Improving the Precision of Equality-Based
Dataflow Analyses*

Erik Ruf

Microsoft Research
One Microsoft Way
Redmond, WA 90852-6399 USA
erikruf@microsoft.com

Abstract. We present two new, orthogonal techniques for improving the
precision of equality-based dataflow analyses. Subtype expansion models
objects at a per-type granularity, enabling a form of subtype-restricted
equality constraint, while mutation tracking uses a simple effect analy-
sis to avoid a class of false aliases induced by the bidirectional nature of
equality constraints. The utility and costs of these techniques are demon-
strated in a context-sensitive interprocedural optimization whose static
precision improves by 6-600% when our techniques are applied.

1 Introduction

Equality-based dataflow analyses have become increasingly popular due to their
simplicity and efficiency. Such techniques provide flow-insensitive information
at a low cost in implementation effort and analysis execution time. Applications
include binding time analysis [Hen91], pointer analysis [Ste96b,Ste96a,LH99], es-
cape analysis [Ruf00], call graph construction [GDDC97], synchronization elim-
ination [Ruf00], and thread-specific storage allocation [Ste00].

The benefits of equality-based techniques are offset by a loss of precision with
respect to other flow-insensitive techniques such as set-based analysis. A vari-
ety of research has addressed this issue. [Ste96a] explicitly models field values
within record data structures. Interprocedural context sensitivity has been added
both by instantiation of procedure summaries at call sites [LH99,Ruf00] and by
deferred traversal of explicit instantiation constraints at query time [FRDOO].
[Das00] models assignment with a combination of equality and unidirectional
flow constraints, while [DGC98] limits the indegree and outdegree of nodes in-
volved in unidirectional constraints by dynamically switching to equality con-
straints.

This paper describes two new techniques for achieving additional precision
in equality-based systems:

* This document is a preprint of an article to appear in Static Analysis Symposium
(SAS) 2002, and is copyright (© Springer-Verlag.

— Subtype expansion models individual objects at a per-runtime-type gran-
ularity, avoiding overly conservative equality constraints in the face of pro-
gram type restrictions (static typing, dynamic up- and downcasting, virtual
function binding).

— Mutation tracking distinguishes between reads and writes of objects reach-
able from formal parameters, avoiding the propagation of a class of false
(infeasible) aliases from procedure summaries to call sites.

These techniques are largely orthogonal to one another and to the prior
work referenced above. We demonstrate this by describing and assessing our
techniques in the context of a system whose base interprocedural framework
configuration performs field modeling and procedure summary instantiation. For
a sample optimization that removes unnecessary downcast checks, the static and
dynamic fractions of total checks removed are improved by 6-600% and 0-4400%,
respectively.

2 Background

The techniques described in this paper are implemented in the Marmot na-
tive compilation system for Java [FKR*00]. Marmot implements most Java 1.1
semantics and libraries [GJS96], but does not support dynamic loading and
limits the use of reflection. The resulting “closed-world” assumption enables a
number of whole-program analyses, including an equality-based, flow-insensitive,
context-sensitive analysis with method specialization [Ruf00]. This section briefly
summarizes relevant aspects of this platform, which we will call the base analysis.

Runtime values of reference type (objects) are modeled by a union-find data
structure called an object representative! that contains a list of attributes (ar-
bitrary elements of dataflow lattices) and a mapping from field names to object
representatives that represent field and array element values. Some attributes,
such as static (indicating that the modeled runtime values may be transitively
reachable from a static field), are recursively applied to an object reference’s
fields, while others, such as synchronized (indicating that an object may be the
target of monitor lock/unlock operations) are not.

