

This could be expressed as a typing n : CanEnter(m) stating that n is a mem-
ber of the collection CanEnter(m) of names that can enter m. However, this
would bring us straight into the domain of dependent types [14], since the type
CanEnter(m) depends on the name m. Instead, we introduce type-level groups of
names, G, H, and restate our property as:

The name m belongs to group G.
The ambient named n can enter any ambient of group G.

This idea leads to typings of the form: m : G, n : CanEnter(G) which are akin
to standard typings such as x : Int, y : Channel(Int).

To appreciate the relevance of groups in the description of distributed systems,
consider a programmer coding a typical distributed system composed of nodes and
mobile threads moving from one node to another, and where threads communicate
by sending input and output packets through typed channels. In this paper we
define a type system where a programmer can:

e define groups such as Node, Thread, Channel, and Packet, which match the
system structure;

e declare properties such as: this ambient is a Thread and it may only cross
ambients which are Nodes; this ambient is a Packet and can enter Channels; this
ambient is a Channel of type T, and it cannot move or be opened, and it may open
Packets containing data of type T'; this ambient is a Node and it cannot move or
be opened;

e have the system statically verify all these properties.

Our groups are similar to sorts used in typed versions of the m-calculus [27], but
we introduce an operation, (vG)P, for creating a new group G, which can be used
within the process P.

The binders for new groups, (vG), can float outward during reduction as long
as this adjustment (called extrusion in the 7-calculus) does not introduce name
clashes. Because of extrusion, group binders do not impede the mobility of ambients
that are enclosed in the initial scope of fresh groups but later move away. On the
other hand, even though extrusion enlarges scopes, simple scoping restrictions in
the typing rules prevent names belonging to a fresh group from ever being received
by a process which has been defined outside the initial scope of the group.

Therefore, we obtain a flexible way of protecting the propagation of names. This
is to be contrasted with the situation in the untyped w-calculus and ambient cal-

culus, where names can (intentionally, accidentally, or maliciously) be extruded
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arbitrarily far, by the automatic and unrestricted application of extrusion rules,
and communicated to other parties.

This paper reports the results of a research effort some parts of which are de-
scribed in conference papers. In [12] we investigate exchange types, which subsume
standard type systems for processes and functions, but do not impose restrictions
on mobility; no groups were present in that system. In [9] we report on immobility
and locking annotations, which are basic predicates about mobility, still with no
notion of groups. In [10] we introduce the notion of groups; that paper is essentially
an extended abstract of the present one.

We organise the paper as follows. In Section 2 we review the basic untyped
ambient calculus. In Section 3 we informally introduce a group-based exchange
type system which only tracks communications. In Section 4 we give a precise
definition of the same system, and a subject reduction result. Section 5 enriches
the system of Section 4 to control ambient opening. In Section 6, we define the
full system in which both ambient opening and ambient movement are tracked.
Section 7 formalizes safety properties guaranteed by typing. In Section 8 we revisit
a typed encoding of a distributed programming language from our earlier work on
locking and mobility annotations [9], in order to illustrate the expressiveness of
the type system. In particular, we show how groups help describing the different
classes of ambients and their properties. Section 9 concludes and discusses related
work. Finally, appendixes contain proofs of the subject reduction and effect safety
properties for the full type system.

2. THE POLYADIC AMBIENT CALCULUS (REVIEW)

We begin by reviewing and slightly extending the ambient calculus of [13]. In
that calculus, communication is based on the exchange of single values. Here we
extend the calculus with communication based on tuples of values (polyadic com-
munication), since this simple extension greatly facilitates the task of providing an
expressive type system. We also add objective moves, as in [9], and we annotate
bound variables with type information.

Four of our process constructions (restriction, inactivity, composition, and repli-
cation) are commonly found in process calculi. To these we add ambients, capabil-
ities, and a simple form of communication. We briefly discuss these constructions;
see [13] for a more detailed introduction.

The restriction operator, (vn:W)P, creates a new (unique) name n of type W
within a scope P. The new name can be used to name ambients and to operate on
ambients by name. The inactive process, 0, does nothing. Parallel composition is
denoted by a binary operator, P | @, that is commutative and associative. Repli-
cation is a technically convenient way of representing iteration and recursion: the
process ! P denotes the unbounded replication of the process P and is equivalent to
P|P.

An ambient is written M[P], where M is the name of the ambient, and P is the
process running inside the ambient.

The process M.P executes an action regulated by the capability M, and then
continues as the process P. We consider three kinds of capabilities: one for entering
an ambient, one for exiting an ambient, and one for opening up an ambient. (The

latter requires special care in the type system.) Capabilities are obtained from
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names; given a name n, the capability in n allows entry into n, the capability out n
allows exit out of n and the capability open n allows the opening of n. Implicitly, the
possession of one or all of these capabilities is insufficient to reconstruct the original
name n from which they were extracted. Capabilities can also be composed into
paths, M.M', with € for the empty path.

Communication is asynchronous and local to an ambient. It is similar to channel
communication in the asynchronous w-calculus [7, 21], except that the channel has
no name: the surrounding ambient provides the context where the communication
happens. The process (M, ..., M) represents the output of a tuple of values, with
no continuation. The process (z1:W7,...,z,:W}).P represents the input of a tuple
of values, whose components are bound to z1,...,z;, with continuation P.

Communication is used to exchange both names and capabilities, which share
the same syntactic class M of messages. The first task of our type system is to
distinguish the M's that are names from the M's that are capabilities, so that each is
guaranteed to be used in an appropriate context. In general, the type system might
distinguish other kinds of expressions, such as integer and boolean expressions, but
we do not include those in our basic calculus.

The process go N.M[P] moves the ambient M[P] as specified by the N capability,
and has M[P] as its continuation. It is called an objective move since the ambient
M|[P] is moved from the outside, while a movement caused by a process N.P which
runs inside an ambient is called a subjective move. There are more powerful forms of
objective move, beyond what is expressible in the untyped calculus, that may have
undesirable properties [13]. We adopt the form go N.M[P] as primitive because it
usefully allows more refined typings than are possible with only subjective moves—
as we show in Section 6.2—and because it does not affect the untyped operational
semantics, since it is derivable in the untyped calculus. We can define an objective
move go N.M[P] to be short for (vk)k[N.Mout k.P]] where k is not free in P.

Messages and Processes:

I
M,N == message

n name
mn M can enter into M
out M can exit out of M
open M can open M
€ null
M.M' path

P,Q,R = process
(vn:W)P restriction
0 inactivity
P|Q composition
P replication
M][P] ambient
M.P action
(x1: Wy, ..., x:Wy).P input action
(My, ..., My) output action
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go N.M[P] objective move

The following table displays the main reduction rules of the calculus (the full set
is presented in Section 4). The notation P{z1< M, ...,z M} in rule (Red I/O)
denotes the outcome of a capture-avoiding simultaneous substitution of message M;
for each free occurrence of the corresponding name z; in the process P, fori € 1..k.

Reduction:
I 1

n[in m.P | Q] | m[R] = m[n[P | Q] | R] Red In)

m[nlout m.P | Q]| R] = n[P | Q] | m[R] Red Out)

openn.P | n[@Q] = P | Q Red Open)

(My, ..., My | (x1:Wh,...,2p:Wi).P — Red I/0)
P{l‘l(—Ml, . ,l‘k(—Mk}

go(in m.N).n[P] | m[Q] = m[go N.n[P] | Q] (Red Go In)

m[go(out m.N).n[P] | @] — go N.n[P] | m[Q] (Red Go Out)

(
(
(
(

We use the following syntactic conventions:

parentheses may be used for precedence

(vn:W)P | Q is read ((vn:W)P) | Q

IP|Qisread (IP) | Q

e M.P|Qisread (M.P)|Q

e M.M'.P is read M.(M'.P)

o (ny:Wh,...,ng:Wg).P|Qisread ((ni:Wh,...,ng:Wg).P) | @
o 0[] 2 n[o)

e M = M.0 (where appropriate)

As an example, consider the following process:

a[plout a.in b.(c)]] | blopen p.(x).z[]]

Intuitively, this example represents a packet named p moving from a machine a
to a machine b. The process p[out a.in b.(c)] represents the packet, as a subambient
of ambient a. The name of the packet ambient is p, and its interior is the process
out a.in b.{c). This process consists of three sequential actions: exercise the capa-
bility out a, exercise the capability in b, and then output the name c. The effect

of the two capabilities on the enclosing ambient p is to move p out of a and into b
(rules (Red Out), (Red In)), to reach the state:

all [ bp[{c)] | open p.(z).z(]]

In this state, the interior of a is empty but the interior of b consists of two
running processes, the subambient p[(c)] and the process openp.(z).z[]. This process
is attempting to exercise the open p capability. This capability was previously
blocked, but now that the p ambient is present, the capability’s effect is to dissolve
the ambient’s boundary; hence, the interior of b becomes the process (¢} | (z).z]]
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(Red Open). This is a composition of an output {¢) with an input (z).z[]. The
input consumes the output, leaving c[] as the interior of b (Red I/O). Hence, the
final state of the whole example is af] | b[c[]]

As an example for the objective moves, consider the following variation of the
previous one:

algo(out a.in b).p[{c)]] | blopen p.(z).x[]]

In this case, the ambient p[(c)] is moved from the outside, out of a and into b
(rules (Red Go Out), (Red Go In)), to reach the same state that was reached in
the previous version after the (Red Out), (Red In) subjective moves:

al] | blgo e-pl(c)] | open p.(z).«[]]

3. INTRODUCTION TO EXCHANGE TYPES

An ambient is a place where processes can exchange messages and where other
ambients can enter and exit. We introduce here a type system which regulates
communication, while mobility will be tackled in the following sections. This system
generalizes the one presented in [12] by allowing the partitioning of ambients into
groups.

3.1. Topics of Conversation

Within an ambient, multiple processes can freely execute input and output ac-
tions. Since the messages are undirected, it is easily possible for a process to utter
a message that is not appropriate for some receiver. The main idea of the exchange
type system is to keep track of the topic of conversation that is permitted within a
given ambient, so that talkers and listeners can be certain of exchanging appropriate
messages.

The range of topics is described in the following table by message types, W, and
exchange types, T. The message types are G[T], the type of names of ambients
which belong to the group G and that allow exchanges of type T, and Cap[T], the
type of capabilities that when used may cause the unleashing of T exchanges (as a
consequence of opening ambients that exchange T'). The exchange types are Shh,
the absence of exchanges, and Wi x. ..x W}, the exchange of tuples of messages with
elements of the respective message types. For k = 0, the empty tuple type is called
1; it allows the exchange of empty tuples, that is, it allows pure synchronization.
The case k = 1 allows any message type to be an exchange type.

Types:

II/V n= message type I
G[T] name in group G for ambients allowing T' exchanges
Cap[T] capability unleashing T' exchanges

S, T == exchange type
Shh no exchange
Wi X - x Wy tuple exchange (1 is the null product)
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For example, in a scope where the Agent and Place groups have been defined,
we can express the following types:

e An ambient of the Agent group where no exchange is allowed (a quiet Agent):
Agent[Shh]

e A harmless capability: Cap[Shh]

e A Place where names of quiet Agents may be exchanged:

Place[Agent[Shh]]

e A Place where harmless capabilities may be exchanged:
Place[Cap[Shh]]

e A capability that may unleash the exchange of names of quiet Agents:

Cap[Agent[Shh]]|

3.2. Intuitions
Before presenting the formal type rules (in Section 4), we discuss the intuitions
that lead to them.

3.2.1. Typing of Processes
If a message M has message type W, then (M) is a process that outputs (ex-
changes) W messages. Therefore, we have a rule stating that:

M :W implies (M):W

If P is a process that may exchange W messages, then (z:W).P is also a process
that may exchange W messages. Therefore:

P:W implies (z:W).P:W

The process 0 exchanges nothing, so it naturally has exchange type Shh. How-
ever, we may also consider 0 as a process that may exchange any type. This is
useful when we need to place 0 in a context that is already expected to exchange
some type:

0:7 forany T

Alternatively, we may add a subtype relation among types, give 0 a minimal type,
and add a rule which allows processes with a type to appear where processes with
a supertype are required [36]. We reject this approach here only because we want
to explore the ideas of group-based exchange and mobility types in the simplest
possible setting.

If P and @ are processes that may exchange T', then P | Q) is also such a process.
Similarly for !P:
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P:T,Q:T implies P|Q:T
P:T implies 'P: T

Therefore, by keeping track of the exchange type of a process, T-inputs and
T-outputs are tracked so that they match correctly when placed in parallel.

