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Abstract

Search-based texture synthesis algorithms are sensitive to the or-
der in which texture samples are generated; different synthesis or-
dersyield different textures. Unfortunately, most polygon rasteriz-
ers and ray tracers do not guarantee the order with which surfaces
are sampled. To circumvent this problem, textures are synthesized
beforehand at some maximum resolution and rendered using texture
mapping.

We describe a search-based texture synthesis algorithm in which
samples can be generated in arbitrary order, yet the resulting texture
remainsidentical. Thekey to our algorithm isapyramidal represen-
tation in which each texture sample depends only on afixed number
of neighboring samples at each level of the pyramid. The bottom
(coarsest) level of the pyramid consists of a noise image, which is
small and predetermined. When a sample is requested by the ren-
derer, all samples on which it depends are generated at once. Using
this approach, samples can be generated in any order. To make the
algorithm efficient, we propose storing texture samples and their de-
pendents in a pyramidal cache. Although the first few samples are
expensive to generate, there is substantial reuse, so subsegquent sam-
ples cost less. Fortunately, most rendering algorithms exhibit good
coherence, so cache reuse is high.
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1 Introduction

Textures are employed to represent surface details in synthetic
scenes without adding geometric complexity. A common way to
acquire textures is by texture synthesis. Existing texture synthesis
techniques can be classified as either implicit or explicit [Ebert et al.
1998, Chapter 2]; an implicit method computes only required tex-
els on demand while an explicit method always computes the entire
texture. For example, Perlin noise is an implicit method while his-
togram matching [Heeger and Bergen 1995] is an explicit method.
Implicit methods are usually more flexible and storage efficient than
explicit ones since they compute only needed texels on the fly with-
out storing the entire texture. On the other hand, explicit meth-
ods are often more general than implicit ones since they can model
many different textures based on image statistics. In addition, ex-
plicit methods are easier to use; the user only needs to provide an
example texture rather than writing and tuning a procedural shader.

It isdesirable to have an algorithm that combines the advantages
of both implicit and explicit methods. We present a new algorithm,
termed order-independent texture synthesis, that achieves this com-
bination. The algorithm is as general as existing explicit methods
in that it can synthesize new textures simply from given examples.
It is as flexible as implicit methods in that it allows textures to be
evaluated on demand in any traversal order. Specifically, the algo-
rithm allows view-dependent evaluation where only needed texels
are synthesized on the fly, while at the same time remains order-
independent, where the same texel always receives the same synthe-
sized values regardless of which texel sare computed and therelative
traversal orders. This hybrid algorithm has numerous potential ap-
plications. For example, it can be invoked like a procedural texture
shader in aray tracing software without writing different shadersfor
different textures; it can be used for interactive image texture edit-
ing; it can also be implemented in graphics hardware and function

like a texture mipmap for polygonal rasterization without storing
the entire texture.

2 Previous Work

Explicit Synthesis. Many explicit synthesis algorithms model tex-
tures as a set of statistical features, and generate new textures by
matching the statistics between the new texture and a given input
sample [Heeger and Bergen 1995; Bonet 1997; Efros and Leung
1999; Wei and Levoy 2000]. These algorithms are general and can
generate many different textures based on input samples. However,
because these methodsimpose statistical dependencies between tex-
ture samples, it is impossible to evaluate only a subset of the sam-
ples while guaranteeing that these evaluated samples remain iden-
tical with respect to different synthesis orders. For example, his-
tograms [Heeger and Bergen 1995] need to be computed from all
texture samples, and pixel-neighborhood-searching [Efros and Le-
ung 1999; Wei and Levoy 2000; Ashikhmin 2001; Tong et a. 2002]
will produce different results if adjacent samples are synthesized in
different orders.

Another methodology is to generate textures patch by patch
[Efros and Freeman 2001; Soler et al. 2002] rather than pixel by
pixel. These algorithms preserve large scale structures better than
pixel-neighborhood-searching techniques. However, they usually
require pre-computation of the entire patch locations or texture
coordinates, regardless of the number of actual texels requested.