Intraprocedural analysis consists of traversing a method body in the context
of a local symbol table that maps formal and local variables to new object rep-
resentatives. The traversal evaluates expressions (which may create, dereference,
or add attributes to object representatives), assignments (unifying [ASU86] the
object representatives for the left and right hand sides), and method invoca-
tions. Nonrecursive invocations are modeled by a mapping algorithm similar to
type instantiation (see Figure 1) that propagates aliases and attributes from
the target method summary to the call site. Recursive invocations simply unify
formal/actual, return/result, and thrown/caught representatives.?

! Object representatives were called alias sets in [Ruf00].
2 Optionally, we could obtain additional precision by also using the mapping algo-
rithm at recursive call sites. Doing so would require iteration over such sites in each

mapValues (summary, site) {
memoTable = new MemoTable
for (i=0; i<|summary |; i++)
map (summary [i], site[i], memoTable)
}

map(repSum, repSite, memoTable) {
if (repSum.isStatic)
unify(repSum, repSite)
else if (memoTable.containsKey(repSum))
existing = memoTable[repSum]
unify(existing, repSite)
else
memoTable [repSum] = repSite
repSite.addAttribs(repSum.attribs)
foreach (fieldname fn in repSum.fieldMap.keys)
if (repSite.fieldMap[fn]l==null)
repSite.fieldMap[fn] = new ObjRep
map (repSum.fieldMap[fn], repSite.fieldMap[fn], memoTable)

Fig. 1. Pseudocode for mapping procedure

Interprocedural analysis performs two walks of a topologically sorted strongly
connected component (SCC) decomposition of a conservative static call graph.
In the upward (callee—-caller) propagation phase, the intraprocedural analysis is
applied to each method in the current SCC, after which a signature, or method
summary is extracted from each method’s symbol table. An optional pruning
operation compresses each summary by removing object representatives that
cannot induce aliasing or attribute propagation at call sites. No fixed point
iteration is required because recursively dependent summaries share object rep-
resentatives.

The downward (caller—callee) interprocedural analysis is similar, except that
the direction of propagation is reversed, and only attributes, not aliases, are prop-
agated. After all of a method’s call sites are processed, its dataflow information
is complete, enabling transformation. Some versions of our analysis also per-
form method specialization, in which method signatures and bodies are copied
to enable call-site-specific transformations.

Because the mapping procedure does not employ k-limiting, the analysis
could consume exponential space and time with respect to program size. How-
ever, given that few large recursive data structures are constructed without it-

call-graph SCC under an extended-occurs-check predicate [Hen93]. Our preliminary
experiments with such an approach have experienced scalability issues in the analysis
of large SCCs.

eration or recursion, neither of which generate additional object representatives,
this is unlikely in practice.

3 Subtype Expansion

3.1 Motivation

Our first technique focuses on the granularity at which the analysis models ob-
jects. In the base system, runtime objects are represented by static object rep-
resentatives consisting of list of attributes describing the object and a mapping
from fieldnames to object representatives. All forms of merging, including lo-
cal assignment, exception dispatch, and the interprocedural value mapping that
occurs at call sites, are implemented via unification® of these object represen-
tatives. Similarly, all forms of attribute assignment, such as marking an object
as escaping or as having a particular runtime type, affect the attribute list(s) of
their argument object representative(s).

This monolithic representation becomes overly conservative when subtyping
is introduced. In an object-oriented language, both explicit (e.g., downcasting,
instanceof) and implicit (e.g., virtual function and exception dispatch) opera-
tions can restrict the runtime types of objects. This restriction can be used to
limit the scope of merging or attribute assignment involving such objects.

S1: return o.toString(); ret |-

}

static Object myToString(Object o) { E
Float

Fig. 2. Virtual call example. The base analysis infers an alias between o and the value
returned by S1.