3.2.2.  Typing of Ambients

An ambient n[P] is a process that exchanges nothing at the current level, so,
like 0, it can be placed in parallel with any process, hence we allow it to have any
exchange type:

n[P]: T for any T

There needs to be, however, a connection between the type of n and the type
of P. We give to each ambient name n a type G[T], meaning that n belongs to
the group G and that only T' exchanges are allowed in any ambient of that name.
Hence, a process P can be placed inside an ambient with that name n only if the
type of P is T

n:G[T],P:T implies n[P]is well-formed (and can have any type)

By tagging the name of an ambient with the type of exchanges, we know what
kind of exchanges to expect in any ambient we enter. Moreover, we can tell what
happens when we open an ambient of a given name.

3.2.3.  Typing of Open

Tracking the type of I/O exchanges is not enough by itself. We also need to
worry about open, which might open an ambient and unleash its exchanges inside
the surrounding ambient.

If ambients named n permit 7" exchanges, then the capability openn may unleash
those T exchanges. We then say that openn has a capability type Cap[T], meaning
that it may unleash T" exchanges when used:

n: G[T] implies openn : Cap|T]

As a consequence, any process that uses a Cap[T] must be a process that is
already willing to participate in exchanges of type T', because further T exchanges
may be unleashed:

M : Cap[T|,P:T implies M.P:T

3.2.4. Typing of In and Out

The exercise of an in or out capability cannot cause any exchange, hence such
capabilities can be prepended to any process. Following the same pattern we used
with 0 and ambients, the silent nature of these capabilities is formalized by allowing

them to acquire any capability type:
8



inn : Cap[T] for any T
outn : Cap[T] for any T

3.2.5. Groups

Groups are used in the exchange system to specify which kinds of messages can
be exchanged inside an ambient. We add a process construct to create a new group
G with scope P:

(vG)P
The type rule of this construct specifies that the process P should have an ex-
change type T that does not contain G. Then, (vG)P can be given type T as well.

That is, G is never allowed to “escape” out of the scope of (vG) into the type of
(vG)P:

P:T, G doesnotoccurin T implies (vG)P:T

4. TYPED AMBIENT CALCULUS

We are now ready for a formal presentation of the typed calculus which has been
informally introduced in the previous section. We first present its syntax, then its
typing rules, and finally a subject reduction theorem, which states that types are
preserved during computation.

4.1. Types and Processes
Types are defined as in Section 3.1; messages and processes are defined as in
Section 2, but we add the operator (vG)P of Section 3.2.5.

Messages and Processes:

I
P,Q,R ::= process
(vG)P group creation

as in Section 2
L ]

We identify processes up to consistent renaming of bound names and groups. In
the processes (vG)P and (vn:W)P, the group G and the name n, respectively, are
bound, with scope P. In the process (z1:Wh,...,z;:Wy).P, the names 1, ...,
are bound, with scope P.

The following table defines the free names of processes and messages, and the
free groups of processes and types.

Free Names and Free Groups:

fn((vG)P) £ fn(P fn(n) = {n}

fr((vn:W)P) 2 fn(P) — {n} f(in M) £ fn(M)

fn(0) L2y fn(out M) 2 fn(M)

(P Q)= fm(P)Ufm(Q) fn(open M) = fn(M)
fn(IP) 2 fn(P) fu(e) 2 @

fn(MI[P]) £ fn(M) U fn(P) fn(M.N) £ fn(M)U fn(N)



fa(M.P) 2 fa(M) U fu(P)

(e Wi, .. 2 We).P) = fa(P) — {x1,..., 21}
f((My,..., My)) 2 fn(My)U--- U fn(My)

fn(go N.M[P]) = fn(N) U fn(M) U fn(P)

fa((vG)P) 2 fg(P) — {G} fo(GITY) = {G} U fo(T)
fo((vr:W)P) = fg(W) U fg(P) fo(Cap[T)) £ fg(T)

f9(0) = 2 fa(Shh) = o

fa(P Q)= fg(P)U fy(Q) fg(Wi x - x Wy) 2
fa(I\P) 2 fq(P) fa(Wi)U---U fg(Wy)
fg(M[P]) = fg(P)

fg(M.P) = fg(P)

fol(wi:Wh, ... 2 Wi).P) = fg(Wh) U--- U fg(Wi) U fg(P)

fo((My, ..., My)) = &

fg(go N.M[P]) £ fg(P)

The following tables describe the operational semantics of the calculus. The type
annotations present in the syntax do not play a role in reduction; they are simply
carried along by the reductions.

Terms are identified up to an equivalence relation, =, called structural congru-
ence. This relation provides a way of rearranging processes so that interacting parts
can be brought together. Then, a reduction relation, —, acts on the interacting
parts to produce computation steps. The core of the calculus is given by the re-
duction rules (Red In), (Red Out), (Red Go In), (Red Go Out), and (Red Open),
for mobility, and (Red I/0), for communication.

The rules of structural congruence are the same as for the untyped ambient
calculus [13], except for the addition of type annotations, and new rules for objective
moves and group restriction. The rules (Struct GRes ...) describe the extrusion
behavior of the (¢vG) binders. Note that (vG) extrudes exactly as (vn) does, hence
it does not pose any dynamic restriction on the movement of ambients or messages.
The rule (Struct Go €) allows empty objective moves to be erased. The rules (Struct
Go € .), (Struct Go . €), and (Struct Go . Assoc) allow the capability expression
in an objective move to be re-arranged to allow application of the reduction rules
(Red Go In) and (Red Go Out). (These three rules of structural congruence were
missing in an earlier version of this system [10].)

Reduction:

n[in m.P | Q] | m[R] = m[n[P | Q] | R] (Red In)

m[nlout m.P | Q]| R] = n[P | Q] | m[R] (Red Out)

openn.P | n[@Q] = P | Q (Red Open)

(My, ..., My | (x1:Wh,...,2p:Wi).P — (Red I/0)
P{Cﬂl(—Ml, . ,:L”k(—Mk}

go(in m.N).n[P] | m[Q] = m[go N.n[P] | Q] (Red Go In)

m[go(out m.N).n[P] | Q] — go N.n[P] | m[Q] (Red Go Out)

P-Q=P|R—-Q|R (Red Par)
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P— Q= wnW)P — (vn:W)Q
P - Q= vG)P - (v&@)Q

P — @ = n[P] — n[Q)]
PP=PP—-Q,Q=Q =P —Q

Structural Congruence:

IPEP
Q=P=P=Q
P=Q,Q=R=P=R

P=Q = (vnW)P = (vn:W)Q
P=Q= wG)P = (vG)Q
P=Q=P|R=Q|R
P=Q='P=1Q
P =Q = M[P] = M[Q)]
P=@Q=MP=MQ
P=Q=>
(1‘1:W1,...,1‘k:Wk).PE (1‘1:W1,...,1‘k:Wk).Q
P=Q = go N.M[P] = go N.M[Q]

PIQ=Q|P
(P1Q)IR=P|(@Q|R)
IP=P|IP
ny #ng =

(vny:W1)(vna:Wa) P = (vna:Wa)(vny Wy ) P
n ¢ fm(P)= wn:W)P|Q)=P| (vnW)Q
n#m = (vn:W)m[P] = m[(vn:W)P]

(vGh)(VG2)P = (vG2)(vGh)P

G ¢ fg(W) = (vQ@)(vn:W)P = (vn:W)(vG)P
G ¢ fo(P)= (vG)(P|Q)=P|(vG)Q
(vG)m[P] = m[(vG)P)]

P|o=P

(vn:W)0 =0

vG)0=0

0=0

eP=P
(M.M").P = M.M'.P

go . N[P] = N[P)]

go (e.M).N[P] = go M.N[P]

go (M.€).N[P] = go M.N[P]

go ((M.M").M").N[P] = go (M.(M'.M")).N[P)]

Struct Refl)
Struct Symm)
Struct Trans)

Struct Res)
Struct GRes)
Struct Par)
Struct Repl)
Struct Amb)
Struct Action)
Struct Input)

AN N N N N N N N N

Struct Go)

(
(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)

(

Struct Res Res)

Struct Res Par)
Struct Res Amb)

Struct GRes GRes)
Struct GRes Res)
Struct GRes Par)
Struct GRes Amb)

(

(

(

(

(

(

(Struct Zero Par)
(Struct Zero Res)
(Struct Zero GRes)
(Struct Zero Repl)
(Struct €)

(Struct .)

(
(
(
(

Struct Go ¢)
Struct Go € .)
Struct Go . €)
Struct Go . Assoc)
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4.2. The Exchange Types
In the tables below, we introduce typing environments, E, the five basic judg-
ments, and the typing rules. By convention, any antecedent of the form E + 7,
..., EF J, means FE F ¢ when n = 0.

Environments, E, and the Domain, dom(E), of an Environment:
I 1

E:=0|E,G|E,nW environment

dom (@) = @
dom(E,G) = dom(E) U {G}
dom(E,n:W) = dom(FE) U {n}

Judgments:

IE Fo good environment I
ErW good message type W

E+T good exchange type T’

E-M:W good message M of message type W

Er-P:T good process P with exchange type T

Good Environments:
I 1

(Env @)  (Env n) (Env G)
EFW n¢dom(E) Etro G ¢ dom(E)

Fko EnWEko E,GFo

Good Types:

(Type Amb) (Type Cap)
Gedom(E) EFT EFT

EF G[T] E F CaplT]

(Type Shh)  (Type Prod)
Ebro EF-W, --- EFW,

E + Shh EFW; x---x W,

Good Messages:

(Exp n) (Exp .) (Exp ¢)

E' nW,E" o E+rM: CapT] EF M': CaplT) E + Cap[T]
E'nW,E'"+-n:W E+ M.M': Cap[T] Ete: Cap[T]
(Exp In) (Exp Out) (Exp Open)

Ebn:G[S] EFT Ebn:G[S] EFT EFn:G[T]

EFinn: Cap[T] Et outn: Cap[T] E+ openn : Cap[T]

12



Good Processes:
I 1

(Proc Action) (Proc Amb)
EFM:CaplT) EFP:T E+-M:G[S] E-P:S EFRT

EFMP:T EF M[P]:T
(Proc Res) (Proc GRes)
E,n:G[S|FP:T E,GFP:T G¢fg(T)
EF (vn:G[S)P:T E+(wG)P:T
(Proc Zero)  (Proc Par) (Proc Repl)
ERT E-P:T EFQ:T EFP:T
Er0:T E-P|Q:T EFIP:T

(Proc Input)
E,nl:Wl,...,nk:Wk |‘PCW1 X -+ X Wk

EF (ni:Wi,...,ngWg).P: Wy x -+ x Wy

(Proc Output)
EFM, :W, -+ EF M, :W,

El—(Ml,...,Mk):Wlx---ka

(Proc Go)
EFN:Cap[Shh) EFM:G[S] E-P:S EFT

EF goN.M[P]:T

4.3. Subject Reduction
We obtain a standard subject reduction result. A subtle point, though, is the
need to account for the appearance of new groups (Gi, ..., G, below) during
reduction. This is because reduction is defined up to structural congruence, and
structural congruence does not preserve the set of free groups of a process. The
culprit is the rule (vn:W)0 = 0, in which groups free in W are not free in 0.

THEOREM 4.1 (Subject Congruence). IfEF P:T and P = Q then there are
Gi, ..., Gy such that Gq,...,Gp, EFQ :T.

Proof. See Appendix A. H

THEOREM 4.2 (Subject Reduction). IfEF P :T and P — Q then there are
Gi, ..., Gy such that Gq,...,Gp, EFQ :T.

Proof. See Appendix A. H

Subject reduction specifies that, if P is well-typed, it will only reduce to well-

typed terms. This fact has some practical consequences:
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e P will never reduce to meaningless processes allowed by the syntax like (in n)[P];
e 1no process deriving from P will contain an ambient where a process attempts
an input or output operation which does not match the ambient type.

Subject reduction has also interesting and subtle connections with secrecy of
names.

Consider a well-typed process ((¢vG)P) | O, where O is a type-checked “oppo-
nent”, and a name n is declared inside P with a type G[T]. Although (vG) can
be extruded arbitrarily far, according to the extrusion rules, no process which de-
rives from the opponent O will ever be able to read n through an input (z:W).Q.
Any process (n) | (2:W).Q which derives from ((vG)P) | O is well-typed, hence
W = G[T], but the opponent was not, by assumption, in the initial scope of G,
and therefore cannot even mention the type G[T']. Therefore, we can guarantee
that names of group G can never be communicated to processes outside the initial
scope of G, simply because those processes cannot name G to receive the message.
(Elsewhere [11] we extend this argument to the case of untyped opponents.)

This situation is in sharp contrast with ordinary name restriction, where a name
that is initially held secret (e.g. a key) may accidentally be given away and misused
(e.g. to decrypt current or old messages). This is because scoping of names can be
extruded too far, inadvertently. Scoping of groups can be extruded as well, but still
offers protection against accidental or even malicious leakage.

