
Interleaved Backtracking in Distributed Constraint Networks

Youssef Hamadi
Hewlett-Packards Labs

Filton road, Stoke Gifford, Bristol BS34 8QZ, United Kingdom
yh@hplb.hpl.hp.com

Abstract

The adaptation of software technology to distributed
environments is an important challenge today. In this
work we combine parallel and distributed search. By
this way we add the potential speed-up of a parallel
exploration in the processing of distributed problems.
This paper extends DIBT, a distributed search proce-
dure operating in distributed constraint networks [6].
The extension is twofold. First the procedure is up-
dated to face delayed information problems upcoming
in heterogeneous systems. Second, the search is ex-
tended to simultaneously explore independent parts of
a distributed search tree. By this way we introduce
parallelism into distributed search, which brings to In-
terleaved Distributed Intelligent BackTracking(IDIBT).
Our results show that 1) insoluble problems do not
greatly degrade performance over DIBT and 2) super-
linear speed-up can be achieved when the distribution
of solution is nonuniform.

Keywords: Distributed Constraint Satisfaction,
Distributed AI, Collaborative Software Agents,
Search

1 Introduction

The constraint satisfaction problem (CSP) is a pow-
erful framework for general problem solving. It involves
finding a solution to a constraint network; i.e., find-
ing values for problem variables subject to constraints
that are restrictions on which combinations of values
are acceptable. This formalism has been extended to
tackle distributed problems. In the distributed constraint
satisfaction paradigm (DCSP) a problem is distributed
between autonomous agents which are cooperating to
compute a global solution. The raise in application inter-
operability combined to the move towards decentralized
decision process in complex systems raise the interest
for distributed reasoning. In this work we show how to

enhance efficiency of distributed search.
The basic method to search for solution in a con-

straint network is depth-first backtrack search (DFS) [3],
which performs a systematic exploration of the search
tree until it finds an instantiation of values to variables
that satisfies all the constraints. DFS has been extended
to parallel-DFS to speed-up the resolution process [11].
Interestingly parallel-DFS showed that under some as-
sumptions, speed-up could be superlinear.

In this paper we presentInterleaved Distributed Intel-
ligent BackTracking an algorithm performing parallel-
DFS in DCSPs. Our algorithm interleaves the explo-
ration of subspaces within each agent. Between distinct
agents parallelism is achieved since they can consider
distinct subspaces at the same time. Experiments show
that 1) insoluble problems do not greatly degrade perfor-
mance over DIBT and 2) on problems with nonuniform
search space, IDIBT allows superlinear speed-up over
DIBT.

In the following, we first give a basic definition of
the CSP/DCSP paradigm, completed by a distinction be-
tween parallel and distributed search. Then, we present
DisAO a distributed variable ordering method, and we
describe and analyze IDIBT. Afterwards, we give an ex-
perimentation with random DCSPs and N-queens prob-
lems, followed by a general conclusion.

2 Background

2.1 Constraint satisfaction problems

A binary constraint network involves a set of� vari-
ables � � ���� � � � � ���, a set ofdomains � �
���� � � � � ��� where�� is the finite set of possibleval-
ues for variable�� and� the set of binary constraints
���� � � � �� where��� is a constraint between� and �.
������ 	� �
�� means that the association value� for
� and	 for � is allowed. Asking for the value of� ����� 	�
is called aconstraint check. � � �� � �� is called the
constraint graph associated to the network�� ��� ��.

A solution to a constraint network is an instantiation
of the variables such that all the constraints are satisfied.
Theconstraint satisfaction problem (CSP) involves find-
ing a solution in a constraint network.

2.2 Distributed constraint satisfaction

A distributed constraint network �� ��� ���� is
a constraint network (binary in our case), in which
variables and constraints are distributed among a set
����
�� � � � � ���
�� of � autonomous sequential
processes calledagents. Each agent���
� “owns”
a subset�� of the variables in� in such a way that
� � ���� � � � � ��� is a partition of� . The domain��

(resp.��), the constraint��� (resp.���) belongs to the
agent owning�� (resp.��)1. In the present work, we
limit our attention to the extreme case, where there are�

agents, each only owning one variable, so that� � � .
Thus, in the following,���
� will refer to the agent
owning variable��. Of course, the instantiation of a
single variable can relate the solution of an embedded
large subproblem and in fact, each inter-agent constraint
can represent a large set of constraints.