Implicit Synthesis. Existing implicit synthesis algorithms simulate
the texture formation process using specialized procedures [Ebert
et al. 1998]. These techniques can be highly efficient and they al-
low texelsto be evaluated independently from each other. However,
since different textures may require different procedures, these al-
gorithms are less general than explicit methods. In addition it can
be difficult to tune the parameters for those procedures to achieve
the desired visual appearance of the result texture.

3 Algorithm

Our algorithm extends previous multi-resolution neighborhood-
search texture synthesis algorithms [Wei and Levoy 2000; Tong
etal. 2002]. Inthissection, wefirst describe the basic idea of our al-
gorithm: why previous work is not order-independent, and how our
approach addresses this (Section 3.1). We then describe implemen-
tation details on how to make our algorithm both fast and memory
efficient (Section 3.3 and Section 3.2).

3.1 Basic ldea

We can summarize previous neighborhood-search algorithms
[Efros and Leung 1999; Wei and Levoy 2000; Ashikhmin 2001;
Tong et a. 2002] as follows.

Goal: given an input texture, generate an output texture that issim-
ilar to the input.

1. Build pyramidsfor both theinput and output, and initialize the
output.
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2. Synthesize the output texels one by one from lower to higher
resolutionsin acertain order, such as scanline [Wei and Levoy
2000] or spiral [Efros and Leung 1999].

3. For each output texel, build aneighborhood around it. Usethis
neighborhood to find the best-matched neighborhood from the
input, and assign the corresponding input texel to the output.
Different search algorithms can be used, such as TSVQ [Weli
and Levoy 2000] or coherence search [Ashikhmin 2001].

4. Repeat the above step for each output texel.

An algorithm is order-independent if we can generate texels in
arbitrary order (Step 2) while guaranteeing the resulting texture
to be identical, given that we start with the same input and initial
conditions (Step 1). However, existing methods [Efros and Leung
1999; Wei and Levoy 2000; Ashikhmin 2001; Tong et a. 2002] are
not order-independent; since their neighborhoods always include
the most recently synthesized results, different traversal orders will
cause different combinations of old and new values at each neigh-
borhood, altering the result of neighorhood search. For example,
consider two nearby texels, A and B, where A iswithin B’s neigh-
borhood. If A issynthesized before B, then the neighborhood of B
will include the new value of A; on the other hand, if A is synthe-
sized after B, then the neighborhood of B will include the old value
of A. Asaresult, the synthesized value B will depend on whether
or not it is synthesized before A.

We address this limitation by a simple idea: instead of overwrit-
ing the old values with new results, we keep the old and new values
in separate output pyramids and use only the old valuesinthe neigh-
borhood search process. Thisideaisinspired by image convolution.
When convolving image X by a filter kernel to produce image Y,
each pixel inY iscomputed by convolving the kernel with the “old”
pixelsin X rather than the new pixelsin Y. Asaresult, thereareno
dependencies among pixelsin Y, and we can compute their values
in any order.

To apply this convolution idea to texture synthesis, we keep
multiple output pyramids, each storing a specific generation of
the output. For example, we use generation O to store the old-
est values, generation 1 to store values computed from genera-
tion 0, and so on. During synthesis, we traverse the output pyra-
mids from lower to higher levels as usual (Step 2), but within each
level, we compute the texels from lower to higher generations. To
avoid dependencies between texels at the same level and genera-
tion, we modify the definition of neighborhoods (Step 3) so that,
for a given output texel at a certain level and generation, its neigh-
borhood can contain only “old” texels that are already computed,
where the old texels are located at lower levels, or at the same
level but lower generations. To be more precise, a texel located at
(level L;, generation G;) can belong to the neighborhood of atexel
located at (level L;, generation G;) only if (Li, Gi) < (Lj, Gy),
where

<L7,,Gz> =< <Lj,Gj> iff [Lz < Lj} or [Lz = Lj and G; < G]]
1)
Thislexically smaller operator < defines an acyclic ordering for
all texels located at different levels or generations. Therefore it re-
moves dependency between texels at the same (level , generation)
and allows order-independent synthesis.