Of course, we would have even stronger protection if we did not allow (vG)
binders to extrude at all. But this would be too rigid. Since (vG) binders can be
extruded, they do not impede the mobility of ambients that carry secrets. They
only prevent those ambients from giving the secrets away. Consider the following
example of traveling agents sharing secrets.

al[(vG)(vk' : G[Shh])(vk" : G[Shh])(
k'Tout a.in b.out b.in c] |
k' [out a.in c.in k')

J1of | el

Within an ambient a, two agents share a secret group G and two names k' and
k" belonging to that group. The two agents adopt the names k' and k" as their
respective names, knowing that those names cannot be leaked even by themselves.
This way, as they travel, nobody else can interfere with them. If somebody interferes
with them, or demonstrates knowledge of the names k' or k", the agents know that
the other party must be (a descendant of) the other agent. In this example, the
first agent travels to ambient b and then to ¢, and the second agent goes to ambient
¢ directly. The scope extrusion rules for groups and names allow this to happen.
Inside ¢, out of the intial scope of (vG), the second agent then interacts with the
first by entering it. It can do so because it still holds the shared secret &'.

The proof that group extrusion preserves types can be found in the appendix, but
we comment here on the crucial case: the preservation of typing by the extrusion
rule (Struct GRes Amb).

For a well-typed P, (vG)P is well-typed if and only if P does not communicate a
tuple which names G in its type (rule (Proc GRes)): (¢vG) must not “see” G-typed

names communicated at its own level. This intuition suggests that, referring to the
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following table, P’ should be typeable ((¢vG) cannot “see” the output (n)) while
P" should be not ((n) is at the same level as (vG)). However, the two processes
are equivalent, modulo extrusion of (vG) (rule (Struct GRes Amb)):

P = (vG)m[(vn:G[Shh]){n)]
P" = m|[(vG)(vn:G[Shh]){n)]

We go through the example step by step, to solve the apparent paradox. First
consider the term

(vG@)(vn:G[Shh])(n)

This term cannot be typed, because G attempts to escape the scope of (¥G) as
the type of the message n. An attempted typing derivation fails at the last step
below

G,n:G[Shh] b n : G[Shh]

G,n:G[Shh] b (n) : G[Shh]

G + (vn:G[Shh])(n) : G[Shh]

F (vG)(vn:G[Shh])(n) : G[Shh] (because G € fg(G[Shh]))

E SRR

Similarly, the term
(vm:W)m|[(vG)(vn:G[Shh])(n)]

cannot be typed, because it contains the previous untypeable term. But now con-
sider the following term, which is equivalent to the one above up to structural
congruence, by extrusion of (¢vG) across an ambient boundary:

(vm:W)(vG)m[(vn:G[Shh])(n)]

This term might appear typeable (contradicting the subject congruence property)
because the message (n):G[Shh] is confined to the ambient m, and m]...] can be
given an arbitrary type, e.g. Shh, which does not contain G. Therefore (vG) would
not “see” any occurrence of G escaping from its scope. However, consider the type
of m in this term. It must have the form H[T], where H is some group, and T is
the type of messages exchanged inside m. But that’s G[Shh]. So we would have

(vm:H[G[Shh]])(vG)m[(vn:G[Shh])(n)]

which is not typeable because the first occurrence of G is out of scope.

This example tells us why (vG) intrusion (floating inwards) into ambients is not
going to break good typing: (¢vG) cannot enter the scope of the (vm:W) restriction
which creates the name m of an ambient where messages with a G-named type are
exchanged. This prevents (¢G) from entering such ambients.

Indeed, the following variation (not equivalent to the previous one) is typeable,
but (¥G) cannot intrude any more:

(vG@) (l/m:H[G[Shh]l]gm[(un:G[Shh]) (n)]



5. OPENING CONTROL

Ambient opening is a prerequisite for any communication to happen between pro-
cesses which did not originate in the same ambient, as exemplified by any channel
encoding.

On the other hand, opening is one of the most delicate operations in the ambient
calculus, since the contents of the guest spill inside the host, with two different
classes of possible consequences:

e the content of the guest acquires the possibility of performing communications
inside the hosts, and of moving the host around;

e the host is now able to examine the content of the guest, mainly in terms
of receiving messages sent by the processes inside the guest, and of opening its
sub-ambients.

For these reasons, a type system for ambients should support a careful control of
the usage of the open capability.

5.1. The System

In this section, we enrich the ambient types, G[T], and the capability types,
Cap[T], of the previous type system to control usage of the open capability.

To control the opening of ambients, we formalize the constraint that the name
of any ambient opened by a process is in one of the groups Gi, ..., G, but in
no others. To do so, we add an attribute °{G1,...,G\} to ambient types, which
now take the form G[*{Gi,...,G},T]. A name of this type is in group G, and
names ambients within which processes may exchange messages of type T and may
only open ambients in the groups Gy, ..., Gi. We need to add the same attribute
to capability types, which now take the form Cap[*{G4,...,G},T]. Exercising a
capability of this type may unleash exchanges of type T and openings of ambients in
groups G, ..., Gg. The typing judgment for processes acquires the form E + P :
{Gy,...,Gr},T. The pair {Gy,...,Gi},T constrains both the opening effects
(what ambients the process opens) and the ezchange effects (what messages the
process exchanges). We call such a pair an effect, and introduce the metavariable
F to range over effects. It is also convenient to introduce metavariables G, H to
range over finite sets of groups. The following tables summarize these metavariable
conventions and our enhanced syntax for types:

Group Sets:
I 1
G,H ::={Gy,...,Gi} finite set of groups
L 1
Types:
I 1
W = message type

G[F] name in group G for ambients which contain pro-

cesses with F' effects

Cap[F) capability (unleashes F effects)
F := effect

°H,T may open H, may exchange T'
S, T == exchange type
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Shh no exchange
Wi x - x W tuple exchange

The definition of free groups is the same as in Section 4 except that we redefine
fg(W) by the equations fg(G[F]) = {G} U fg(F') and fg(Cap[F]) = fg(F), and we
define fg(F) = HU fg(T) where F = °H,T.

The following tables define the type system in detail. There are five basic judg-
ments as before. They have the same format except that the judgment E + F,
meaning that the effect F' is good given environment F, replaces the previous judg-
ment £ F T. We omit the three rules for deriving good environments; they are
exactly as in the previous section. There are two main differences between the
other rules below and the rules of the previous section. First, effects, F, replace
exchange types, T, throughout. Second, in the rule (Exp Open), the condition
G € H constrains the opening effect H of a capability open n to include the group
G, the group of the name n.

Judgments:
I 1
Ero good environment
ErW good message type W
E+F good effect F
E-M:W good message M of message type W
E+-P:F good process P with F' effects
L ]
Good Types:
I 1
(Type Amb) (Type Cap)
Gedom(E) E-F ERF

EFG[F) E Cap[F]
(Effect Shh) (Effect Prod)
HCdom(E) Eto HCdom(E) EFW, --- EFW,

E+°H, Shh EF°"H, Wy x---x Wy

Good Messages:

(Exp n) (Exp €)
E'nW,E"Fo EF Cap[F)

E'nW,E"Fn:W E+e: Cap[F]

(Exp .) (Exp In)
EFM: Cap[F)] EF M': Cap[F] Ebn:G[F] EF°H,T

E+ M.M': Cap[F) Etinn: Cap[*H,T]
17



(Exp Out) (Exp Open)
EFn:GF] EF°H,T Ern:G'H,T] GeH

Et outn: Cap["H,T)] Et openn: Cap[°H,T)]

Good Processes:
I 1

(Proc Action) (Proc Amb)
EFM: CaplF] EFP:F EF-M:G[F| E-FP:F EGRF
EFMP:F EF M[P]: F'
(Proc Res) (Proc GRes)
E,n:G[F|+ P : F' E,GFP:F G¢fo(F)
EF (wn:G[F)P: F' EF(WG)P:F
(Proc Zero)  (Proc Par) (Proc Repl)
ERF E+FP:F EFRQ:F EFP:F
ErFO:F EFP|Q:F EFIP:F

(Proc Input)
Eng:Wy,...,ongWi =P :°H,W; x--- x W

Eb (ny:Wy,...,ng:Wy,).P: °H, Wy x -+ x Wy

(Proc Output)
E-M, :W;, - EFM,:W, HC dom(E)

Ev (My,..., M) :°H, Wy x - x Wy

(Proc Go)
EFN: Capl®{},Shh] E+M:G[F] E-FP:F ERF'

Et+ go N.M[P]: F'

5.2. Subject Reduction
We obtain a subject reduction result.

THEOREM 5.1. If E+ P : F and P — @ then there are Gy, ..., Gy such that
Gi,...,.Gy, E-Q : F.

Proof. See the appendix. W

Here is a simple example of a typing derivable in this system:
G,n:G[°{G}, Shh] - n[0] | open n.0 : °{G}, Shh

This asserts that the whole process n[0] | open n.0 is well-typed and opens only
ambients in the group G.
18



On the other hand, one might expect the following variant to be derivable, but
it is not:

G,n:G[°{}, Shh] - n[0] | open n.0 : °{G}, Shh

This is because the typing rule (Exp Open) requires the effect unleashed by the
open n capability to be the same as the effect contained within the ambient n. But
the opening effect °{} specified by the type G[*{}, Shh] of n cannot be the same as
the effect unleashed by open n, because (Exp Open) also requires the latter to at
least include the group G of n.

This feature of (Exp Open) has a positive side-effect: the type G[°G,T] of an
ambient name n not only tells which opening effects may happen inside the ambient,
but also tells whether n may be opened from outside: it is openable only if G € G,
since this is the only case when open n.0 | n[P] may be well-typed. Hence, the
presence of G in the set G may either mean that n is meant to be an ambient
within which other ambients in group G may be opened, or that it is meant to be
an openable ambient.

More generally, because of the shape of the open rule, the opening effects in the
ambient type of n not only record the openings that may take place inside the
ambient, but also the opening effects of any ambient m which is going to open
n, and, recursively, of any ambient which is going to open m as well. A similar
phenomenon occurs with exchange types and with the subjective-crossing effects of
the next section.

While this turns out to be unproblematic for the examples we consider in this
paper, one may prefer to avoid this “inward propagation” of effects by replacing
(Exp Open) with the following rule:

EFn:GPH,T]

EF openn: Cap[’({G} UH),T]

With this rule, we could derive that the example process above, n[0] | open n.0,
has effect °{G}, Shh, with no need of attributing this effect to processes running
inside n itself, but unfortunately, subject reduction fails. To see this, consider the
process open n | n[open m], which can be assigned the effect °{G, H}, Shh:

G, H,m:G[*{}, Shh],n:H[°*{G}, Shh] F open n|n[open m] : °{G, H}, Shh
The process reduces in one step to open m, but we cannot derive the following:
G, H,m:G[°{}, Shh],n:H[?{G}, Shh] b open m : °{G, H}, Shh

To obtain a subject reduction property in the presence of the rule displayed above,
we should introduce a notion of subtyping, such that if G C H and a process has
type °G, T, then the process has type °“H,T too. This would complicate the type
system, as shown in [36]. Moreover, we would lose the indirect way of declaring
ambient openability, so we prefer to stick to the basic approach.
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6. CROSSING CONTROL

This section presents the third and final type system of the paper. We obtain it
by enriching the type system of Section 5 with attributes to control the mobility of
ambients.

6.1. The System

Movement operators enable an ambient n to cross the boundary of another am-
bient m either by entering it via an in m capability or by exiting it via an out m
capability. In the type system of this section, the type of n lists those groups that
may be crossed; the ambient n may only cross the boundary of another ambient
m if the group of m is included in this list. In our typed calculus, there are two
kinds of movement, subjective moves and objective moves, for reasons explained
in Section 6.2. Therefore, we separately list those groups that may be crossed by
objective moves and those groups that may be crossed by subjective moves.

We add new attributes to the syntax of ambient types, effects, and capability
types. An ambient type acquires the form G ~"G'[™G,°H,T]. An ambient of this
type is in group G, may cross ambients in groups G’ by objective moves, may
cross ambients in groups G by subjective moves, may open ambients in groups H,
and may contain exchanges of type T. An effect, F, of a process is now of the
form ™G,°H,T. It asserts that the process may exercise in and out capabilities
to accomplish subjective moves across ambients in groups G, that the process may
open ambients in groups H, and that the process may exchange messages of type T'.
Finally, a capability type retains the form Cap[F], but with the new interpretation
of F. Exercising a capability of this type may unleash F' effects.

