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ABSTRACT

This paper presents a practical approach to deploying a priori
speaker dependent thresholds (SDT) for adaptive speaker verifica-
tion applications. Our motivations for exploring SDTs are two fold:
one is to eliminate the externally pre-set overall system thresholds
and replace them with automatically-set internal thresholds calcu-
lated at runtime; the second is to counter the verification score shifts
resulting from online adaptation. The second motivation is based
on the observation that after adaptation, verification scores for both
true speakers and impostors increase, which in turn increases the
false accept (FA) rates. The rise of FA rates, in an adaptive system,
can be costly because of the possibility of model corruption. In
this work, an approach similar to ZNORM [3] is used to calculate
a threshold for each speaker, which is automatically updated every
time the claimant model is adapted. The paper explores various
computational efficiency strategies to make the deployment of this
approach practical for a fielded system. Results of experiments on
one Japanese and one English digits database are presented.

1. INTRODUCTION

Setting thresholds appropriately for a speaker verification appli-
cation is a challenging task. If there is a mismatch between the
development test in the lab and the real world test material, the
effective operating point of the fielded application could be differ-
ent than expected. Furthermore, the customer’s desired operating
point may not be the same as the pre-set threshold. For example,
a financial application may need to operate in the “high security”
region (lower FA rate, higher FR rate) whereas a voice portal may
choose to operate in a “high convenience” zone (higher FA rate,
lower FR rate). Obviously, a one-size pre-set threshold would not
fit all applications.

One of our motivations in this work is to allow the user to set the
operating point for the application according to the desired security
level. In addition to the ability to specify the desired operating
point, it is important for an application to perform consistently for
all users. That is, it is not sufficient to have an overall low error rate
for the system if there are users for whom the system works very
poorly. It is more desirable to have a consistent behavior and avoid
the risk of irate customers. Speaker dependent thresholds (SDT)
are an attractive option, where the threshold for each speaker is
calculated and saved in each speaker model. In this way, the system
may accomplish consistent error rates for both goats and sheep.

A second motivation for exploring SDTs is to improve the func-
tionality of online speaker adaptation. Adaptation techniques have
long been known to improve accuracy both in speech and speaker
recognition. The gains are particularly significant for speaker
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ition, where a claimant model must be created from little
ent data. As a side-effect of online adaptation, undesirable

hifts in both speech and speaker recognition have been ob-
[2, 9]. For speech recognition, confidence scores of both in-
ar and out-of-grammar utterances increase and an approach
n developed to automatically map post-adaptation scores

adaptation scores [9]. This side-effect can be particularly
atic in speaker verification, because as the impostor scores

e, the probability of adapting and corrupting the claimant
on impostor data also increases. Countering this drift in

has previously not been addressed in the speaker verifica-
mmunity. This is one of the original contributions of this

Section 2 the algorithm for SDT calculation is discussed.
al issues are addressed in Section 3. In Section 4 we present
erimental results of setting automatic a priori thresholds
ntering score drifts post adaptation. Conclusions and future

re discussed in Section 5.

2. APPROACH

ave been various approaches to setting SDT in speaker ver-
n [10, 4]. SDTs may be set to either optimize the overall
rror rate (EER) and/or set the operating point of the system
rtain FA rate1. For fielded applications, the security level of
tem, or FA rate, is of utmost importance. Our goal is to cal-
nternal thresholds automatically so that the system operates
pecified FA rate.
r approach to SDT calculation is a score normalization ap-
based on ZNORM [3]. The basic idea of this approach is to
ize the verification score according to the mean and standard
on of the impostor distribution, namely:

SM,norm =
SM − µM,imp

σM,imp
(1)

ere SM,norm is the normalized score of a test utterance on
t model M , SM is the unnormalized score, and µM,imp

,imp are the mean and standard deviation of the impostor
tion on claimant model M . µM,imp and σM,imp are calcu-

y running a pre-selected set of impostor utterances (called
or Batch, or IB) on a claimant model to generate score dis-
ns.
suming that score distribution of the IB utterances are similar

of the actual impostors in the test situation, the normalized
of the actual impostor distribution should be similar to a unit

en the dearth of true speaker data, it is often challenging to set the
d according to the FR rate.