Initially, the graph ofacquaintances in the distributed
system matches the constraint graph. So, for an agent
���
�, � is the set of its acquaintances, namely the set
of all the agents���
� such that�� shares a constraint
with ��. Thedistributed CSP (DCSP) involves finding
a solution in a distributed constraint network.

2.3 Communication model

For a DCSP, we assume the following communica-
tion model [12] (in every way classical for distributed
systems). Agents communicate by sending messages.
An agent can send messages to other agents if and only
if it knows their address in the network. The delay in de-
livering messages is finite. For the transmission between
any pair of agents, messages are received in the order in
which they are sent. Agents use the following primitives
to achievemessage passing operations:

� ���������
�“m” � sends message� to the
agents in��
.

� �
����� returns the first unread message avail-
able.

2.4 Distributed v Parallel Search

Parallel backtrack search is used to speed-up the res-
olution process [11, 7]. Distributed backtrack search

1We suppose that the constraint network is such that�� � �� is a
symmetric graph.

faces a situation where the whole problem is not fully
accessible; resolution is enforced by collaboration be-
tween subproblems.

Both framework use several processing units. In par-
allel search, N processors concurrently perform back-
tracking in disjoint parts of a state-space tree. In dis-
tributed search, distinct subproblems are spread on sev-
eral processing units and backtracking is performed by
the way of collaboration.

Part a) of figure 1 presents an example of parallel ex-
ploration. Here, the problem is duplicated on two pro-
cessors�� and ��. �� is in charge of the subspace
characterized by�� � �, �� explores the remaining
space. During the computation, message passing is use-
less. However, since a processor can exhaust its task
before another (good heuristic functions, filtering,. . .),
dynamic load balancing is used [11]. Usually, an idle
unit asks a busy one for a part of its remaining explo-
ration task.

X2 X3

X4

X1
A0

A1 A2

A3

X1

S S S S
(a)

X2

X3

X4

P1P0

(b)

Figure 1. Tree searches: (a) parallel
search, (b) distributed search

Part b) of the figure presents a distribution of this
4-variables problem between four autonomous agents.
Here, state-space exploration uses local resolution for
each subproblem with negotiation on the shared con-
straints (links).

In the following we show how to introduce the effi-
ciency of parallel search in a distributed exploration.

3 Interleaved Distributed Intelligent
BackTracking

We present here IDIBT as a generalization of DIBT.
IDIBT mixes parallel and distributed search. The reader
can report to [5] for more details on DIBT.

DIBT realizes a DFS between the agents of a dis-
tributed CSP. DFS is a general complete resolution tech-
nique widely used for its storage efficiency. Given a

variable and value ordering, it generates successive in-
stantiations of the problem variables. It tries to extend
a partial instantiation by taking the next variable in the
ordering and by assigning it a value consistent with pre-
viously assigned variables. If no value can be found for
the considered variable, the algorithm backtracks. In the
basic DFS scheme, it goes back to the previous variable
in the ordering and changes its value. In some refined
backtracking schemes, the algorithm jumps back to the
origin of the failure.

Our framework is totally asynchronous but we need
an ordering between related agents to apply the back-
tracking scheme which ensures completeness. In the fol-
lowing we present our distributed ordering method fol-
lowed by the IDIBT search process.

3.1 Distributed Agent Ordering

The practical complexity of a search process is
highly dependent on user’s heuristic choices such as
value/variable ordering. Usually these heuristics take
advantage of domain-dependent knowledges. Each
agent can use particular heuristics in the exploration of
its subproblem. But in the DCSP, agents must collabo-
rate to use an efficient ordering in the distributed search
process. We are using here DisAO, a generic method for
a distributed computation of any static agent ordering.
With this algorithm, agents cooperatively build a global
ordering between the subproblems. This ordering de-
fines a hierarchical relation between the agents.