Types:
I 1
W = message type
G "G[F) name in group G for ambients which cross G
objectively and contain processes with F effects
Cap[F) capability (unleashes F effects)
F = effect
~G,°H, T crosses G, opens H, exchanges T
S, T == exchange type
Shh no exchange
Wi x - x Wy tuple exchange

The definition of free groups is the same as in Section 4 except that we redefine
fg(W) by the equations fg(G ~G[F]) = {G} U G U fg(F) and fg(Cap[F]) = fg(F),
and we define fg(F) = GUHU fg(T) where F = ~G,°H, T

The format of the five judgments making up the system is the same as in Section 5.
We omit the three rules defining good environments; they are as in Section 4. There
are two main changes to the previous system to control mobility. First, (Exp In)
and (Exp Out) change to assign a type Cap[™G,’H,T] to capabilities in n and
out n only if G € G where G is the group of n. Second, (Proc Go) changes to
allow an objective move of an ambient of type G “G’'[F] by a capability of type
Cap["G,’H,T] only if G = G'.
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Good Types:

(Type Amb) (Type Cap)
G € dom(E) G Cdom(E) EvF EFF
E+ G GIF] EF CaplF]

(Effect Shh)
G Cdom(E) HC dom(E) Etro

E+"G,°H, Shh

(Effect Prod)
G Cdom(E) HCdom(E) EFW, --- EFW,;

EF"GCH, W x - x Wy

Good Messages:

(Exp n) (Exp €) (Exp .)

E' nW,E"Fo E+ CaplF) EFM: CaplF] EF M': Cap[F]
E'nW,E"Fn: W EFe: Cap[F) EFM.M'": Cap[F]
(Exp In)

EFn:GG'F] EF"GH,T GeG

Etinn: Cap["G,°H, T]

(Exp Out)
EFn:G G[F] EF"G/H,T GeG

Et outn: Cap["G,°H,T)

(Exp Open)
Ebn:G"G["GH,T] GeH

E + openn : Cap[™G,’H, T]

Good Processes:

(Proc Action) (Proc Amb)
E+M: CaplF)] EFP:F E+-M:G™G[F] E+-P:F ErF
E-MP:F Er+ M[P]: F'
(Proc Res) (Proc GRes)
E,n:G"G[F|F P: F' E,GFP:F G¢fg(F)
EF (vn:GG[F))P : F' E+ (wG)P: F
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(Proc Zero)  (Proc Par) (Proc Repl)
E+F E-P:F ErRQ:F ErP:F

ErFO:F EFP|Q:F ERIP:F

(Proc Input)
Eng:Wi,...,npWi EP:"G°H, Wy x --- x Wy,

EF(ni:Wy,...,ngWg).P: "G H, Wy X -+« x Wy,

(Proc Output)
E-M,:Wy -+ EFM,:W, GCdom(E) HCdom(E)

E|_<M1;---;Mk>3mG,OH,W1X---XWk

(Proc Go)
EFN:Cap["G°{},Shh] E+M:G~G[F] EFP:F EFF

Et go N.M[P]: F'

THEOREM 6.1. If E+ P : F and P — Q then there are Gy, ..., Gy such that
Gi,...,Ge, EFQ : F.

Proof. See the appendix. H

6.2. The Need for Objective Moves
We can now show how primitive typing rules for objective moves allow us to
assign better types in some crucial situations. Recall the untyped example from
Section 2. Suppose we have two groups Ch and Pk (for channels and packets). Let
W be any well-formed type (where Ch and Pk may appear), and set P to be the
example process:

P = alplout a.in b.{c)]] | blopen p.(x:W).x[]]

Let
E = Ch, Pk,
a:Ch ~{}[~{},°{}, Shh],
b:Ch ~{}[~{ Ch},{ Pk}, W],
c:W,
p:Pk ~{}H{ Ch},{ Pk}, W]

and we can derive the typings:

E F out a.in b.{c) : ~{Ch}°{Pk},W
E F open p.(x:W).z]] : ~{Ch},°{ Pk}, W
EF P:™{},%{}, Shh

From the typing a : Ch ~{}[{},°{}, Shh], we can tell that a is an immobile
ambient in which nothing is exchanged and that cannot be opened. From the typ-
ings p:Pk ~{}[{Ch},°{ Pk}, W], b:Ch ~{}[{Ch},°{ Pk}, W], we can tell that the
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ambients b and p cross only Ch ambients, open only Pk ambients, and contain W
exchanges; the typing of p also tells us it can be opened. This is not fully satisfac-
tory, since, if b were meant to be immobile, we would like to express this immobility
invariant in its type. However, since b opens a subjectively mobile ambient, then b
must be typed as if it were subjectively mobile itself. The problem is quite general,
as it applies to any immobile ambient wishing to open a subjectively mobile one.

This problem can be solved by replacing the subjective moves by objective moves,
since objective moves are less expressive than subjective moves, but they cannot be
inherited by opening another ambient. Let @) be the example process with objective
instead of subjective moves:

Q = algo(out a.in b).p[{c)]] | blopen p.(x:W).x[]]
Let

E = Ch, Pk,
a:Ch ~{}[{},{}, Shh],
b:Ch ~ [}, PRY, W],
c:W,
PPk ~{CRY[™{},{ P}, W]

and we can derive:

Et outa.inb: Cap[™{Ch},%{}, Shh]
E + go(out a.in b).p[{c)] : ~{},°{}, Shh
Et open p.(x:W).x[] : ~{},{Pk},W
EFQ:~{},%{}, Shh

The typings of a and ¢ are unchanged, but the new typings of p and b are
more informative. We can tell from the typing p:Pk ~{Ch}[™{},°{ Pk}, W] that
movement of p is due to objective rather than subjective moves. Moreover, as
desired, we can tell from the typing b:Ch ~{}[{},°{ Pk}, W] that the ambient b is
immobile.

This example suggests that in some situations objective moves lead to more
informative typings than subjective moves. Still, subjective moves are essential for
moving ambients containing running processes. An extended example in Section 8
illustrates the type system of this section; the treatment of thread mobility makes
essential use of subjective moves.

6.3. Relationship to Binary Annotations

The system of this section generalizes our previous system of binary locking
and mobility annotations [9]. In that system, the type of a name takes the form
AmbpY % [#:T], where the locking annotation, Y, is either locked, e, or unlocked, o,
and the mobility annotations, Z, and Z, are each either mobile, ~, or immobile,
V. An ambient of this type may be opened if and only if Y = o, it may be moved
objectively if and only if Z, = ~, and it may be moved subjectively if and only if
Zs =M.

That system can be understood as a degenerate form of the current one, where we

only use two groups, L (for Locked) and U (for Unlocked), so that any ambient name
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will belong to one of these two groups. Then we understand a type AmbY Z°[7=T)
as a type G "G,["G;,°H, T'] as follows:

e If the objective mobility annotation Z, is ~ (mobile), let G, = ~{L,U} (may
cross any ambient). If the objective mobility annotation Z, is ¥ (immobile), let
G, = *{} (may cross nothing).

e We translate the subjective mobility annotation Z; to the effect G in the same
way.

o If the locking annotation Y is e (locked), let G = L and H = {U} (locked, may
open any unlocked ambient). If the locking annotation Y is o (unlocked), let G = U
and H = {U} (unlocked, may be opened and may open any unlocked ambient).

It is then straightforward to show that F P : T holds in the system of [9] iff
L, U + translate(P) : translate(7T) holds in the system of this section, where
translate translates T and the types in P as specified above.

7. EFFECT SAFETY

Like most other type systems for concurrent calculi, ours does not guarantee
liveness properties, for example, the absence of deadlocks. Still, we may regard the
effect assigned to a process as a safety property: an upper bound on the capabilities
that may be exercised by the process, and hence on its behavior. We formalize this
idea in the setting of our third type system, and explain some consequences.

We say that a process P exercises a capability M, one of inn or outn or openn,
just if P | M may be derived by the following rules:

Exercising a Capability: P | M where M € {inn, out n, open n}

(Ex Cap) (Ex Par 1) (Ex Par 2) (Ex Res) (Ex ResG)
P=M.Q PlM QIM PIM n¢f(M) Pl M
Pl M P|QlM PlQlM (vn:W)P | M vG)P \ M

The following asserts that the group of the name contained in any capability
exercised by a well-typed process is bounded by the effect assigned to the process.
We give the proof in Appendix B.

ProprosITION 7.1 (Effect Safety).  Suppose that E+ P : ~G,°’H,T.

(DWIf Pl inn then EF n:G"G'[F] for some type G ~G'[F] with G € G.
(2)If P | outn then E+ n: G ~G'[F] for some type G “G'[F] with G € G.
(3)If P | openn then E +n:G"G'[F] for some type G ~G'[F] with G € H.

To explain the intuitive significance of this proposition, consider a name m :
H"H'["G,°’H,T] and a well-typed ambient m[P]. Suppose that m[P] is a sub-
process of some well-typed process ). We can make two connections between the
capabilities exhibited by the process P and the reductions immediately derivable
from the whole process @. First, within @, the ambient m[P] can immediately cross

(via subjective moves) the boundary of another ambient named n of some group
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G only if either P | inn or P | out n. The typing rule for ambients implies that
P must have effect ~G,°H,T. Part (1) or (2) of the proposition implies that the
set G contains G. Second, suppose that P includes a top-level ambient named n.
The boundary of n can be immediately dissolved only if P | open n. Since P has
effect “G,°H, T, part (3) of the proposition implies that the set H contains G. So
the set G includes the groups of all ambients that can be immediately crossed by
m[P], and the set H includes the groups of all ambients that can be immediately
opened within m[P].

A corollary of Theorem 6.1 is that these bounds on ambient behavior apply not
just to ambients contained within (), but to ambients contained in any process
reachable by a series of reductions from Q.

For the sake of simplicity and brevity, our discussion in this section is fairly
informal. In their recent work on a derivative of the ambient calculus, Bugliesi and
Castagna [8] state a formal safety property induced by a type system for ambients.
To do so, they introduce a precise notion of process residuals.

8. ENCODING A DISTRIBUTED LANGUAGE

Several typed and untyped distributed languages have been proposed [35, 22].
They come with notions of locations, agents, threads, mobility, and so on. Typed
translations of procedural and object-oriented programming languages into formal
type systems have been studied for several reasons including type soundness [2] and
compilation optimisations [28]. In the same way, we aim to reduce the constructs
of agent languages to appropriate type systems that capture their fundamental
characteristics.

In this section, we consider a particular example, a fragment of a typed, dis-
tributed language in which mobile threads can migrate between immobile network
nodes. We obtain a semantics for this form of thread mobility via a translation into
the ambient calculus. In the translation, ambients model both threads and nodes.
The encoding can be typed in all three of the systems presented in this paper; for
the sake of brevity we describe the encoding only for the full system of Section 6.
The encoding illustrates how groups can be used to partition the set of ambient
names according to their intended usage, and how opening and crossing control al-
lows the programmer to state interesting invariants. In particular, the typing of the
translation guarantees that an ambient modeling a node moves neither subjectively
nor objectively. On the other hand, an ambient modeling a thread is free to move
subjectively, but is guaranteed not to move objectively.

8.1. The Distributed Language

The computational model is that there is an unstructured collection of named
network nodes, each of which hosts a collection of named communication channels
and anonymous threads. This is similar to the computational models underlying
various distributed variants of the m-calculus, such as those proposed by Amadio
and Prasad [4], Riely and Hennessy [32], and Sewell [33]. In an earlier paper [12],
we showed how to mimic Telescript’s computational model by translation into the
ambient calculus. In the language fragment we describe here, communication is
based on named communication channels (as in the 7-calculus) rather than by direct

agent-to-agent communication (as in our stripped down version of Telescript). As in
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our previous paper, we focus on language constructs for mobility, synchronization,
and communication. We omit standard constructs for data processing and control
flow. They could easily be added.

To introduce the syntax of our language fragment, here is a simple example:

node a [channel a. | thread[az(b,b.)]] | node b[channel b.] |
node c [thread[go a.a.(z:Node,y: Ch[Node)).go x.7{a)]

This program describes a network consisting of three network nodes, named a,
b, and ¢. Node a hosts a channel a,. and a thread running the code a¢(b, b.), which
simply sends the pair (b,b.) on the channel a.. Node b hosts a channel b.. Finally,
node c¢ hosts a single thread, running the code:

g0 a.a.(z:Node,y: Ch[Node]).go z.7{a)

The effect of this is to move the thread from node ¢ to node a. There it awaits a
message sent on the communication channel a.. We may assume that it receives the
message (b, b.) being sent by the thread already at a. (If there were another thread
at node a sending another message, the receiver thread would end up receiving one
or other of the messages.) The thread then migrates to node b, where it transmits
a message a on the channel b..

Messages on communication channels are assigned types, ranged over by Ty. The
type Node is the type of names of network nodes. The type Ch[Ty, ..., Ty,] is the
type of a polyadic communication channel. The messages communicated on such
a channel are k-tuples whose components have types Ty, ..., Ty,. In the setting
of the example above, channel a. has type Ch[Node, Ch[Node]], and channel b, has
type Ch[Node].