Figure 2 shows a simplified version of a case that arose in [Ruf00]. During
the process of constructing a summary for method myToString, a virtual call
with selector Object.toString and a receiver argument of static type Object is
detected. Given that the argument’s dynamic type is bounded only by the type
Object, all known summaries of toString are applied. Most such applications
are benign; e.g., Integer.toString and Float.toString merely return new
string objects that point to new character arrays. However, String.toString
is specified [GJS96] to return its receiver argument (no copying allowed), so
applying it causes the object representatives for argument o and return value r
to be unified, thus aliasing the receiver and result values, even when the receiver

3 Our implementation performs unification and /or mapping as the merging operations
are processed. However, our exposition applies equally well to systems that construct
explicit constraints to be solved later.

Object G = ... //escapes
Object x = ... | G
if (...

S2: G.f = (T1)x;

else

Object y = (T2)x;

escaping

Fig. 3. Escape example. The base analysis marks both x and y as escaping.

is not a String. This would make it impossible, for example, to remove the
dynamic type check in the expression (String)myToString(o), even though
myToString can only return strings.

Similar issues can arise in purely intraprocedural scenarios, and in analyses
whose purpose is other than type propagation. For example, in Figure 3, if types
T1 and T2 are unrelated in the class hierarchy, the fact that (T1)x escapes should
not cause y to escape, but (under the base analysis) it does.

3.2 Solution

The common theme in the above examples is that multiple runtime objects
described by a single analysis-time object representative may reach different
operations depending on their [the objects’] runtime types. For example, only
string objects o will cause an invocation of String.toString at (Fig. 2, S1),
and only objects of type T1 will escape at (Fig. 3, S2).

Subtype expansion models this behavior by changing the granularity at which
runtime objects are statically modeled, allowing an object representative to ex-
pose multiple union-find data structures.

In one maximally-general implementation, each top-level object representa-
tive carries a vector of at most |7 | sub-representatives, where 7 is the set of
all reference types in the program. Each sub-representative models the object’s
behavior (i.e., carries attributes and a field mapping) at a set of types 7; € 7
where all 7; are disjoint and |J; 7; = 7 .4 Unification of object representatives
01 and oz “at” a type T € 7; consists of unifying the sub-representatives 01.[7;]
and 02.[7;]as well as all pairs of object references (r1.fields[f], ro.fields[f]) where
T declares or inherits a field f. Such a representation allows for arbitrary type-
based restriction of value flow. For example, it can precisely represent {¢ | ¢ € T},
which could be imposed on the type of y in a catch clause guarding x = (T)y.

Our prototype implementation achieves a lower space cost by precisely mod-
eling only restrictions to subtype hierarchies (type ideals) rather than arbitrary
sets of types. Our representation mirrors the the underlying type hierarchy. Each

4 The partitioning of 7 into subsets 7; can take place statically or dynamically. In the
static case, maximal precision is obtained by choosing 7; of size 1. In the dynamic
case, precision is maintained by splitting existing subrepresentatives when a finer-
grained restriction is required.

object representative is associated with a single reference type R, and carries an
attribute list, a field mapping, and a “subtype” mapping (from immediate sub-
types of R to object representatives). Field mappings in “subtype” representa-
tives share state (mappings for inherited fields) with those of their supertypes.®
Each runtime value is modeled by an object representative whose associated type
is Object. Unifying two such representatives at a type 1" consists of unifying the
subtype representatives associated with 7', which will induce pairwise unification
of representatives of fields directly implemented by types 7" > T.

The implementation of attributes under subtype expansion differs slightly
from that under the base analysis (as described in Section 2). Transitive reacha-
bility attributes such as static now recurse over both field and subtype represen-
tatives, while object-level attributes such as synchronized recurse over subtype
representatives. A third variety of attribute that applies only to a single ob-
ject representative can be used to represent information that is relevant only at
a particular type such as a boolean flag that models whether the represented
object is allocated at a particular type.

(virtual call example)

(escape example)

Fig. 4. Example representations with subtype expansion

Figure 4 shows the representation of the example programs in Figures 2 and 3
when subtype expansion is used. In the virtual call example, only string-valued
instances of o can be returned, even though o’s static type is Object. In the
escape analysis example, only subtypes of T1 escape, despite x’s declaration at
type Object.