Example. Figure 1 shows an example of walking through our al-
gorithm. The output pyramid contains 4 levels and 3 generations,
and we use a 2-level neighborhood template with size 5x5. Given
a user request pattern, our goal isto compute as few texels as pos-
sible to satisfy this request. From the initial pattern at (L3, G2)
and the neighborhood templates, we can figure out the set of nec-
essary texels at every (level, generation) recursively, from higher
to lower levels, and higher to lower generations. For example, the

L,
Lo

Figure 1: Basic idea of our algorithm. In this example, we use an output
pyramid with 4 levels and 3 generations, and a neighborhood template of
size 5x5. (L3, G2) contains an user-requested pattern “S”. (Lo, Go) is
initialized by randomly copying from the input. In the squares representing
the remaining levels and generations, only a portion of the texels (denoted
in pink above) must be computed.

footprint at (L3, G1) is computed by taking the union of all 5x5
neighborhoods of each texel withinthe“S” patternin (Lz, G2), and
the footprint at (Ls, Go) is determined from (L3, G1) in a Sim-
ilar fashion. After we figure out this minimum set of texels at
each (level , generation), we can then generate them from lower
to higher levels, and from lower to higher generations. That is,
we start at <L0, G0>, and then go to <L1, G0>, <L1, G1>, <L1, G2>,
(L2, Go), etc, until weend at (L3, G2).

According to Equation 1, texelsat (Lo, Go) cannot use any other
texels in the neighborhood; therefore they are initialized by ran-
domly copying from the input pyramid. Similarly, texels at Gy
(the right-most column of images in Figure 1) can only depend
on texels at lower levels since there is no texel located at even
lower generations. We can consider these texels as “extrapol ation”
or “super-resolution” from lower pyramid levels. For the rest of
(level, generation), the texels can depend on lower levels as well
as the same level with lower generations. However, for lower level
neighborhood texels, we usually use only those located at the high-
est generation since these are the most up-to-date values at the spe-
cific level. Note that for afixed initia condition at (Lo, Go), our
algorithm will always generate identical results regardless of the
traversal order within each (level, generation). This is similar to
Perlin noise where the computed texel values remain invariant given
afixed random permutation table.

3.2 Making It Memory Efficient: Texture Cache

Our basic algorithm presented above is not memory efficient sinceit
keeps multiple generations of the output. Fortunately, for many ap-
plications where only a subset of the texture is accessed (Figure 1),
we only need to store this subset. In addition, since most prac-
tical rendering algorithms exhibit good texture coherence [Hakura
and Gupta 1997], we can further reduce the storage requirement by
caching only the recently computed/accessed values.

Our revised agorithm works as follows. Instead of storing
the entire output, we use a small texture cache to store already-
generated texels. Thisisdifferent from prior methods [Hakura and
Gupta 1997] where the cache isonly used to reduce texture memory
reads. In the beginning of the algorithm, the cache is empty and ev-
ery reguested texel needs to be computed. However, as the cache
gradually fills up, previoudy computed texels may be requested
again, and they can be found in the cache without any computa-
tion. If a cached texel is kicked out of the cache due to capacity
limit, we may need to re-compute it if it is requested again. The
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actual extent of re-computation depends on the rendering algorithm
that drives these requests. Fortunately, since most applications ex-
hibit good coherence, the ratio of re-computation is usually low, as
we shall seein the result section (Section 4).