Next, we describe the formal grammar of our language fragment. A network,
Net, is a collection of nodes, built up using composition Net | Net and restric-
tions (vn:Ty)Net. A crowd, Cro, is the group of threads and channels hosted by
a node. Like networks, crowds are built up using composition Cro | Cro and re-
striction (vn:Ty)Cro. A thread, Th, is a mobile thread of control. As well as the
constructs illustrated above, a thread may include the contructs fork(Cro).Th and
spawn n [Cro].Th. The first forks a new crowd Cro inside the current node, and
continues with Th. The second spawns a new node node n [Cro] outside the current
node, at the network level, and continues with Th.

A Fragment of a Typed, Distributed Programming Language:
I

Ty := type
Node name of a node
Ch[Ty+,- .., Tys] name of a channel
Net := network
(vn:Ty)Net restriction
Net | Net network composition
node n [Cro] node
Cro == crowd of channels and threads
(vn:Ty)Cro restriction
Cro | Cro crowd composition
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channel ¢ channel

thread[Th) thread

Th == thread
gon.Th migration
e{ni,...,ng) output to a channel
c(x1:Tyy, ...,z Tyy,). Th input from a channel
fork(Cro).Th fork a crowd
spawn n [Cro].Th spawn a new node

In the phrases (vn:Ty)Net and (vn:Ty)Cro, the name n is bound; its scope is
Net and Cro, respectively. In the phrase ¢(z1:Tyq, ..., zk: Ty)- Th, the names 1,
..., ) are bound; their scope is the phrase Th.

The type system of our language controls the typing of messages on communi-
cation channels, much as in previous schemes for the m-calculus [27]. We formalize
the type system as five judgments defined by the following rules.

Judgments:

IE Fo good environment I
Etbn:Ty name n has type Ty

E I Net good network

E+ Cro good crowd

Ev-Th good thread

Good Environment:
I 1

Eto n¢dom(E)

ko EnTyko

Name has Type:

E,n:Ty,E' o

En:Ty,E't-n: Ty
L

Good Network:

E,n:Ty - Net EF Net EF Net'  EFn:Node E Cro

E F (vn:Ty)Net E + Net | Net' E F node n [Cro]

Good Crowd:

I
E,n:Ty - Cro EFCro EF Cro

Et+ (vn:Ty)Cro EF+ Cro| Cro’
EFc: Ch[Ty,,..., Ty;] E+- Th
E F channel ¢ E t thread[Th]
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Good Thread:

I
EFn:Node EF Th

Et gon.Th

Etc:Ch[Ty,,..., Ty,] Ermn;: Ty, Viel.k

EFény,...,ng)

Etc:Ch[Ty,,...,Ty,] E,z1:Tyq,...,xx: Ty, = Th

Etc(z1:Tyy,...,xx:Ty,). Th

Er-Cro EFRTh Etrn:Node EF Cro EF Th

E F fork(Cro).Th E  spawn n [Cro].Th

8.2. Typed Translation to the Ambient Calculus

In this section, we translate our distributed language to the typed ambient cal-
culus of Section 6.

The basic idea of the translation is that ambients model nodes, channels, and
threads. For each channel, there is a name for a buffer ambient, of group Ch®, and
there is a second name, of group ChP, for packets exchanged within the channel
buffer. Similarly, for each node, there is a name, of group Node®, for the node itself,
and a second name, of group Node?, for short-lived ambients that help fork crowds
within the node, or to spawn other nodes. Finally, there is a group Thr to classify
the names of ambients that model threads. The following table summarizes these
five groups:

Global Groups Used in the Translation:

I

Node® ambients that model nodes

Node? ambients to help fork crowds or spawn nodes
Ch? ambients that model channel buffers

ChP ambients that model packets on a channel
Thr ambients that model threads

We begin the translation by giving types in the ambient calculus corresponding
to types in the distributed language. Each type Ty gets translated to a pair [Ty]°,
[Ty]? of ambient calculus types. Throughout this section, we omit the curly braces
when writing singleton group sets; for example, we write ™ Node® as a shorthand
for ~{Node"}.

First, if Ty is a node type, [Ty]® is the type of an ambient (of group Node”)
modeling anode, and [ Ty[]? is the type of helper ambients (of group Node?). Second,
if Ty is a channel type, [Ty]® is the type of an ambient (of group Ch”) modeling a
channel buffer, and [Ty]? is the type of a packet ambient (of group Ch?).
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Translations [Ty]?, [Ty]? of a Type Ty:

[Node]® = Node® ~Node’[™{},°Node® , Shh]
[Node]? = Node? ™Thr[~{},°Node?, Shh]
[Ch[Tyy,.... Ty, ]l" =
Ch® ({1, °ChP, [Ty 1" x [Ty, 17 x - x [Ty, x [Ty, ]7]
[Ch[Tyy,.... Ty,]I” =
Ch? ~{ Thr, Ch*}[™{},°ChP, [Ty, 1" x [Tys]” x -+~ x [Ty,]" x [Ty, ")

These typings say a lot about the rest of the translation, because of the presence
of five different groups. Nodes and helpers are silent ambients, whereas tuples of
ambient names are exchanged within both channel buffers and packets. None of
these ambients is subjectively mobile. On the other hand, nodes may objectively
cross nodes, helpers may objectively cross threads, buffers are objectively immobile,
and packets objectively cross both threads and buffers. Finally, both nodes and
helpers may open only helpers, and both buffers and packets may open only packets.
(Actually, as discussed in Section 5.2, the °ChP annotation inside the type of a
packet ¢? of group Ch? means that ¢? can be opened, and similarly for helpers.)

Next, we translate networks to typed processes. A restriction of a single name is
mapped to restrictions of a couple of names: either names for a node and helpers, if
the name is a node, or names for a buffer and packets, if the name is a channel. A
composition is simply translated to a composition. A network node n is translated
to an ambient named n’ representing the node, containing a replicated open n?,
where n? is the name of helper ambients for that node.

Translation [Net] of a Network Net:
I

[(vn: Ty)Net] = (vnl:[ Ty]?) (vn?:[ Ty]?)[ Net]
[Net | Net] = [Net] | [Net]

I[[node n [Cro]] = n®[lopen n? | [Cro],] |

The translation [Cro], of a crowd is indexed by the name n of the node in which
the crowd is located. Restrictions and compositions in crowds are translated like
their counterparts at the network level. A channel ¢ is represented by a buffer
ambient ¢’ of group Ch®. Tt is initially empty but for a replicated open c?, where ¢
is the name, of group Ch?, of packets on the channel. The replication allows inputs
and outputs on the channel to meet and exchange messages.

An ambient of the following type models each thread:

Thr ~{}["~Node® °Sync, Shh]

From the type, we know that a thread ambient is silent, that it crosses node bound-
aries by subjective moves but crosses nothing by objective moves, and that it may
only open ambients in the Sync group. Such ambients help synchronize paral-
lel processes in thread constructs such as receiving on a channel. A fresh group
named Sync is created by a (vSync) in the translation of each thread. The exis-

tence of a separate lexical scope for Sync in each thread implies there can be no
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accidental transmission between threads of the names of private synchronization
ambients.

Translation [Cro], of a Crowd Cro Located at Node n:
I

[(vm:Ty) Cro], = (vmb:[ Ty]?) (vm?:[ Ty]?)[Cro],

[Cro | Cro], = [Cro], | [Cro]n

[channel c],, = c*[lopen c?]

[thread Th], = (vSync)(vt: Thr ~{}[~Node® °Sync, Shh])t[[ Th]’]
for t ¢ {n} U {mP?,m® | m free in Th}

The translation [ Th]!, of a thread is indexed by the name ¢ of the thread and by
the name n of the node in which the thread is enclosed. Each thread ¢ is given a
different name (this constraint can be formalized in many different ways).

A migration go m.Th is translated to subjective moves taking the thread ¢ out
of the current node n and into the target node m.

An output ¢(n1,...,nk) is translated to a packet ambient ¢? that travels to the
channel buffer ¢?, where it is opened, and outputs a tuple of names.

An input e(x1:Tyy,. ..,z Ty). Th is translated to a packet ambient ¢ that
travels to the channel buffer ¢, where it is opened, and inputs a tuple of names;
the tuple is returned to the host thread ¢ by way of a synchronization ambient s,
that exits the buffer and then returns to the thread.

A fork fork(Cro).Th is translated to a helper ambient nP that exits the thread
t and gets opened within the enclosing node n. This unleashes the crowd Cro and
allows a synchronization ambient s to return to the thread ¢, where it triggers the
continuation Th.

A spawn spawn m [Cro].Th is translated to a helper ambient n” that exits the
thread ¢ and gets opened within the enclosing node n®. This unleashes an objec-
tive move go(out nb).mb[lopen mP | [Cro].,]] that travels out of the node to the
top, network level, where it starts the fresh node m®[lopen m? | [Cro],,]]. Concur-
rently, a synchronization ambient s returns to the thread ¢, where it triggers the
continuation Th.

Translation [Th]!, of a Thread Th Named ¢t Located at Node n:

[go m.Th]:, = out nb.in m®.[Th]’,
[E(n1,...,ne)]h = go(out tin c¥).c?[(nh,n}, ... ,nk, nh)]
[e(x1:Ty,, ..., xx:Ty,). TR, =
(vs:Syne ~{ Thr, Ch’}[~Node® °Sync, Shh])
(go(out t.in cb).
(25 [Ty, 1%, 2 [Ty, 1P, - . ., 28:[ Ty, 0P, 2%:[ Ty, IP).
go(out c’.in t).s[open s.[Th]]] |
open s.s[])
for s ¢ {t,c’ P} U fn([Th]})
[fork(Cro). Th]t, =
(vs:Sync ~Thr[~Node" °Sync, Shh])
(go out t.nP[go in t.s[] | [Cro],] |open s.[Th]E)
for s ¢ {t,n?} U[Cro], U[Th]},
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[spawn m [Cro]. Th]:, =
(vs:Syne ~Thr[~Node® °Sync, Shh])
(go out t.nP[go int.s[] | go out n®.m®[lopen mP | [Cro],]] |
open s.[ Th]t)
for s ¢ {t,n®,n?,m® mP} U fn([Cro],m) U fn([TR]%)

Finally, we translate typing environments as follows.

Translation [E] of an Environment E:
I 1

[2] = Node®, Node?, Ch®, Ch®, Thr
[B,e:Ty] = [E], [ Ty]", > [Tyl

Our translation preserves typing judgments:
PROPOSITION 8.1.

()If E+ Net then [E] & [Net] : ~{},°{}, Shh.
(2)If E+ Cro and E + n: Node then [E] F [Cro], : ~{},°{}, Shh.
(B)If E+ Th, E+n: Node, t ¢ dom(E) then

[E], Sync, t: Thr ~{}[~Node" °Sync, Shh] F [ Th]L, : ~Node® °Sync, Shh. .

Proof. By inductions on derivations. M

Apart from having more refined types, this translation is the same as a translation
to the type system with binary annotations of [9]. (We discussed the same binary
system in Section 6.3.) The translation shows that ambients can model a variety
of concepts arising in mobile computation: nodes, threads, communication packets
and buffers. Groups admit more precise typings for this translation than were
possible in the system with binary annotations. For example, here we can tell that
a thread ambient subjectively crosses only node ambients, but never crosses helpers,
buffers, or packets, and that it is objectively immobile; in the binary system, all we
can say is that a thread ambient was subjectively mobile and objectively immobile.

9. CONCLUSIONS

Our contribution is a type system for tracking the behavior of mobile compu-
tations. The system tracks the communication, mobility, and opening behavior of
ambients, which are classified by groups. A group represents a collection of ambient
names; ambient names belong to groups in the same sense that values belong to
types. We studied the properties of a new process operator (¢vG)P that lexically
scopes groups. Using groups, our type system can impose behavioral constraints
like “this ambient crosses only ambients in one set of groups, and only dissolves
ambients in another set of groups”. Although we have not implemented our type
system, we assessed its expressiveness by encoding a distributed language featuring
mobility of threads between network nodes. The encoding shows the usefulness of

the type system in expressing properties of simple protocols for thread mobility.
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Our ambient calculus is related to earlier distributed variants of the m-calculus,
some of which have been equipped with type systems. The type system of Ama-
dio [3] prevents a channel from being defined at more than one location. Sewell’s
system [33] tracks whether communications are local or non-local, so as to allow
efficient implementation of local communication. In Riely and Hennessy’s calcu-
lus [32], processes need appropriate permissions to perform actions such as migra-
tion; a well-typed process is guaranteed to possess the appropriate permission for
any action it attempts. Other work on typing for mobile agents includes a type
system by De Nicola, Ferrari, and Pugliese [16] that tracks the access rights an
agent enjoys at different localities; type-checking ensures that an agent complies
with its access rights.

Our groups are similar to the sorts used as static classifications of names in the
m-calculus [27]. Our basic system of Section 4 is comparable to Milner’s sort system
for 7, except that sorts in the m-calculus are mutually recursive; we would have to
add a recursion operator to achieve a similar effect. Another difference is that an
operator for sort creation does not seem to have been considered in the w-calculus
literature. Our operator for group creation can guarantee secrecy properties, as we
show in the setting of a typed w-calculus equipped with groups [11]. Our systems of
Sections 5 and 6 depend on groups to constrain the opening and crossing behavior
of processes. We are not aware of any uses of Milner’s sorts to control process
behavior beyond controlling the sorts of communicated names.