3.1.1 Algorithm

In our system, each agent locally computes its posi-
tion in the ordering according to the chosen heuristic.
Concretely, each agent determines the sets�� and��,
respectively������� and����
 acquaintances, w.r.t.
an evaluation function� and a comparison operator��
which totally define the heuristic chosen. This is done
in the lines 1 to 2 of algorithm 1. Notice that the eval-
uation function� can involve some communication be-
tween the agents. To avoid a complex communication
behavior, it is better to use heuristics for which the asso-
ciated function� involves only local communications;
i.e., between neighbor agents.

After that, agents know theirchildren (��) andpar-
ents (��) acquaintances. During the search, they will
send instantiation value to��, and in case of dead-end,
they will backtrack to thefirst agent in��. To achieve
backtracking we need a total ordering on��. This is
done in the second part of algorithm 1 (lines 3 to 4).
Agents without children state that they are at level one,
and they communicate this information to their acquain-
tances. Other agents take the maximum level value re-

Algorithm 1: Distributed variable ordering
begin

% � split;
1 �� � �; �� � �;

for each ������ � � do
if (��������� �� ��	�
��) then �� � �� �
��������;

2 else �� � �� � ��������;

% �� ordering;
3 ��� �;

for (� � �� � � ����� ���� do
�� ����	���;
if (� � value:�; from:�) then

if (�� � �) then ��� �;

�� ��;
sendMsg(��, “value:��; from:self”);
sendMsg(��, “position:��; from:self”);
for (� � �� � � ����� ���� do

�� ����	���;
if (� � position:�; from:�) then ����
���� �;

Order�� according to����
�� ;
4 Extend�� ;

end

ceived from children, add one to this value, and send this
information to their acquaintances. Now, with this new
environmental information, each agent rearranges (total
order) the agents in its local�� set by increasing level.
Ties are broken with agent tags. These total orders will
be used during backtracking. Finally, for fitting each to-
tal order��, the constraint graph is extended with zero
or more additional edges (lines 4). These new edges are
tautological constraints. Their purpose is the enforce-
ment of completeness by local search space initializa-
tion in the forward exploration phases (see section 3.3).
We do not present details about this computation here.
In summary, each agent communicates its ordered��

set to its parents. These agents can locally modify their
sets by adding lower (resp. higher) agents in their��

(resp.��). This process is repeated until stabilization;
i.e., no more� modification.

Figure 2 gives an illustration of this distributed pro-
cessing for themax-degree variable ordering heuristic.
On the left side of the figure a constraint graph is rep-
resented. For achieving the max-degree heuristic, algo-
rithm 1 must be called by each agent with the function
�����
�� � ���� (where�� is the set of acquaintances
of ���
�) and the comparison operator�� � ���. In
case of ties, this operator can break them with agent tags.

Once algorithm 1 has been applied, the static vari-
able ordering obtained is the one presented on the right
side of Fig. 2. Arrows follow the ordering relation,
which represents the instantiation transmission order of
the search procedure. The link between���
� and
���
� comes from the interconnection of���
�’s
parents. ���
� will go back to�� then to�� if

X2

X3

X4

X6

X1

X5

X7

DCSP:

X7

X1

X2

X4 X5

X2

X1

X2

X4

X2

X6

level 2

level 3

level 4

X3

max−degree ordering:

level 1

Figure 2. Distributed variable ordering

���
� has no remaining solution. During forward ex-
ploration, a change in�� will be reported to�� and to
��. These agents will then get back their whole search
space.

3.1.2 Analysis

In the worst case, w.r.t. a fully connected network with
� agents, the split of� uses����. The exchange of
value among the path of� agents use����� messages;
i.e., level one agent sends� � � messages, level 2
agent� � � and so on. These messages can overlap,
this bring���� local operations for performing these
transmissions. The transmission ofposition messages
is similar but from the top to the bottom. The extension
of the ordering in the hierarchy adds no link but requires
����� message to exchange�� sets. According to that,
DisAO uses���� local operations and����� messages
in the worst case2.