Normal distribution. Z-scores can be calculated from the inverse
normal cumulative distribution. For the unit Normal distribution,
a z-score of 1.64, for example, corresponds to a point where 95%
of the data lie below and 5% of the data lie above. To set the FA
rate to 5%, a z-score of 1.64 would be subtracted from SM,norm

and the result would be compared to a threshold of zero. In other
words:

SM,norm,x%FA = SM,norm − Z@x%FA

accept
>

<=
reject

0 (2)

The desired FA rate can be specified at runtime, which through
a lookup table, is mapped to a z-score, Z@x%FA. Other SDT pa-
rameters which are claimant dependent, µM,imp and σM,imp, are
calculated using the IB and stored in each claimant model. This cal-
culation is done after enrollment and automatically updated every
time the claimant model is updated after online adaptation.

3. PRACTICAL ISSUES

Various practical questions arise: what is the minimum number
of utterances needed in the IB to get a reliable estimate of the
mean and the standard deviation? How should the impostors be
selected? Should they be channel or gender dependent? Would the
implementation burden make this approach computationally viable
in conjunction with online adaptation, given that the thresholds have
to be updated after every occurrence of online adaptation? These
questions are addressed in the following sections.

3.1. The Shape of the Impostor Distribution

In Section 2, where we explained the algorithm, we surmised that
the normalized scores distribution would be similar to a unit Normal
distribution. The tails of the distribution, however, do not seem to
be identical to a Normal distribution. Since it is often desirable to
set FA rates low, we are most interested in the z-scores in the tail
of distribution where using the Normal distribution may be a poor
approximation.

We experimented with generating the impostor distribution em-
pirically on a held-out dataset and calculating the z-scores for the
resulting distribution. The empirically derived z-scores were then
compared to Normal z-scores for SDT calculation and used in Equa-
tion 2. The claimant and impostor utterances were chosen from a
Nuance internal digits database (3K true speaker and 10K impostor
trials) and the z-scores were calculated using the impostor distri-
butions of the NIST [6] 96 and 98 (conversational speech) test
databases.

Table 1 shows the difference between the FA rates set using
z-scores from either the Normal or the empirically derived distri-
butions. There is a consistent bias in the Normal approximation
(roughly 10%). The FA rates from the empirical distributions are
closer to the desired FA rate, even though the textual data from
the test database (digits) and the empirical impostor distribution
(conversational speech) are clearly different. We chose to use the
empirical distribution, although using the Normal distribution and
removing the consistent bias could be another alternative that de-
serves further exploration.

Table 1
databas
or calc
z-score
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In a G
the imp
FA goal Normal Empirical
1% 1.18% 0.94%
2% 2.26% 1.82%
3% 3.41% 3.00%
4% 4.44% 4.22%
5% 5.50% 5.21%

. The table shows desired and effective FA rates for a digits
e calculated with z-scores from either a Normal distribution

ulated empirically from the NIST database. The empirical
s produce FA rates closer to the goal.

lection of the Impostor Batch

ious work [8] roughly 200 utterances per handset type per
was used to determine the mean and standard deviation of
ostor distribution. A large number of utterances are often
to get a reliable estimate of the standard deviation. We
d that by selecting impostor utterances such that the speaker

s well covered, the number of utterances may be reduced
at computational requirements are limited. A measure of
se distance [7] was used according to:

dist(gi, gj) = log
p(Xi|gi)

p(Xi|gj)
+ log

p(Xj |gj)

p(Xj |gi)
(3)