Apart from Milner’s sorts, other static classifications of names occur in derivatives
of the 7-calculus. We mention two examples. In the type system of Abadi [1] for the
spi calculus, names are classified by three static security levels—Public, Secret, and
Any—to prevent insecure information flows. In the flow analysis of Bodei, Degano,
Nielson, and Nielson [6] for the m-calculus, names are classified by static channels
and binders, again with the purpose of establishing security properties. Although
there is a similarity between these notions and groups, and indeed to sorts, nothing
akin to our (vG) operator appears to have been studied.

There is a connection between groups and the region variables in the work of Tofte
and Talpin [34] on region-based implementation of the A-calculus. The store is split
into a set of stack-allocated regions, and the type of each stored value is labelled
with the region in which the value is stored. The scoping construct letregion p in e
allocates a fresh region, binds it to the region variable p, evaluates e, and on com-
pletion, deallocates the region bound to p. The constructs letregion p in e and
(vG) P are similar in that they confer static scopes on the region variable p and the
group G, respectively. One difference is that in our operational semantics (vG)P is
simply a scoping construct; it allocates no storage. Another is that scope extrusion
laws do not seem to have been explicitly investigated for letregion. Still, we can
interpret letregion in terms of (v(G), as is reported elsewhere [15].

As noted in the introduction, the type systems presented in this article were
first reported in conference papers on exchange types [12], mobility types [9], and
ambient groups [10]. We conclude the article with a survey of other static analyses
for the ambient calculus.

e Several papers examine the problem of computing safe approximations to the

hierarchical structure of ambients, that is, of determining an approximation to the
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sets of ambients that may occur as children of other ambients. Nielson, Nielson,
Hansen, and Jensen [29] present the first control flow analysis to address this prob-
lem. They present an algorithm for validating firewalls programmed in the ambient
calculus. In subsequent work, Nielson and Nielson [31] and Nielson, Nielson, and
Sagiv [30] present more accurate but also more expensive algorithms based, respec-
tively, on regular tree grammars and on an interpretation in Kleene’s three-valued
logic.

e Abstract interpretation is a methodology for deriving program analyses system-
atically from the semantics of a programming language. Hansen, Jensen, Nielson,
and Nielson [20] describe a constraint-based framework for abstract interpretation
of mobile ambients; instances of the framework include an analysis counting oc-
currences of ambients, and also the original control flow analysis for the ambient
calculus [29]. Levi and Maffeis [24] and Feret [19] present abstract interpretations
based on alternative semantics of the ambient calculus.

e Some analyses have been developed in the setting of Levi and Sangiorgi’s cal-
culus of safe ambients [25], a generalization of the original ambient calculus that
gives processes greater control over synchronization, and hence avoids certain kinds
of nondeterminism. In their paper, Levi and Sangiorgi propose a type system to
guarantee immobility and single-threadedness.

e Security properties are considered by several authors. Bugliesi and Castagna [8]
describe a type system for safe ambients that checks security properties, including
security in a distributed setting. They rely on a notion of ambient domain that is
similar to the notion of an ambient group, but have no counterpart to the group
creation operator. Dezani-Ciancaglini and Salvo [18] present a type system for safe
ambients where each ambient has a security level, akin to a group. Unlike our
system, security levels are partially ordered, allowing the system to express trust
relationships. Degano, Levi, and Bodei [17, 23] refine Nielson and Nielson’s original
flow analysis [29] for the calculus of safe ambients. The analysis allows the proof
of simple secrecy properties; they formally distinguish between trustworthy and
untrustworthy ambients, and show that no trustworthy ambient may be opened
immediately inside an untrustworthy ambient.

e Finally, Amtoft, Kfoury, and Pericas-Geertsen [5] propose a polymorphic am-
bient calculus, a conservative extension of our system of exchange types [12].
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APPENDIX A

Proof of Subject Reduction
In this appendix we prove Theorem 6.1, the subject reduction property for the
type system of Section 6, the richest of the three type systems presented in this
paper. Proofs of subject reduction for the other two systems can be obtained as

simplifications of this appendix.
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We begin by stating some basic properties of the type system. The lemmas we
state without proof can be proved by straightforward inductions on derivations.
We use the notation E F J to stand for an instance of any of the five different
judgments of the system. We write fn(J) and fg(J) to stand for the names and
groups, respectively, that occur free in 7. Moreover, if G = {G1,...,G}} we write
the notation G, E + J as a shorthand for G4,...,Gi, EF J.

LEMMA A.1. IfE,E'F J then E F o and dom(E) N dom(E') = @.

Proof. The proof is by induction on the depth of the derivation of E,E' - 7. R
LEvMMA A2, If E',n:W,E" + J then E'+W.

Proof. By Lemma A.1 we have E',n:-W,E" v J = E',n:W F ¢, which must
have been derived from E' FW. R

We have two weakening lemmas:

LEmMMA A3. IfE' E"F T andn ¢ dom(E',E") and E' - W then E',n:W,E" -
J.

LEMMA A4. IfE' E"F T and G ¢ dom(E',E") then E',G,E" + J.

LemMMA A5, IfEFM : W then EFW.

Proof. By induction on the derivation of £ = M : W, using Lemma A.2,

Lemma A.3, and Lemma A.4 in case (Exp n). ®
We state a useful corollary:

LEMMA A6. IfE'.E"+ J and E',G,E"F J' then E',G,E" - J.

Proof. By Lemma A.1, E',G,E" F J' implies that G N dom(E', E") = &. By
Lemma A.4, this implies that £/, G,E" +~ 7. =&

LEMMA A7, IfEbn:W and EFn : W' then W = W',

Proof. Use Lemma A.1. H
LEmMMA A.8. If E+ T then fn(J) C dom(E) and fg(J) C dom(E).

Proof. By induction on the derivation of E+ 7. ®

LEMMA A.9. If E + o and fg(W) C dom(E) then E - W; if E F o and
fg(F) C dom(E) then E+ F.
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Proof. By mutual induction on the structure of W and . ®

Hereafter, let fg(E") be the set of all groups that occur either in the domain of
E" or in types occurring in E".

LEMMA A.10. IfEF M : G"G[F] than M = n for some n.

Proof. (Exp n) is the only rule that can derive E+ M : GG[F]. R

LEMMA A.11. IfE'" G, E"+Fn:W and G € fg(W) then G € fg(E").

Proof. 1If n were defined in E’, then, by Lemmas A.2 and A.8, we would have G €
dom(E"), which contradicts Lemma A.1. Hence n is defined in E”, and the thesis

follows by Lemma A.7. ®

We have two strengthening lemmas.

LEMMA A.12. IfE' n:W,E"+ T andn ¢ fn(J) then E',E" + J.

Levmva A.13. [fE'.G,E"+ T and G ¢ fg(J) U fg(E") then E',E" + 7.

Proof. By induction on the derivation of E',G, E" + 7. Needs Lemma A.11 in
cases (Exp In), (Exp Out), (Exp Open), and (Proc Amb). Lemma A.10 is also used

for (Proc Amb) and (Proc Go). ®

LEMMA A.14. IfEFP:F then E+ F.

Proof. By induction on the derivation of E + P : F. Needs Lemmas A.12 and
A.13 in cases (Proc Res), (Proc GRes), and (Proc Input) and Lemma A.5 in case

(Proc Output). M

Next, we have four exchange lemmas. They are all proved by induction on the
derivation, exploiting the weakening and strengthening lemmas in the crucial cases
(Env n) and (Env G).

LevMMma A.15. If EB',n:W' m:W" E"+ J then E', mW" nW' E"F 7.

LevmMma A.16. If B',n:W' ,G,E" + J then E',G,n-W' , E" + 7.

LEMMA A.17. IfE',G,n:W',E"F J and G ¢ fg(W') then E' ,n:W' ,G,E" + J.

LEMMA A.18. IfE',G,H,E" + J then E',H,G,E" - J.
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We have a substitution lemma:

LEMMA A.19. IfE',n:W,E"+ J and E' - M : W then E',E" - J{n<M}.

Proof. By induction on the derivation of E',n:W,E"” + J. Most cases are
straightforward, with the exception of (Exp n), (Exp In), (Exp Out), and (Exp
Open), when the name that appears in the rule is exactly n. For the case (Exp n), we
get the desired judgment E', E" - M : W from E' F M : W by the weakening lem-
mas, Lemmas A.3 and A.4. For the cases (Exp In), (Exp Out), and (Exp Open), we
use Lemma A.10 to show that M is actually a name m. By the weakening lemmas,
we get E',E" - m : W, and then may draw the desired conclusion with (Exp In),

(Exp Out), or (Exp Open), respectively. H

Next, we prove that structural congruence preserves typing judgments, possibly
with the inclusion of fresh group names.

PROPOSITION A.1. IfEF P : F and P = @ then there are groups Gy, ..., G
such that G1,..., Gy, EFQ : F.

Proof. The proposition follows by showing that P = @ implies:

(1) If EF P : F then 3G such that G,E+ Q : F.
(2) If EF @ : F then 3G such that G,E+ P : F.

We proceed by induction on the derivation of P = Q.

(Struct Refl) Trivial.

(Struct Symm) Then @ = P. For (1), assume E + P : F. By induction hypoth-
esis (2), @ = P implies that 3G such that G, E + @ : F. Part (2) is symmetric.

(Struct Trans) Then P = R, R = () for some R. For (1), assume E + P : F. By
induction hypothesis (1), 3G. G,E F R : F. Again by induction hypothesis (1),
JH. H,G,E+ Q : F. Part (2) is symmetric.

(Struct Res) Then P = (vn:W)P' and Q = (vn:W)Q', with P’ = @Q'. For
(1), assume E + P : F. This must have been derived from (Proc Res), with
En:G"G'[F'| + P' : F, where W = G"G'[F']. By induction hypothesis (1),
3G. G,E,n:G"G'[F'|+ Q' : F. By (Proc Res), G,E F (vn:W)Q' : F. Part (2) is
symmetric.

(Struct GRes) Then P = (vG)P' and Q = (vG)Q’', with P' = Q'. For (1),
assume E + P : F. This must have been derived from (Proc GRes), with E,G
P’ : F where G ¢ fg(F). By induction hypothesis (1), 3G. G,E,G+ Q' : F. By
(Proc GRes), G, E + (vG)Q' : F. Part (2) is symmetric.

(Struct Par) Then P = P' | R, Q@ = Q' | R, and P’ = Q'. For (1), assume
E+ P'| R: F. This must have been derived from (Proc Par), with E - P’ : F,
E + R : F. By induction hypothesis (1), 3G. G,E F Q' : F. By Lemma A.6,
G,EF R: F. By (Proc Par), G,E}+ Q' | R: F. Part (2) is symmetric.

(Struct Repl) Then P =!P', Q =!Q', and P' = Q'. For (1), assume E+ P : F.
This must have been derived from (Proc Repl), with E - P’ : F. By induction
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hypothesis (1), 3G. G,E + Q' : F. By (Proc Repl), G,E F Q' : F. Part (2) is
symmetric.

(Struct Amb) Then P = M[P'], @ = M[Q'], and P’ = @Q'. For (1), assume
E + P : F. This must have been derived from (Proc Amb), with E + F, E F
M :G"G'[F'l and EF P': F', for some G, F',G'. By induction hypothesis (1),
3G. G,E+ Q' : F'. By Lemma A6, G,E+ F and G,E - M : G"G'[F']. By
(Proc Amb), G, E F M[Q'] : F. Part (2) is symmetric.

(Struct Action) Then P = M.P', Q = M.Q', and P’ = Q'. For (1), assume
E |+ P : F. This must have been derived from (Proc Action), with E - M : Cap[F]
and E + P’ : F. By induction hypothesis (1), 3G. G,E + @' : F. By Lemma A.6,
G,Et+ M : Cap[F]. By (Proc Action), G,E+ M.Q': F.

Part (2) is symmetric.

(Struct Input) Then P = (ny:Wh,...,ng:Wg).P', Q = (ni:Wh,...,ng:W).Q',
and P' = @Q'. For (1), assume E + P : F. This must have been derived from (Proc
Input), with E,ni:Wi,...,ng:Wy b P' : F, where F = ~G'°H,W; X -+ X W.
By induction hypothesis, 3G. G, E,n1:Wi,...,ng:Wi = Q' : F. By (Proc Input),
G,EF (ny:Wy,...,ne:W;).Q" : F. Part (2) is symmetric.