PROPERTY3.1 ()
	��, if
�� � �� such that�� � �� and�� � ��, then

�� � �� or
�� � �� .

We have�� � ��� �� and�� � ��� �� with
�� � ������ and�� � ������. By definition we have
������������ or ������������ then by�� extension
we have�� � �� or�� � ��. We can follow the pre-
vious reasoning by considering�� � �� or�� � ��.

PROPERTY3.2 ()
For a problem� � �� ��� ����, if ����� is con-
nected, the directed graph computed with DisAO has an
unique agent such that�� � .

The proof is straight-forward, if we consider 3.1.
In a DisAO ordering, there is a unique source and the
hierarchy is made of subproblems (involving several
agents) organized in a global tree.

2Of course for predefined applications, the DisAO pre-processing
step could be avoided.

Finally, we can remark that in the resulting ordering,
at a particular level, unconnected agents are indepen-
dent. Connected ones are linked by tautological con-
straints. This means that their information will just ini-
tialize the search space without loosing current instanti-
ation. Hence, in each level, agents can perform parallel
computations at the same time. This observation will
be important when we will consider the complexity of
distributed search.

3.2 IDIBT: Distributed and Parallel search

To add parallel search in our distributed framework,
we must divide a search space in independent parts. In
each part a distributed backtrack search will take place.
In the system, we will have two kind of agent with dis-
tinct behaviors.

� a ����� agent, which will partition its search
space in several subspaces called���
�

� the remaining agents which will try to instantiate in
each context.

{a,b} {a,b}

{a,b} {a,b}

{a,b} {a,b}

{b}{a}

X2 X3

X4

X1
A0

A2

A3

X2

X4

X3

Context 1 Context 2

A1

X1
A0

A1 A2

A3

Figure 3. Interleaved search

For illustration purpose, consider the figure 3. Here
the four-variables problem of figure 1 is presented for
exploration between four agents using two resolution
context. The source agent�� will use value� in the first
context and value	 in the second context. According
to property 3.2, this agent is unique. Remaining agents
will keep their local search space��� 	�.

There is no duplication of processing units here.
Agents will successively consider search in the different
contexts. This interleaving will be achieved by message
passing operations. The context of resolution added
within each message will allow an agent to successively
explore the disjoint search spaces.

3.2.1 Algorithm

The global scheme of the search process is the following
(see algorithm 2 and data structure below). In the initial-
isation phase (lines 1 to 3), the source agent divides its
search space in � subspaces. Remaining agents will
use the same space� in each context. In each context
� each agent instantiates its variable with respect to its
parent constraints. Each timestamp counter!�����
�
is then set to one. After instantiation, the agent informs
its children of its chosen value (message content starting
by “infoVal”).

Interactions start at line 4. Here each incoming mes-
sage is interpreted in a particular context� (lines 5 and
6).

An “ infoVal” message from acquaintance� is pro-
cessed as follow (line 7). First the reported value
is stored in!������� then the associated timestamp
!�����
���� is incremented. Finally the agent tries to
get a value compatible with the new message. If a com-
patible value is found, an “infoVal” message with con-
text � informs children of the new choice3. If no value
satisfies the constraints with the agents in��, a back-
track message is sent in context� to the nearest parent
(message content starting by “btSet” in line 8) . This
message includes the local ordered set�� of parent ac-
quaintances, their level positions and agent beliefs about
their timestamps!�����
�����.

The receiver of the backtrack message (line 9),
checks the validity of it by comparing its timestamp with
the reported one and by checking that shared acquain-
tances are reported with the same timestamps too (func-
tion ���
�
������
��"). In case of different values,
the sender and/or the receiver have not yet received some
information. Backtrack decision could then be obsolete
or badly interpreted. Here IDIBT differs from the orig-
inal DIBT [6] which considers consistency between the
receiver’s value and the belief about it enclosed in the
message. This assumption is correct if we assume that
the network do not have different transmission time be-
tween distinct agents. However if transmission time are
heterogeneous, the global test of IDIBT is more safe.