The primary costs of subtype expansion arise from the increased size of object
representatives and the increased number of unification operations required. In
the asymptotic worst case, these may be multiplied by the size of the class

5 This implementation can be viewed as being “factored” with respect to subtypes,
but not with respect to fields. A more efficient representation might avoid this du-
plication; e.g., by making field maps first-class, unifiable datatypes and allowing a
subtype representative to reference its parent’s field map.

hierarchy and (in our implementation) the maximum number of fields visible to
a class.

4 Mutation Tracking

4.1 Motivation

p (f1, £2, £3, f4, £5) {
S1: f1.f = £2;
S2: x = (...) ? £3.g : f4.h;
83: synchronized(x) { ... }
S4: return £f5

}

= p(al, a2, a3, a4, ab);

Fig. 5. False alias example

Our second technique addresses the bidirectional nature of equality con-
straints. Within procedures, a typical equality-based analysis ensures that any
two object references that could represent the same runtime value constrained to
be equal. Interprocedurally, it ensures that call-site object references (and their
attributes) are instances of the corresponding references in the callee. This can
result in unwanted aliasing.

Consider a call to procedure p, whose code and method summary are shown
in Figure 5. Under our base analysis, the alias created in statement S1 is reflected
at the call site by making a2’s representative reachable from that of a1 (via field
f). Similarly, 83 causes the object reference associated with a5 to be unified with
that of r. These operations are sufficient to represent (at the call site) the aliasing
effects of calling p. However, the analysis also unifies the representatives of £3.g
and £4.h because they appear in a common context, namely S2:x, thus ensuring
the existence of a common representative for a3.g and a4.g, marked with the
“synchronized” attribute. In fact, only the attribute need be propagated—the
call does not induce an alias between a3.g and a4.h.

A more complex situation arises with container objects such as Vector and
Hashtable, instances of which could contain themselves, thus causing the rep-
resentative for this to be unified with those of the elements of the array(s)
used to implement the container. For example, invocations of Hashtable.get
and Hashtable.equals cause the analysis to infer caller-side aliases between the
table, its keys, and its values, even though neither procedure mutates the table.

4.2 Solution

Mutation tracking avoids false actual/actual aliases by distinguishing between
two kinds of equality constraints. Some constraints, such as that inferred for
statement S1 in Figure 5, add a potentially new path (alias) from one caller-
side object to another. For correctness, such constraints must be reflected to
the call site when the method summary is applied. Other equality constraints
arise merely because multiple formal-reachable representatives reach a common
context (e.g., Figure 5, statement S2). While such constraints are necessary for
the propagation of attributes, they do not induce any new paths between caller
objects and thus should not induce caller-side constraints.

Our implementation of mutation tracking distinguishes these cases by adding
an optional mutation attribute to the object representative data structure. Mu-
tation attributes are recursively propagated across child fields and (if subtype
expansion is used) child types. Whenever the intraprocedural analysis encounters
a field or array element update, it sets the mutation attribute of the representa-
tive for the new value, representing the fact that the new path(s) represented by
the resulting unification operations arose due to mutation rather than context
sharing.

Mutation attributes are used to limit alias propagation at call sites. This
requires changes to the processing of procedure invocations. At nonrecursive call
sites, the mapping process of Figure 1 is changes as follows: a callee representative
f is added to the memo table only when it

1. is reachable from the return or thrown representative, or
2. transitively reaches a representative having the mutation attribute

Note that even when a representative is not added to the memo table, its at-
tributes are still propagated.

In the example of Figure 5, the representative shared by £1.f and £2 will have
the mutation bit set, forcing unification of al.f and a2, with the result having
the mutation attribute. The representatives for r and a5 are unified because
£5’s representative is returned. The representative for x is neither returned nor
marked as a mutation, As shown in Figure 6, the representatives for a3.g and
ad.g are both marked with the synchronized attribute, but are not unified.