ere dist(gi, gj) is the distance between speaker gi and gj .
d utterance was chosen to be maximally distant from all ut-
. Additional utterances were selected sequentially to max-
he average pairwise distance from the selected utterances.
tion to this method, we also used random selection.
e claimant and impostor utterances were chosen from NIST
nd the normalization data was selected from NIST 1996.
ere 21K female and 25K male verification trials for NIST

st set. DET curves are shown in Figure 1.
oosing normalization utterances randomly was better than
g the utterances based on the above distance measure (in
f EER improvements). This may be because the distance
e had a bias for choosing outlying utterances. As few as 30
ces were sufficient to observe improvements in verification
ance (EER) and saturation occurred around 180 utterances.
EER improvements were observed whether both mean and

d deviation were used, or if only the mean was used and the
d deviation was set to be constant (i.e., set to the average
pooled standard deviations). When using few normaliza-
erances (e.g., 30), using model means with pooled standard
on proved to be more effective, most likely because model
d deviation estimates were noisy.
also observed that IB should be gender matched, but need

channel-matched to the test data. In the field application,
detection can be performed on the enrollment utterances to
which IB gender to use for calculating the SDT parameters.
t-dependent verification, the IB should match the test data
ely as possible. For example, if the test text is digit strings,
could be speakers uttering zero through nine.

eduction in Computation

MM based system, with cohort and claimant GMMs [7],
lementation could be made efficient by storing the top n
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Fig. 1. DET curves for randomly chosen IB utterances. As few as
30 utterances were sufficient to observe improvements in the EER
performance.

Gaussians for the cohort models in memory. This results in great
savings, as only the top n Gaussian for the claimant model need to
be calculated for each utterance in the IB.

Furthermore, by decimating the feature stream, i.e., using every
nth feature vector, we can get a further saving in computation.
Previous work suggested that a decimation level as high as 10:1
would cause little performance degradation [5]. Our experiments
confirmed this. We chose a decimation rate of 12:1. Combined with
the above mentioned method, the computational savings amounted
to 99%.

4. EXPERIMENTAL RESULTS

4.1. Setting Security Level

4.1.1. Experimental Setup

We tested the setting of security levels on one American English
(EDigit) and one Japanese digits (JDigit) databases. EDigit has
230 unique speakers and the testset comprises 230 voiceprints, 324
true speaker (TS) and 53K impostor (IM) trials. JDigit has 162
unique callers and the test set comprises 6K voiceprints, 12K TS
and 9K IM trials. Results as well as further information about
experimental setup can be found in Table 2. SDTs were calculated
during enrollment on the training set and were not modified during
testing. The differences between the EERs of the baseline system
and the system with SDT do not appear to be significant.

Our English IB contained 60 utterances, 30 for each gender.
The utterances were randomly selected from another English digits
database. Every utterance included digits zero through nine, each
spoken once. The Japanese IB contained 90 utterances and the
utterances were randomly selected from another Japanese digits
databases. Every utterance included a random selection of digits
zero through nine, with some repetitions. We chose more Japanese
IB utterances to assure that every digit had sufficient coverage.
Note that though the textual data is similar in the IBs and the tested
datasets, it is not identical.
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2. The table shows EERs and the makeup of the test
es. The column TS/IMP lists the number of true speaker
postor (IM) trials. The Enrol, TS, and IM columns list the

r of repetitions of digits for each condition.

Experimental Results

shows the results for setting the desired security level. The
are better for the English Digit database (EDigit). The im-
utterances in EDigit were composed of digits zero through
hich perfectly matched the textual content of the IB2. The
oting of the goal FA for the other three databases suggests

her the mean and/or the standard deviation of the IB dis-
n is smaller than that of the actual impostor distribution.
e observed that verification scores for textually mismatched
a are often smaller than those of test data which textually
s the enrollment utterances. An approach similar to [10] or
based verification [1] may alleviate this problem.