(Struct Go) Then P = go N.M[P'], Q@ = go N.M[Q'], and P’ = @'. For (1),
assume E F P : F. This must have been derived from (Proc Go), with E - F,
EFN:Cap[F",Er-M:G"G'[F'land E+ P’ : F', with F"' = "~G',°{}, Shh, for
some G, G/, F'. By induction hypothesis (1), 3G. G, E + Q' : F'. By Lemma A.6,
G,E+ F and G,E+ N : Cap[F"] and G,E + M : G™G'[F']. By (Proc Go),
G,Et go NMI[Q'] : F. Part (2) is symmetric.

(Struct Par Comm) Then P = P' | P" and Q = P" | P'.

For (1), assume E + P' | P” : F. This must have been derived from E + P' : F
and E+ P":F. By (Proc Par), E- P" | P': F. Hence, E+Q : F.

Part (2) is symmetric.
(Struct Par Assoc) Then P = (P' | P")| P" and @ = P' | (P" | P"").

For (1), assume E + (P’ | P") | P" : F. This must have been derived from (Proc
Par) twice, with EF P': F, E+- P" : F,and E + P" : F. By (Proc Par) twice,
ERP |(P"|P"):F. Hence EFQ : F.

Part (2) is symmetric.
(Struct Repl Par) Then P =!P' and Q = P’ | |P".

For (1), assume E P’ : F. This must have been derived from (Proc Repl), with
Etr P':F. By (Proc Par), E- P'|!P': F. Hence, EF Q: F.

For (2), assume E - P’ | |P' : F. This must have been derived from (Proc Par),
with E+ P': Fand EF!P' : F. Hence, E- P : F.

(Struct Res Res) Then P = (vny:W1)(vne:Ws)P' and Q = (vng:Ws)(vny:Wq) P’
with ny # n2. For (1), assume E + (vny:Wy)(vng:Wo)P' @ F. This must have
been derived from (Proc Res) twice, with E,n1:G; “G1[F1],n2:Ga “Go[Fs] - P :
F, where W, = G1 "Gq[F1] and Wo = Gy "G2[F5]. By Lemma A.15, we have
E n2:Go "Go[Fy],n1:G; ~G1[Fi] F P' : F. By (Proc Res) twice we have E F
(vng:Ws)(vny:W1)P' : F. Part (2) is symmetric.
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(Struct Res Par) Then P = (vn:W)(P' | P") and Q = P' | (vn:W)P", with
n ¢ fn(P").
For (1), assume E + P : F. This must have been derived from (Proc Res), with
EnG"G[F'|F P | P'": F and W = G™G[F'], and from (Proc Par), with
EnG"G[F'l|F P': F and E,n:G"G[F'| + P" : F. By Lemma A.12, since
n ¢ fn(P'), we have E+ P': F. By (Proc Res) we have E - (vn:G ~G[F'])P" : F.
By (Proc Par) we have E + P' | (vn:G ~G[F'])P" : F, that is, EF Q : F.

For (2), assume E F @ : F. This must have been derived from (Proc Par), with E F
P':Fand EF (vn:W)P" : F, and from (Proc Res), with E,n:G~G[F'|F P" : F
and W = G G[F']. By Lemma A.1, n ¢ dom(FE). By Lemma A.2, E+ G "~G[F'].
By Lemma A.3, E,n:G ~G[F'| - P' : F. By (Proc Par), E,n:G"~G[F'|+ P' | P":
F. By (Proc Res), E + (vn:G~G[F'])(P' | P"): F, that is, EF- P : F.

(Struct Res Amb) Then P = (vn:W)m[P'] and Q = m[(vn:W)P'], with n # m.

For (1), assume E + P : F. This must have been derived from (Proc Res) with
E,n:G"G[F'l - m[P'] : F with W = G™G[F'], and from (Proc Amb) with
E,n:G"G[F'|F F and E,n:G"G[F'|Fm : H"G'[F"] and E,n:G"G[F'| - P":
F" for some H, F", G'. By (Proc Res) we have E F (vn:G ~G[F'])P' : F"'. By
Lemma A.12, E+ F,and EF m : H™G'[F"] (by n # m). By (Proc Amb),
Et+F m[(vn:G"G[F'])P'] : F, that is, EFQ : F.

For (2), assume E F @ : F. This must have been derived from (Proc Amb)
with EF F, E+ m : H™G'[F"] and E + (vn:W)P' : F", and from (Proc
Res), with E,n:G"G[F'] - P' : F" and W = G"G[F']. By Lemma A.1, n ¢
dom(E). By Lemma A.2, E,n:GG[F']| + P' : F" implies E - G"G[F']. By
Lemma A.3, E,n:G"G[F'| + F and E,n:G"G[F'| + m : H"G'[F"]. By (Proc
Amb), E,n:GG[F'| F m[P'] : F. By (Proc Res), E F (vn:G~G[F')m[P'] : F,
that is, E - P : F.

(Struct GRes Res) Then P = (vG)(vn:W)P" and Q = (vn:W)(vG)P' with G ¢
fg(W).
For (1), assume E + (vG)(vn:W)P' : F. This must have been derived from (Proc
GRes), with E,G + (vn:W)P' : F and G ¢ fg(F), and from (Proc Res), with
E,G,n:G'*G[F'| + P’ : F, where W = G' “GI[F"]. Since G ¢ fg(W) by hypothe-
sis, by Lemma A.17 we have E,n:G' “G[F'],G F P’ : F. We know that G ¢ fg(F),
hence by (Proc GRes) we have E,n:G' “G[F'] + (vG)P’' : F. Finally from (Proc
Res) we have E + (vn:W)(vG)P' : F.

For (2), assume E + (vn:W)(vG)P’' : F. This must have been derived from (Proc
Res), with E,n:G' ~G[F'] F (vG)P' : F, where W = G' ™GJ[F"], and from (Proc
GRes), with E,n:G' "G[F'],G + P’ : F, with G ¢ fg(F). By Lemma A.16,
E,G,n:G' *G[F'| F P' : F. The thesis follows by applying (Proc Res) and (Proc
GRes).

(Struct GRes GRes) Then P = (vG1)(vG2)P' and Q = (vGs)(vG1)P'.
For (1), assume E F (vG1)(vGy)P' : F. This must have been derived from (Proc

GRes) twice, with E,G1,Go - P': Fand G» ¢ fg(F), Gy ¢ fg(F). By Lemma A.18
we have E,G2,G1 - P' : F. By (Proc Res) twice we have E F (vG2)(vG1)P' : F.

Part (2) is symmetric.
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(Struct GRes Par) Then P = (vG)(P' | P") and Q = P’ | (vG)P", with G ¢
fg(P").
For (1), assume F F P : F. This must have been derived from (Proc GRes), with
E,GF P | P":F and G ¢ fg(F), and from (Proc Par), with E,G + P’ : F' and
E,GF P":F. By Lemma A.13, since G ¢ fg(P')U fg(F), we have E+ P' : F. By
(Proc GRes) we have FE - (vG)P" : F. By (Proc Par) we have E+ P' | (vG)P" : F,
that is, E+ Q : F.

For (2), assume E + @ : F. This must have been derived from (Proc Par), with
EF P :Fand EF (vG)P" : F, and from (Proc GRes), with E,G + P" : F and
G ¢ fg(F). By Lemma A.1, G ¢ dom(F). By Lemma A4, E,G + P’ : F. By (Proc
Par), E,G + P' | P" : F. By (Proc GRes), since G ¢ fg(F), E + (vG)(P' | P"),
that is, E - P : F.

(Struct GRes Amb) Then P = (vG)m[P'] and Q = m[(vG)P’].

For (1), assume E - P : F. This must have been derived from (Proc GRes)
with E,G + m[P'] : F with G ¢ fg(F), and from (Proc Amb) with E,G + F,
E.GFm:G "G[F'], and E,G  P' : F' for some G', G, F'. By Lemma A.13,
E,GF F and G ¢ fg(F) imply E + F. The judgment E,G + m : G' "G[F']
must have been derived from (Exp n), hence m € dom(E). Hence, by (Exp n)
and by Lemma A.7, E+m : G’ “G[F']. By Lemma A.1, G ¢ dom(E). Hence, by
EF m: G "G[F'] and Lemma A.8, G ¢ fg(G' “G[F']) and so G ¢ fg(F'). By
(Proc GRes) we have E + (vG)P' : F'. By (Proc Amb), E + m[(vG)P'] : F, that
is, EFQ: F.

For (2), assume E + @ : F. This must have been derived from (Proc Amb)
with EF F, E+F m : GG[F'], and E + (vG)P' : F', for some G', G, F',
and from (Proc GRes), with E,G + P’ : F' and G ¢ fg(F'). By Lemma A.l,
G ¢ dom(E). By Lemma A4, E,G F m : G "G[F'] and E,G + F. By (Proc
Amb), E,G+ m[P']: F. By Lemma A.8, E+ F and G ¢ dom(E) imply G ¢ fg(F).
By (Proc GRes), E + (vG)m[P'] : F, that is, E+ P : F.

(Struct Zero Par) Then P =P' |0 and Q = P'.

For (1), assume E + P : F. This must have been derived from (Proc Par) with
EFP :Fand EFO0:F. Hence, E-Q: F.

For (2), assume E + P': F. By Lemma A.14, E + F. By (Proc Zero), E+ 0: F.
By (Proc Par), E+ P'|0: F, thatis, EF- P: F.
(Struct Zero Res) Then P = (vn:G ~G'[F'])0 and @ = 0.

For (1), assume E + P : F. This must have been derived from (Proc Res) with
E,n:G"G'[F'|F0: F. By Lemma A.12, E-0: F, thatis, E-Q : F.

For (2), assume F F 0 : F. We identify processes up to consistent renaming of
bound names and groups, hence we may assume that the bound name n does not
occur in dom(E). Let G be fg(G ~G'[F']) —dom(FE). By Lemma A4, G,E F ¢. By
Lemma A.9, G,E + G"G'[F']. By Lemma A.14, E  F. By repeated application
of Lemma A4, G,E F F. By Lemma A.3, G, E,n:G ~G'[F'] F F. By (Proc Zero),
G,E,n:G"G'[F'| + 0: F. By (Proc Res), G, E F (vn:G"G'[F'])0 : F, that is,
G,EFP:F.
(Struct Zero GRes) Then P = (vG)0 and @ = 0.
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For (1), assume E P : F. This must have been derived from (Proc GRes) with
E,GFO:F and G ¢ fg(F). By Lemma A.13, EF0: F, thatis, EF Q : F.

For (2), assume E + 0 : F. We may assume that the bound name G does not occur
in dom(E). Hence, by Lemma A.8, G ¢ fg(F'), and by Lemma A4, E,G+0: F.
By (Proc GRes), E + (vG)0 : F, that is, E+ P : F.

(Struct Zero Repl) Then P =10 and @ = 0.

For (1), assume F + P : F. This must have been derived from (Proc Repl) with
EFO0:F thatis, EFQ : F.
For (2), assume E+ 0: F. By (Proc Repl), EF10: F, thatis, E- P : F.

(Struct €) Then P = ¢.P' and Q = P'.

For (1), assume E F P : F. This must have been derived from (Proc Action) with

Ete: Cap[Fland EF P': F,thatis, EFQ: F.

For (2), assume E + P’ : F. By Lemma A.14, E + F. By (Type Cap), E - CaplF].

By (Exp €), E F€: Cap[F]. By (Proc Action), E +e.P': F, thatis, E+ P: F.
(Struct .) Then P = (M.M").P' and Q = M.M'.P'.

For (1), assume E F P : F. This must have been derived from (Proc Action) with
EF P :F and E+ M.M': Cap[F]. The latter must have come from (Exp .) with
E+ M : Cap[Fland E + M': Cap[F], By (Proc Action) twice, E - M.(M'.P') : F,
that is, EFQ : F.
For (2), assume E F @ : F. This must have been derived from (Proc Action),
twice, with E = M : Cap[F], E+ M' : Cap[F], and E + P' : F. By (Exp .),
Et+ M.M'": Cap[F]. By (Proc Action), E + (M.M').P' : F, that is, E+ P : F.

(Struct Go €) Then P = go e. M[P'] and Q = M[P'].
For (1), assume E F P : F. This must have been derived using (Proc Go), with
EFF, Ete: Cap["G,r{},Shh], EF- M : G"G[F'], and E + P': F'. By (Proc
Amb), EF M[P']: F, thatis, EF- Q : F.
For (2), assume E F @ : F. This must have been derived using (Proc Amb), with
E+-F,EF-P :F and EF M : G™G[F']. By Lemma A5, E + G"GI[F'].
This must have been derived using (Type Amb), with G C dom(E), and E +
F'. By (Effect Shh) and Lemma A.1, E - °G,°{}, Shh. By (Type Cap), E F
Cap[™G,*{}, Shh]. By (Exp €), E + € : Cap|™G,*{}, Shh]. By (Proc Go), E F
goe.M[P']: F, thatis, EF P : F.

(Struct Go € .) Then P = go(e.M).N[P'] and @ = go M.N[P’]. This case follows
by an argument very similar to the case for (Struct Go €). We omit the details.