The treatment of recursive calls need not be changed; unifying corresponding
caller and callee object representatives as before is sufficient. Doing so preserves
the property that no fixed point iteration is required, but may result in the
propagation of some false aliases within strongly connected components of the
call graph.

DO
Si=3e
SO

Fig. 6. False alias example with mutation tracking

Alternatively, the analysis can use the same criteria for justifying unification
at recursive calls as is used for justifying memo table insertion at nonrecursive
calls. However, unlike the nonrecursive case, here the algorithm must make its
decision with incomplete knowledge, as the analysis of the callee procedure may
be incomplete. This requires iteration over all recursive calls in the current SCC
until no more call-site unifications can be performed. We have implemented and
assessed both of the above techniques.

For nonrecursive calls, the additional tests (1) and (2) above can either be
computed in constant time or are already performed as part of the pruning
process. In the case of recursive calls, item (2) requires an additional search of
the formal representatives. If required, iteration only reprocesses formal/actual
pairs where unification has been deferred.

5 Assessment

5.1 Sample analysis

We tested our improvements on a simple prototype analysis that models runtime
types of objects. Type propagation is an interesting application for equality-
based techniques because (unlike the more common application, escape analysis)
it is a unidirectional problem, in which the bidirectional nature of equality-based
techniques leads to additional imprecision (often called “backflow”).

For the sake of simplicity, we use the analysis to transform only explicit down-
cast operations, and do not perform specialization on the downward pass. All
versions of the analysis make use of the intermediate representation described in
Section 3.2.° On the upward pass, constants and objects returned by construc-
tors carry their runtime type in the form of an allocated annotation on the object
representative for the appropriate subtype of Object. On the downward pass,
each explicit downcast test (on type T') is checked: if all allocated annotations on

5 This choice improves the precision of our assessment by avoiding accidental differ-
ences introduced by representation changes, but does exact a price in analysis time
for versions not making use of the subtype expansion capability.

the operand’s (transitive) “subtype” children are on object references for types
T' < T, the test is removed.

5.2 Benchmarks

Table 1. Benchmark programs

name meths|stmts checks

static| dynamic
_213_javac| 2091|33319| 321(6.41E406
_202_jess | 1541|20703 95|1.51E4+07

-209_db 799| 9268| 42|5.32E4-07
_228_jack | 1043|17825| 122|5.70E4-06
jlex100 637(11413| 67|1.14E4-08
javacup 948|17786| 434|1.49E4-06

We tested our techniques on six programs (described in Figure 1) chosen
because they either perform a large number of downcast check operations or
make extensive use of object-polymorphic container types.

The analysis and optimization were implemented in the Marmot [FKR00]
optimization pipeline immediately following initial parsing and cleanup, but be-
fore inlining, local type propagation, etc. Marmot is a whole-program compiler;
the optimization was applied to the user program and most non-native library
methods (a few methods involving low-level synchronization, etc. were explicitly
modeled and left untransformed).

We tested six distinct configurations of the prototype. The “base” configu-
ration enables the analysis without without extensions. The remaining configu-
rations selectively enable combinations of three techniques: “s” denotes subtype
expansion, “m” denotes mutation tracking, and “f” denotes fixed point iteration.

All testing was performed on a 1.7GHZ dual-processor Intel Xeon processor
with 1GB of RAM under Windows XP Professional, using the Marmot gener-
ational copying collector with a 256MB heap. All of the benchmark programs
executed deterministically, so all operation counts are precise; timings are the
average of multiple executions.