When the comparison matches, there are two possible
behavior. If the agent can find a compatible�"# ����
in the remaining search space, this value is addressed to
�� in line 10. If such a value cannot be found, we must
consider two cases. The first one is an agent without
possibility for backtracking, (line 11). This agent has de-
tected problem insolubility in the subspace�. A message
������
��� in context� is sent to aSystem agent. This
extra agent stops the distributed computation in context

3Of course, current value��� �
��� can already satisfy the con-
straints with�, in which case, information of children is useless.

� by broadcasting astop message in the whole multi-
agent system. With this information agents can stop the
processing of context�messages. Ifall the context have
no solution, the computation is finished. In addition, it
can also stop the computation when a solution is found.
A global state detection algorithm [1] is used to detect
whole satisfaction. Global satisfaction occurs when in
a particular context�, agents instantiated according to
parent constraints are waiting for a message (line 5) and
when no message with context� transits in the commu-
nication network; i.e., each local instantiation safisfies
the local constraints.

If there exists a parent for backtracking, the agent ad-
dress a backtrack message to the nearest agent in the or-
dered set union of�� and the sender set (line 12). This
new set is attached to the message with related informa-
tion about agents for ensuring continuity of graph-based
backjumping [2]. Now the sender is waiting for an in-
coming message, but if the goal is to maximize satis-
faction in the system, the agent could get back its initial
local search space and a value compatible with previ-
ous ones. This simple addition is a simple way toward a
max-sat strategy.

Primitives and data structures
IDIBT uses the following structures and methods:

� � is the number of resolution context.self is
the agent running the algorithm,����	
� is its do-
main in context�. �"# ���� current value in the
context�. �"��
� current instantiation number in
context�. This value will be used as a timestamp
in the system.!������ stores parent acquaintances
values in context�. !�����
��� stores for each
parent the current instantiation number, in the right
context.

� �
����
"�� ��, if a compatible value is found,
�"��
� is incremented. If
"�=’info’, returns the
first value in����	
� compatible with agents in��,
starting at�"# ����4. If
"�=’bt’, returns the
first value after�"# ���� in ����	
� compatible
with agents in��.

� first��� returns the first element of an ordered set
�. With our application, returns the nearest agent in
�.����s1�s2� takes two ordered sets and returns
their ordered union.

� ���
�
������
��"��
� ����
�# �����
� ��,
�
 contains an ordered list of agents,

4The search for a new compatible value starts from the current
value for keeping the maximum of previous work. For ensuring com-
pleteness, the values that are before��� �
��� in ������� are put at
the end of�������.

����
�# �����
 contains for each agent
in �
 timestamps computed by the sender of the
current message. This function ensures that, firstly
reported timestamp forself is the good one; i.e.,
equal to�"��
�, secondly that for the shared
acquaintances agents, reported timestamps are
the same than in!�����
���. This mechanism
ensures that agents have the same beliefs about the
shared parts of the system.

� The previous ������ function becomes
���������
��� ��, which sends message� to
the agents in��
 in context�.

3.3 Analysis

Completeness

PROPERTY3.3 ()
When an agent�� changes its instantiation, agents��

such that
�� � �� will reconsider their whole search
space.

The proof is direct if we consider the algorithm 2.
When an agent changes its value,�� agents receive
it. These agents can keep their current instantiation
or change it, but they always resume their local search
space. By propagation of instantiations between agents,
3.3 is verified.

PROPERTY3.4 ()
If �� changes its instantiation according to abtSet mes-
sage initially upcoming from�� , each agent�� such
that
�� � �� � �� has exhausted its search space.

Consider an�� which contradicts 3.4. Since we
have a path between�� and�� , �� will be included in
the ordered union of�� sets which gives the successive
receivers of backtracking message. Now since� � has
received the message and since
�� � ��, �� has
exhausted its search space too.