(Struct Go . €) Then P = go (M.€).N[P'] and Q = go M.N[P'].
For (1), assume E F P : F. This must have been derived using (Proc Go), with
E+-F,EFr Me: Cap[F"], EF- N : G™G[F'], and E + P’ : F', with F" =
~G,°{}, Shh. The judgment E F M.e : Cap[F"] must have been derived using
(Exp .) from E+ M : Cap[F"] and E I € : Cap[F"]. By (Proc Go), we can derive
EtF go M.N[P']: F, thatis, E-Q : F.
For (2), assume E F @ : F. This must have been derived using (Proc Go), with E +
F,Et-M: Cap[F"], EF- N:G"G[F'],and E+ P': F', with F"' = ~G,°{}, Shh.
By (Exp €) and (Exp .), we get E F M.e : Cap[F"]. By (Proc Go), we can derive
Et go(M.e).N[P'] : F, that is, EF- P : F.
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(Struct Go . Assoc) In this case, we have P = go (M.M').M").N[P'] and @ =
go (M.(M'.M")).N[P'].
For (1), assume E F P : F. This must have been derived using (Proc Go), with
EFF,EF (MM).M": Cap[F"], E+ N : G G[F'], and E I P' : F', with
F'" = ~G,°{}, Shh. The judgment E + (M.M').M" : Cap[F"] must have been
derived using (Exp .), twice from E + M : Cap[F"] and E + M' : Cap[F"] and
E + M" : Cap[F"]. By (Exp .), we can derive E -+ M.(M'.M") : Cap[F"],
and then, by (Proc Go), we can derive E F go (M.(M'.M")).N[P'] : F, that is,
EFQ:F.

For (2), assume E F @ : F. This must have been derived using (Proc Go), with
E-F,EFr M(M.M"): Cap[F"], Ex- N : G™G[F'], and E + P’ : F', with
F'" = °G,%{}, Shh. The judgment E F M.(M'.M") : Cap[F"] must have been
derived using (Exp .), twice from E + M : Cap[F"] and E + M’ : Cap[F"] and
E + M" : Cap[F"]. By (Exp .), we can derive E + (M.M").M" : Cap[F"],
and then, by (Proc Go), we can derive E F go (M.M').M").N[P'] : F, that is,
Er-P:F.

|

Proof of Theorem 6.1 IfEF P: F and P — @ then there are Gy, ..., Gy,
such that G1,...,Gp, EFQ : F.

Proof. For the sake of conciseness, throughout this proof the fact that £+ P : F
implies E + F' (Lemma A.14) will be used several times, without any further explicit
acknowledgement. We proceed by induction on the derivation of P — Q.

(Red In) Then P = n[in m.P' | P"] | m[P"'] and Q = m[n[P’' | P"] | P"].
Assume E + P : F. This must have been derived from (Proc Par), with E F
n[in m.P" | P"] : F and E + m[P"']: F. The former must have been derived from
(Proc Amb), with E - F, E+F n: G,"G,[F,] and E + inm.P' | P" : F,, for
some G, Gy, Fy,, while the latter must have been derived from (Proc Amb) with
EFF,EFm: Gy GplFn]and E - P" . F,, for some Gp,, Gy, Fyy,. Moreover,
E F inm.P' | P" : F,, must come from (Proc Par) with E + in m.P' : F, and
E+ P" : F,. Finally, E  in m.P' : F,, must come from E + in m : Cap[F,] and
Etr P': F,. By (Proc Par), we have E + P' | P" : F,,, and by (Proc Amb) we can
derive E F n[P' | P"] : Fy,. Then, by (Proc Par), we have E - n[P' | P"] | P""" : F),.
By (Proc Amb) we can derive E - m[n[P’ | P"] | P"'|: F, thatis, EF Q : F.

(Red Out) Then P = mn[out m.P’' | P"] | P"'] and @ = n[P' | P"] | m[P"].
Assume E P : F. This must have been derived using (Proc Amb) from F + F,
Etm:Gp "Gy[Fy] and E F nlout m.P' | P"] | P" : F,, for some G, Gy, Fp,
and from (Proc Par) using E + n[outm.P’ | P"]: F,,, and E + P"" : F,;,. The former
must have been derived using (Proc Amb) from E - F,,, E F n : G, "G,[F,]
and E + out m.P' | P" : F, for some G,, G,, F,, and using (Proc Par) from
E + out m.P' : F, and E + P" : F,. The former must have been derived using
(Proc Action) from E + out m : Cap[F,] and E + P’ : F,. By (Proc Par),
Er P | P'": F, By (Proc Amb), E F n[P' | P'] : F. By (Proc Amb),
E+F m[P"]: F. By (Proc Par), E+ n[P' | P"] |m[P"']: F, thatis, E-Q : F.

(Red Open) Then P = open n.P' | n[P"] and @ = P' | P". Assume E + P :
F. This must have been derived using (Proc Par) from E + open n.P' : F and
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E + n[P"] : F. The former must have been derived using (Proc Action) with
Et openn : Cap[F] and E F P': F, while the latter must have been derived using
(Proc Amb) with EF F, E+n:G' ™G'[F'] and E + P" : F' for some G', G', F'.
The judgment E + openn : Cap[F]| must have been derived using (Exp Open) from
EF n:G"G[F] for some G, G. By Lemma A.7, G' “G'[F'] = G "G[F], and so,
in particular, F' = F. Hence, by (Proc Par), E+ P’ | P" : F, that is, EF Q : F.

(Red I/0) In this case we have P = (ny:Wy,...,ng:Wy).P' | (My,..., M) and
Q = P'{ni<M,...,ng<M}. Assume E + P : F. This must have been derived
from (Proc Par) with EF (ny:Wy,...,npg:Wy).P' : F and E - (My,..., M) : F.
The former can only have been derived from (Proc Input) with E, ny:W1y,... ,ng:Wj -
P':Fand F = "GH,W; X --- x Wy, for some G, H. The latter judgment E
(M, ..., M) : F must have been derived from (Proc Output) with £ - M; : W/ for
each i € 1.k, and F = "G,’H,W{ x --- x W|. Hence W/ = W, for each i € 1..k.
By k applications of Lemma A.19, we get EF P'{ni«M,...,ng<My}: F.

(Red Go In) Here P = go(in m.N).n[P,] | m[Py] and @ = m[go N.n[P,] | Pn].
Assume E F P : F. This must have been derived using (Proc Par) from E +
go(inm.N).n[P,] : F and E F m[P,,] : F. The former must have been derived using
(Proc Go) with E + F, E + in m.N : Cap["G,,*{}, Shh], E - n : G, "G,[F,],
and E + P, : F, for some G,, G,, F,,, and the latter must have been derived
using (Proc Amb) with E+ F, E+m: G,, “"G,[Fy] and E F P, : F,,, for some
Gm, G, Fn. Moreover, the judgment E F in m.N : Cap["G,,°{}, Shh] must
have been derived using (Exp .) from E F inm : Cap["G,*{}, Shh] and E + N :
Cap[~Gy,°{}, Shh]. By (Proc Go) and (Proc Par), E F go N.n[P,] | Py, : Fi. By
(Proc Amb), we get E - m[go N.n[P,] | Pp]: F, thatis, EF Q : F.

(Red Go Out) Here P = m[go(out m.N).n[P,] | Pn] and Q@ = go N.n[P,] |
m[Pp]. Assume E + P : F. This must have been derived using (Proc Amb) from
EFF,EFm: Gy ~GplFy] and E F go(out m.N).n[P,] | Py : Fp, for some G,
G, Fn, and from (Proc Par) with E F go(outm.N).n[P,] : F, and E + Py, : Fy,.
The former must have been derived using (Proc Go) from E + F,,,, E F out m.N :
Cap[~Gp,%{}, Shh], E - n : G, "“G,[F,], and E + P, : F, for some G, G, F,.
The judgment E F out m.N : Cap["Gy,°{}, Shh] must have been derived using
(Proc .) from E F out m : Cap["Gp,°{}, Shh] and E+ N : Cap[™G,°{}, Shh]. By
(Proc Go), E + go N.n[P,] : F. By (Proc Amb), E + m[P,]: F. By (Proc Par),
Et go Nn[P,] | m[Py]: F, thatis, EF Q : F.

(Red Res) Here P = (vn:W)P' and Q = (vn:W)Q'" with P — @Q'. Assume E +
P : F. This must have been derived using (Proc Res) from E,n:G ~G'[F'|F P': F
with W = G ~G/[F’]. By induction hypothesis, 3G such that G, E,n:G ~G'[F']
Q' : F. By (Proc Res), G,E + (vn:G"G'[F'))Q' : F, that is, G,EF Q : F.

(Red GRes) Here P = (vG)P' and Q = (vG)Q' with P! — Q'. Assume E +
P : F. This must have been derived using (Proc GRes) from E,G F P' : F with
G ¢ fg(F). By induction hypothesis, 3G such that G, E,G F Q' : F. By (Proc
GRes), G,EF (vG)Q' : F, that is, G,E+Q : F.

(Red Amb) Here P = n[P'] and @ = n[Q'] with P’ — @Q'. Assume E+ P : F.
This must have been derived using (Proc Amb) from E + F, E +n : G"G'[F'],
and E + P’ : F'. By induction hypothesis, 3G such that G,E + @' : F'. By
Lemma A.6, G,E+ F and G,E F n : G™G'[F']. By (Proc Amb), G, E F n[Q'] :
F,thatis, G,EF Q: F.
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(Red Par) Here P = P' | Rand Q = Q' | R with P! - @Q'. Assume E+ P : F.
This must have been derived using (Proc Par) from EF P’ : F and EF R: F. By
induction hypothesis, 3G such that G,E+ Q' : F. By Lemma A6, G,EF R : F.
By (Proc Par), G,E+ Q' |R: F, thatis, G,EF Q : F.

(Red =) Here P = P', P! — @', and Q' = Q. Assume E + P : F. By Proposi-
tion A.1, 3Gy such that Gy, E + P’ : F. By induction hypothesis, G2 such that
G2,G1,E+ Q' : F. By Proposition A.1, 3G3 such that G3, G2, G, EFQ : F.
|

APPENDIX B

Proof of Effect Safety
In this appendix we prove the effect safety property stated in Section 7.

Proof of Proposition 7.1  Suppose that E+ P : ~G,°H,T.

(1) If P L inn then E+F n: G"G'[F] for some type G “G'[F] with G € G.
(2) If P | outn then E+ n: G "G'[F] for some type G ~G'[F] with G € G.
(3) If P | openn then E+n:G"G'[F] for some type G ~G'[F] with G € H.

Proof. We prove part (1) in detail; the other parts follow by similar arguments.
We proceed by induction on the derivation of P | inn.

(Ex Cap) We have P | in n derived from P = in n.QQ. By Proposition A.1,
EFP:"G,H,T and P = inn.Q imply there are groups Gy, ..., Gy such that
Gi,...,Gg, E F inn.Q : "G,H,T. This must have been derived using (Proc
Action) from G4,...,Gi, E F inn : Cap[™G,°H, T, which itself must have been
derived using (Exp In) from Gi,...,G, E F n: G"G'[F] for some type G “G'[F]
with G € G. The latter judgment must have been derived using (Exp n), and
therefore £ = E',n:G"G'[F],E". By Lemma A.1, E + P : ™G,°’H, T implies
E I ¢, and therefore E +n : G ~G'[F], by (Exp n).

(Ex Par 1) We have P | Q | inn derived from P | in n. The judgment E - P |
Q@ : °G,°H, T must have been derived using (Proc Par) from E + P : ~G,°’H,T.
By induction hypothesis, this and P | ¢n n imply the required result.

(Ex Par 2) We have P | Q | inn derived from @ | in n. The judgment E F P |
Q@ : °G,°H, T must have been derived using (Proc Par) from E + Q : ~G,°H,T.
By induction hypothesis, this and @ | in n imply the required result.

(Ex Res) We have (vm:W)P | inn derived from P | inn and m ¢ fn(inn). The
judgment E + (vm:W)P : ~G,°H, T must have been derived using (Proc Res) from
EmWF P:"G/°H,T. By induction hypothesis, this and P | in n imply that
E,m:W + n: G*G'[F] for some type G ~G'[F] with G € G. By Lemma A.12,
m#n and E,m:W Fn: GG'[F] imply EFn: GTG'[F].

(Ex ResG) We have (vH)P | inn derived from P | in n. The judgment E
(vH)P : *G,°H, T must have been derived using (Proc GRes) from E,H + P :
~G,’H, T with H ¢ f¢(™G,’H,T). By induction hypothesis, the latter and P |
inn imply that E, H - n : G™G'[F] for some type G “G'[F] with G € G. By
Lemma A.13, H ¢ f¢("G,H,T) and E,H - n : G~G'[F] imply E + n : G ~G'[F].
|
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