5.3 Precision

Figure 7 shows the fraction of static and dynamic downcast checks for each
benchmark program and configuration.” With the exception of jlex100, our
techniques removed at least 10% more static checks than the base analysis, with
subtype expansion responsible for the majority of the gain. Mutation tracking

7 Absolute data are available in the Appendix.

10

100.00% 100.00%

90.00% -) 90.00% |
80.00% - H 80.00% - [
70.00% o - 70.00% -
Obase
60.00% + 1 60.00% - - H H T ms
in 50.00% 1 om
50.00% 1] - Ot
40.00% - Esm
40.00% et

30.00% -
30.00% 4
20.00% -
20.00% 4

10.00% -
10.00% T
—‘7 0.00% T T T T T
0.00% <} 5 O & N L
K A R T O
& o N & S Q O/ 5+ o
¢ F 95 0 TP
’L\".’ > g,}/ w > ¢ gr}/ &7 QQ'Q/ &7
'?on/ G)Qéa’ & 6&"/ & g LA
(static) (dynamic)

Fig. 7. Fraction of cast check operations removed

improved upon the base analysis slightly on javac and jlex100; iterated mu-
tation tracking improved jess. Adding mutation tracking to subtype expansion
had little effect unless iteration was enabled, where it had significant effects on
four of six programs.

The improved static precision had little to no dynamic effect in the programs
db, jack, and jlex, where the base analysis already achieved excellent results.
In the remaining programs, substantial improvements were obtained, with an
additional 15-69% of dynamic checks removed.

Given that the sample analysis emphasized type precision rather than alias
effects (which would be more important in, e.g., an escape analysis), it is not
entirely surprising that most of the measured improvement came from subtype
expansion. More interesting, perhaps, is that mutation tracking exposed addi-
tional opportunities only when iteration was used, suggesting that false aliases at
potentially recursive call sites are more problematic than those at nonrecursive
sites. This effect may be due to the use of dynamic object-based polymorphism
to implement homogeneous containers (vectors and hash tables) where static
parametric polymorphism would suffice.

5.4 Execution times
The primary purpose of this study was to evaluate the precision improvements

available via our techniques, not their value in optimization. Nonetheless, we did
capture execution times, and found that they were reduced by 1-20%, but the

11

degree of improvement was not well correlated with the dynamic removal counts.
This information, combined with the knowledge that Marmot’s checks are quite
efficient, suggest that other effects, such as altered instruction schedules and
register pressure changes, may be responsible for much of the improvement.

5.5 Analysis times

Table 2 gives relative analysis time costs for the various configurations of our
analysis. For the most part, analysis times grew by less than 60%, but some
outlying values did raise concerns:

— The additional cost of subtype expansion strongly depends on the representa-
tion used. Our prototype representation (see Section 3.2) factors attributes,
but requires explicit instantiation of shared field representatives when a type
restriction occurs. This is problematic for programs having many fields of
reference type, and would need to be addressed in any serious implementa-
tion.

— For javac and jess, the cost of mutation tracking with fixed point iteration
is significant. Given that relatively few call sites are visited multiple times
during iteration, we suspect that much of the cost lies in searching callee-side
signatures to determine if a unification operation is required.

Table 2. Relative analysis times (base=1)

name s | m | mf |sm | smf
spec_213_javac|5.43|1.01|13.73|5.84|22.33
spec_202_jess [1.16{1.06| 5.67|1.23| 3.17
spec_209_db 0.96(1.11| 1.37(1.02| 1.00
spec_228_jack [0.38|1.04| 1.58|0.39| 0.47
jlex100 1.07(1.04| 1.15|1.07| 1.15
javacup 0.96{1.03| 1.55|0.99| 1.09

6 Related Work

6.1 Precision of equality-based analyses

Precision improvements for equality-based analyses can be broadly grouped into
two categories. One group of techniques refines the granularity at which individ-
ual objects are modeled (e.g., by adding equality representatives for individual
fields [Ste96a]). This finer granularity allows for a larger set of equivalence classes,
some of which may refer only to some “aspects” of an object. Subtype expansion
belongs to this category.