Properties 3.1, 3.3 and 3.4 ensure completeness of the
exploration. They prove that according to the DisAO
computed ordering, backtracking between agents is
made in an exhaustive way.

Termination/Correctness
Termination is ensured by search exhaustivity and by

the fact that DisAO order is acyclic. The use of a state
detection algorithm [1] which stops the system when any
context� is stuck on a solution gives correctness. In-
terestingly the use of several context within IDIBT do
not significantly change the overhead brought by the

Algorithm 2: Interleaved Distributed Intelligent
BackTracking

begin
1 if (�� � �) then Split domain� in ������� ..

�������� ;
for (� 	 ��) do

if (��
 � �) then ������� � �;
2 ��� �
��� � getValue(info, c);

������ � 1;
sendMsg(��, “infoVal:��� �
���; from:self”, c);

3 ���� � ��
	�;

4 while (
������ � ��
	�) do
5 �� getMsg();
6 �� ��������;

if (� � stop) then ���� � ����;
7 if (� � infoVal:�; from:�) then

��
������ � �;
��
��������� ��;
��� �
��� � getValue(info, c);
if (��� �
���) then

sendMsg(��, “infoVal:��� �
���;
from:self”, c);

else
8 sendMsg(���	�����, “btSet:��; Val-

ues:��
����������”, c);

9 if (� � btSet:	��; Values:��������� �
�����)
then

if (contextConsistency(set, reportedValueCpt,
c)) then

��� �
��� � getValue(bt,c);
if (��� �
���) then

10 sendMsg(��, “infoVal:��� �
���;
from:self”, c);

else
11 if (�� � � and 	�� � �) then

sendMsg(�	���,
“noSolution”, c);
���� � ����;

else
��

����� �
��������� 	���;

12 sendMsg(���	����

������,
“btSet:��

�����; Val-
ues:��
���������� �
��������� �
�����”, c)

end

Chandy’s method. In fact it is easy to generalize the
method to manage the monitoring of the different con-
text without raising the message passing overhead; i.e.,
each monitoring message includes the status of the dif-
ferent contexts.

Complexity
Search complexity is exponential in the number of

variables. But in a distributed execution, rooms are open
to use the relative independence between subproblems.
This can enhance complexity results. In the following,
�!�� represents the set of agents with a computed level
� and� the highest level in the ordering.

DEFINITION 3.1 ()
A DisAO ordering is calledadditive if 		 � �!�� � � �
� � �, �
 agents�� �� � �!�� with � � � � � � � � 	

and�� � 	.

THEOREM 3.1 ()
A DCSP � with domain sizes�, using an additive
DisAO ordering has a worst case time complexity,

��

��

���

��!��� � ��

To prove that we must remark that with an additive
ordering, during backtracking, the union of two�� set
do not include two agents at the same level. Then a
backtracking occurs between distinct level and at each
time considers at most� values. The whole problem
is solved by considering at each level combinations of
values. Since at each level, agents are independent, the
number of possibilities is made by the sum of domains
size.

When the ordering produced by DisAO is not addi-
tive, the complexity of a backtracking depends on the
size of the longest path between agents. In the worst
case we have an����� complexity. We must remark
here that DisAO was not made to construct additive hi-
erarchies; its purpose was to add more parallelism by
extracting subproblems independence. Nevertheless, we
think that it must be possible to embolden parallelism
while maximizing the additive property. This is futur
work.

Remarks

� From distributed to parallel search: As we saw
in section 2.4, parallel exploration allows simul-
taneous explorations of disjoint subspaces. This

parallelism is achieved by duplication of process-
ing units. Here we benefit from the asynchronism
in the system. Since distinct agents can simulta-
neously consider and operate in different context,
IDIBT realizes a parallel exploration of the search
space too.