FA goal EDigit JDigit
0.15% 0.16% 0.17%
0.85% 0.88% 0.95%
2.25% 2.45% 3.35%
4.00% 4.23% 5.97%
6.00% 6.01% 9.08%

. Table shows the desired and effective FA rates for the two
s with using both model mean and standard deviations.

ountering Post-Adaptation Score Shift

Experimental Setup

d a database of Japanese digit strings for the unsupervised
ion experiment. We trained 5K speaker models (on three
ons of an 8-digit utterance) and tested on 67K mixed-gender
or trials and 12K true-speaker trials, each composed of one
on of an 8-digit utterance. The adaptation set contained
tterances for each speaker model, of which seven utterances
om the true-speaker and one utterance was by an impostor.
te of impostor attempts in the adaptation set was 12.5%,
compared to impostor attempt rates in the real world, was
ggressive. The number of impostor attempts were uniformly
ted across all trials.
the adaptation experiments, the speaker models were first
on the enrollment data. A held-out verification test set was

establish the baseline performance. Next, each model was

IB utterances are were not selected from any of the xDigit
s.



adapted on one adaptation utterance (only if the verification score
was higher than the adaptation threshold). This was followed by a
round of verification test on the held-out test set. The last two steps
(adapt & test) were repeated eight times.

4.2.2. Experimental Results

Table 4 shows the EER, FA, and FR rates on the held out data set
before and after adaptation. The increase in the FA rates is well
controlled for the system which has SDT, an increase of about 12%
in FA rate, as opposed to a factor of almost 4 for the baseline system.
This can also be observed in Figures 2, where in Figure (a), the shift
of the impostor distribution’s right “skirt” to the right hand side is
visible. This shift has been arrested in Figure (b). However, there
is a price to be paid in terms of the EER. The final EER of the
adapted system without SDT is 2.30%, 25% percent less than the
final EER of 3.07% for the system with SDT. For the last iteration
of adaptation, for example, the impostor corruption rate dropped
from 10.14% to 5.96%. Considering the cost of model corruption
in a deployed system with rising FAs, this price seems justifiable.

The problem of textual mismatch also affected the efficacy of
controlling the FA growth. After successive iterations of adaptation,
we observed that the mean of the IB became negative at a faster rate
than the actual impostor distribution mean. Smoothing the post-
adaptation IB mean with the original IB mean (post-enrollment),
where µnew = αµenrol + (1 − α)µpost−adapt, alleviated this
problem. An α of 0.9 was used for the results reported in Table 4.

No SDT With SDT
Iteration EER FA FR EER FA FR
Baseline 7.13 1.10 25.43 7.75 1.10 33.70
Adapted 2.30 4.23 1.39 3.07 1.26 6.96

Table 4. The table shows the increase in FA rates in the baseline
system (No SDT) and new system (With SDT) thresholds.
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Fig. 2. The shift in the impostor distributions with and without
SDTs. Note that due to SDT normalization, the range of the scores
has changed.

5. CONCLUSION AND FUTURE WORK

This paper presents a practical approach to deploying a priori
speaker dependent thresholds (SDT) for adaptive speaker verifi-
cation applications. Our motivation was to devise a system with
automatically calculated a priori thresholds, where the operating
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f the application could be specified at run-time according
esired FA rate. Our second motivation was to use SDTs to
the drift in scores which result from online speaker adap-

We presented efficiency changes which made this approach
al for real-time applications. Experimental results showed
hen the IB data textually matches the actual impostor test
is approach performs well in setting the internal thresholds.
less of the textual matching, however, this method can be
e in controlling the increase in FA rates post adaptation.
mentioned, one limitation of this approach is that the data
in the IB should ideally be matched to the test data in the
sing an approach similar to [10] or using phone based verifi-
1] could alleviate this problem. In the case of a phone based
, regardless of the textual content of the IB, the phonemes
match either the phonemes in the test material or the ones
train the claimant model could be sub-selected from the IB
luated. By removing this restriction, this approach could
for text-independent verification, with one universal IB for

lications and, perhaps, languages.
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