12

Another group of techniques relies on avoiding equalities where possible.
Summary based context sensitivity does this at call sites, where equality in the
callee need not induce equality in the caller. Mutation tracking is merely a way
to avoid a specific class of such propagation. Other variants combine equality and
flow constraints. Das’s OLF technique[Das00] is of particular relevance in that it
preserves flow directionality only for top-level interactions between objects, and
requires equality for “content” properties such as pointer targets. Our techniques
lack the precision of flow constraints, but do have the advantage of applying
equally to all aspects of an object. Combining our techniques with OLF might
yield interesting results.

6.2 Other context-sensitive analyses

A number of non-equality-based, context-sensitive flow analyses have been de-
veloped in recent years. These systems either construct and explicitly instantiate
method summaries [CGST99,WR99,LH99,CRL99,Ruf00] to avoid pollution from
multiple call sites or add instantiation constraints and flow polarities to enable
context-sensitive queries after the initial analysis is complete [FRDO00,RFO01].
In both cases, adding subtype expansion should be straightforward, as it only
requires changes to the object representation and not to the propagation of
constraints. Mutation tracking, on the other hand, adds a new variety of in-
traprocedural information that guides constraint propagation at call sites, and
thus might require additional modification.

7 Conclusion

We have presented two new, orthogonal techniques for improving the precision
of equality-based dataflow analyses:

— Subtype expansion extends the static object representation to model
equality between objects viewed at a particular shared subtype (or subtype
ideal). This is similar to the extension of simple equality models with ex-
plicit representatives (types) for object fields, but operates in an orthogonal
dimension. The extension of unification and context-sensitive call mapping
to the expanded representation is straightforward, suggesting that systems
using flow dependences could be similarly extended. Practical application
of subtype extension will require additional experimentation with preci-
sion/complexity tradeoffs in the representation of subtype-specific informa-
tion.

— Mutation tracking explicitly models the mutation of state reachable from
formal parameters, avoiding a class of false aliases induced by the bidirec-
tional nature of equality constraints. This technique applies primarily to
summary-based context sensitivity techniques where the absence of muta-
tion can be used to avoid the propagation of an alias or other dependency
from a function to its caller(s). When combined with fixed point iteration,
mutation tracking can provide a coarse-granularity form of flow directional-
ity at recursive call sites.

13

Acknowledgements

We thank the ex-members of the Advanced Programming Languages group at
Microsoft Research for developing the Marmot compiler infrastructure, and Todd
Knoblock, Bjarne Steensgaard, and Manuvir Das for interesting and relevant
conversations.

References

[ASUS6]

[CGST99]

[CRLYY]

[Das00]

[DGCIS

[FKRT00]

[FRDOO]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA, USA, 1986.
Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar,
and Sam Midkiff. Escape analysis for Java. In Proceedings of the 14th
Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA ’99), November 1999.

Ramkrishna Chatterjee, Barbara G. Rynder, and William A. Landi. Rele-
vant context inference. In Proceedings 26th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 133146, January
1999.

Manuvir Das. Unification-based pointer analysis with directional assign-
ments. In Proceedings of the SIGPLAN 2000 Conference on Programming
Language Design and Implementation, pages 35-46, 2000.

Greg DeFouw, David Grove, and Craig Chambers. Fast interprocedural
class analysis. In Proceedings 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 222-236, 1998.

Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and
David Tarditi. Marmot: An optimizing compiler for Java. Software: Practice
and Ezperience, 30(3):199-232, March 2000.

Manuel Fahndrich, Jakob Rehof, and Manuvir Das. Scalable context-
sensitive flow analysis using instantiation constraints. In Proceedings of
the SIGPLAN 2000 Conference on Programming Language Design and Im-
plementation, June 2000.

[GDDC97] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph

[GJS96]

[Hen91]

[Hen93|
[LH99]

[RFO1]

construction in object-oriented languages. In Proceedings of the 12th Con-
ference on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA ’97), pages 108-124, October 1997.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
The Java Series. Addison-Wesley, Reading, MA, USA, June 1996.