� Load balancing: When a particular context� de-
tects insolubility, the search within it is canceled.
In parallel search, the basic behavior when a sub-
space is exhausted is to rearrange the distribution of
the work between processing units. This is normal
since without such reallocation, some unit becomes
idle while others are still working hard. Such load
balancing process is automatic in IDIBT. In fact by
doing nothing else that stopping current search in
�, more cpu time and bandwidth are allocated for
remaining subspaces. Of course, it is still possible
to maintain � explorations, the source agent has
just to reallocate its subspaces.

� Ordered search: When DFS is used to find one so-
lution, heuristics are useful to order the successors
of a node. Within IDIBT, when the source agent
splits its search space, he can use heuristics to allo-
cate the best value as the first one in the first con-
text, then the second best one as the first one in
the second context, and so on. With this method,
promising subspaces are more rapidly explored.

4 Experimentations

We made our experiments on a network of Linux
workstations. The C++ algorithms use the MPI mes-
sage passing library [8]. In all these experiments, each
DCSP’s variable was dedicated to a single computer.

4.1 Randoms problems

With randoms problems, we expected no speed-up
upcoming from an exploration with several contexts.
Nevertheless, these regular problems are helpful to eval-
uate and to define the overheads. We solved randoms
problems with 15 variables, 8 values in each domain and
connectivity between variables set to 30%. The tightness
parameter has been changed from smallest to more im-
portant values, with a particular emphasis in the phase
transition area. Each point in our experiments repre-
sents the median value took between 25 instances. Each
instance was solved 5 times to limit the impact of mes-
sage interleaving. That means 125 experiments for each
point. Finally, each problem was solved with respec-
tively 1, 2 and 4 context of resolution.

4.1.1 Time

Figure 4 presents median time results. With one con-
text, IDIBT needs up to 1.69s. With two contexts, the
time peak is 1.99s and with four it raises up to 2.85s. So
as expected here, no speed-up came from the parallel ex-
ploration of these random problems. Nevertheless, this
figure gives the shape of the overhead with several con-
texts. We can see that easy soluble instances are more
difficult on several contexts than easy insoluble ones.

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

se
co

nd
(s

)
(m

ed
ia

n)

Tightness

Time n=15, d=8, p1=0.3

GBJ NC=1
GBJ NC=2
GBJ NC=4

Figure 4. IDIBT, time (median)

Interestingly, the overhead of � � � and � � �
is relatively small for problems located in the phase tran-
sition region. This result is confirmed by recent work on
interleaved search [9].

4.1.2 Message passing and local operations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
es

sa
ge

s
(m

ed
ia

n)

Tightness

Time n=15, d=8, p1=0.3

GBJ NC=1
GBJ NC=2
GBJ NC=4

Figure 5. IDIBT, message passing (median)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cc
he

ck
s

(m
ed

ia
n)

Tightness

Time n=15, d=8, p1=0.3

GBJ NC=1
GBJ NC=2
GBJ NC=4

Figure 6. IDIBT, constraint checks (median)

Figures 5 and 6 present respectively the amount
of messages and the amount of constraint checks per-
formed in the system.

With one context, IDIBT uses up to 5600 messages,
with two and four contexts it needs 6125 and 8851 mes-
sages. When we consider constraint checks, we have up
to 30939, 34560 and 44032 respectively with one, two
and four contexts. What we can say here is that explo-
rations look very close according to these parameters.
The previous observation about easy instances is rein-
forced here.

4.2 N-queens

In the second part of our experiments, we tried some
instances of the classical N-queens problems. These
problems have a nonuniform search space which autho-
rize spectacular speed-up in parallel search [11]. For
each instance we made 100 runs, the figure 7 presents
the time results (log scale median). The number of con-
text was set from one to eight.

We can see that 8-queens problem benefits from the
multi-context running. With two context, the speed-
up is the most important with 0.15s against 0.3s. The
limit is reached with five context and 0.24s. With the
10-queens problem multi-context is useless. Resolution
time is raising slowly with �. Finally the 16-queens
problem allows superlinear speed-up with two contexts
(0.41s against 1.09s). Here, when � is raising the be-
havior looks very chaotic. This was previously observed
by [11].

0.1

1

10

1 2 3 4 5 6 7 8

se
co

nd
(s

)
(m

ed
ia

n)

NC

N-queens

8-queens
10-queens
16-queens

Figure 7. IDIBT, N-queens time (median)

5 Conclusion

We have presented IDIBT, as a generalization of
DIBT a fully distributed asynchronous system for solv-
ing distributed CSPs. IDIBT can operate in heteroge-
neous networks where communications between agents
are randomly delayed (���
�
������
��" function).
More importantly, IDIBT allows simultaneous explo-
ration of disjoint search spaces.

From our experiments on random problems, we
learned two things. The first one is that for easy solu-
ble instances, the overhead of an exploration in several
contexts is important. At contrary, when the instances
are insoluble and easy, the relative overhead is limited
compared to a classical exploration.

For problems with nonuniform search space, we saw
as expected that our method can bring superlinear speed-
up over DIBT. This result is important for applications
where the accuracy of value ordering heuristics is lim-
ited and this, particularly at the beginning of a DFS
exploration. With these distributed problems, IDIBT
should be very effective.

The backjumping in the method uses the graph struc-
ture extended by DisAO to reach completeness. We
prove both completeness and termination of IDIBT.
Even if backjumping is systematic between related sub-
problems, the relative independence between agents can
be kept thanks to the DisAO ordering method. This
backjumping can be easily extended to implementcon-
flict directed backjumping [10].

Beyond the improvement of efficiency showed here,
interleaving of context within search seems promising.
In different context, several agents ordering could be
used. This could be an answer to the difficulty of mak-
ing efficient dynamic variable ordering in a distributed

system. Each agent could implement cooperation
between its local context by exchanging useful infor-
mations (instantiations, conflict-set, nogood, filtering
[4],. . .). Here the principal drawback of cooperative
frameworks (the cost of exchanging informations be-
tween processes) disappears since the exchanges occur
within each agent. We are currently exploring this way.

Acknowledgements
The author wishes to thank the INRIA/HP icluster
project for their computing facilities.

References

[1] K. M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems.TOCS,
3(1):63–75, Feb 1985.

[2] R. Dechter. Enhancements schemes for constraint pro-
cessing: backjumping, learning and cutset decomposi-
tion. AI, 41(3):273–312, 1990.

[3] S. W. Golomb and L. D. Baumert. Backtrack program-
ming. Journal of the ACM, 12:516–524, 65.

[4] Y. Hamadi. Optimal distributed arc-consistency. In
Fifth International Conference on Principles and Prac-
tice of Constraint Programming (CP’99), pages 219–
233, 1999.

[5] Y. Hamadi. Traitement des problèmes de satisfaction de
contraintes distribués. PhD thesis, Universit´e Montpel-
lier II, 1999. (in french).

[6] Y. Hamadi, C. Bessi`ere, and J. Quinqueton. Backtrack-
ing in distributed constraint networks. InECAI, pages
219–223, Aug 1998.

[7] W. Kornfeld. The use of parallelism to implement a
heuristic search. In P. J. Hayes, editor,Proceedings of
the 7th International Joint Conference on Artificial In-
telligence (IJCAI ’81), pages 575–580, Los Altos, CA,
24–28 Aug. 1981. William Kaufmann.

[8] M. P. I. F. MPIF. MPI: A message-passing interface
standard. Int. Journal of Supercomputer Applications,
8(3/4), 1994.

[9] N. Prcovic and B. Neveu. Recherche `a focalisation pro-
gressive. InJNPC, pages 191–204, 2000.

[10] P. Prosser. Hybrid algorithms for the constraint satis-
faction problem.Computational Intelligence, 9(3):268–
299, 1993.

[11] V. N. Rao and V. Kumar. On the efficiency of parallel
backtracking. IEEE Transactions on Parallel and Dis-
tributed Systems, 4(4):427–437, Apr 1993.

[12] M. Yokoo and K. Hirayama. Distributed breakout algo-
rithm for solving distributed constraint satisfaction prob-
lems. InICMAS, pages 401–408, Dec 1996.