Fritz Henglein. Efficient type inference for higher-order binding-time analy-
sis. In Functional Programming and Computer Architecture, pages 448-472,
1991.

Fritz Henglein. Type inference with polymorphic recursion. ACM Transac-
tions on Programming Languages and Systems, 15(2):253-289, April 1993.
D. Liang and M. J. Harrold. Efficient points-to analysis for whole-program
analysis. In Proceedings FSE’99, pages 199-215. ACM, 1999.

Jakob Rehof and Manuel Fahndrich. Type-based flow analysis: from
polymorhphic subtyping to CFL-reachability. In Proceedings 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
January 2001.

14

[Ruf00]

[Ste96al]

[Ste96b]

[Ste00]

[WR99)

Erik Ruf. Effective synchronization removal for Java. In Proceedings of the
SIGPLAN 2000 Conference on Programming Language Design and Imple-
mentation, pages 208-218, June 2000.

Bjarne Steensgaard. Points-to analysis by type inference of programs with
structures and unions. In International Conference on Compiler Construc-
tion, number 1060 in Lecture Notes in Computer Science, pages 136-150,
Where?, April 1996.

Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings
238rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 32—41, St. Petersburg Beach, FL, January 1996.

Bjarne Steensgaard. Thread-specific heaps for multi-threaded programs. In
Proceedings of the ISMM 2000 International Symposium on Memory Man-
agement, July 2000. also published as SIGPLAN Notices 36(1), January
2001, ACM.

John Whaley and Martin Rinard. Compositional pointer and escape anal-
ysis for Java programs. In Proceedings of the 14th Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA
’99), November 1999.

15

Appendix

Table 3. Raw benchmark results

(a) Static check operations

name

unopt

base

S m

mf

sm

smf

spec_213_javac
spec_202_jess
spec_209_db
spec_228_jack
jlex100
javacup

321
95
42

122
67

434

262
49
24
57
36

384

2

12
37
16
29
34
60

261
49
24
57
34

384

261
48
24
57
34

384

2

37
16
29
34
60

12

13
25
34
53

197
37

(b) Dynamic check operations

name

unopt

base

S

m

mf

sm

smf

spec_209_db

jlex100
javacup

spec_213_javac
spec_202_jess

spec_228_jack

6408484
15071248
53229831

5703096

113790000

1485504

6308416
8666204
19047
1086440
61200
1341350

3476204
6485130

1028755

598912

19047

47000

4799096
8666204
19047
1086440
47000

134135

0

4799096
8666204
19047
1086440
47000
1341350

3
6

1

476204
485130
19047
028755
47000
598912

1910732
6485130
0
1002762
47000
589789

(¢) Analysis times (sec)

name

base

S m

mf

sm

smf

spec_213_javac
spec_202_jess
spec_209_db
spec_228_jack
jlex100
javacup

5.84
2.77
0.88
4.56
0.42
1.08

31

1

1

3.20
0.84

0.45

.70

.72

.03

5.92
2.92
0.97
4.75
0.44
1.11

80.26
15.69
1.20
7.22
0.48
1.67

3.41
0.89
1.78
0.45
1.06

34.14

130.4
8.7
0.8
2.1
0.4
1.1

7
7
8
6
8
7

(d) Execution times (sec)

name

unopt

base

S

m

mf

sm

smf

spec_213_javac
spec_202_jess
spec_209_db
spec_228_jack
jlex100
javacup

2.843
2.202
10.186
0.983
3.781
0.189

2.17

0.92

2.843

9.296

3.014
0.186

1

1/0.921

2.780
2.139
9.296

3.046
0.184

2.796
2171
9.264
0.952
3.124
0.183

2.828
2171
9.312
0.936
3.093
0.186

2.812
2.155
9.327
0.921
2.999
0.180

2.812
2.186
9.280
0.906
3.015
0.180

16