3.3 Making It Fast: K-Coherence Search

Our algorithm is orthogonal with respect to the specific
neighborhood-search algorithm used in Step 3. However, since the
search isin the inner loop, the choice of the search procedure will
determine the overall speed of our algorithm. In addition, the search
procedure will determine the quality of texture synthesis results.

We have experimented with several different approaches and
found that the K-coherence algorithm [Tong et al. 2002] provides
the best quality/speed trade off. The algorithm has constant time
complexity per output texel and provides state-of-art synthesis qual-
ity. The algorithm is divided into two phases. analysis and synthe-
sis. During analysis, the algorithm builds a similarity-set for each
input texel, where the similarity-set contains a list of other texels
with similar neighborhoods to the specific input texel. During syn-
thesis, the algorithm builds a candidate-set by taking the union of all
similarity-sets of the neighborhood texels for each output texel, and
then searches through this candidate-set to find out the best match.
The size of the similarity-set, K, is a user-controllable parameter
that determinesthe overall speed/quality. Theauthorsin[Tong et al.
2002] havefound that asmall K (intherange of 1 to 11) workswell
for avariety of textures.

3.4 Summary

We can summarize our algorithm asfollows. Given aninput texture,
an output texture cache size, a neighborhood template, and a texture
access pattern:

1. Build a Gaussian pyramid for the input. Pre-process the in-
put for the specific search algorithm, if necessary. The output
pyramid is implemented as a cache, capable of holding tex-
els at multiple generations. The lowest (level, generation) is
initialized by randomly copying from the input.

2. For each requsted texel, determine the minimum set of neigh-
borhood texels located at lower levels and generations. This
can be achieved by recursively expanding the request patterns
from higher to lower levels, and from higher to lower genera-
tions, as shown in Figure 1.

3. For texels in this minimum set that are not in the cache (in-
cluding the requested texel), synthesize them one by one from
lower to higher levels, and from lower to higher generations.
The synthesis can be done via any neighborhood-search algo-
rithms; we use K-coherence search in this paper.

4. Repeat the above two steps for each requsted texel that is not
in the cache.

4 Results

In this section, we demonstrate several aspects of our algorithm’s
performance. We begin by demonstrating the effects of various
synthesis parameters on image quality. We then characterize the
cache performance under different access patterns.

Synthesis Quality

We have applied our approach with many different textures, and
we found that it works as well as the original K-coherence search
algorithm [Tong et a. 2002]. The only additional parameter we
need to set is the number of generations. We have found that 2 or 3
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Figure 2: Synthesis Quality. For each group of images, the input sample is
on the left, the result with 1 generation is shown in the middle, and the result
with 3 generations is shown on the right. Below each figure, we label the
image size and computation time in seconds, measured on a 1.1GHz AMD
Athlon PC. These synthesis results compare favorably to the best existing
algorithms.

generations work well for all textureswetried. If only 1 generation
is used, the algorithm essentially uses only lower-resolution
information for synthesis. Thisisvery similar to [Bonet 1997] and,
as shown in Figure 2, the result textures have similar artifacts.

Cache Performance

Asin most cache-based algorithms, the size of the cache plays
acritical role in its performance. When the cache in our algorithm
is large, it can hold all the computed texels. However when the
cache is small, it cannot hold all texels, and some texels may be
computed multiple times. As a result, the performance of small
caches is affected by the coherence of the request patterns.

We analyze the performance of our algorithm under different
cache sizes using ray tracing and polygonal rasterizer scenes. We
collect texel requests from the renderer of these scenes, and feed
them into our algorithm for simulation. In our experiment, we use 3
benchmarks with different texture characteristics and triangle sizes,
asshown in Figure 3:

e Teapot. Thisisaray-casting scene containing alarge textured
teapot occluded by 3 non-textured teapots. The texture has
size 256 x 256; due to ray-casting, the occluded portion of the
texture is not computed and has the shape of the projected
occluders. The scene is rendered by tracing rays in 32-pixel-
wide vertical swathes, from top to bottom, left to right.

e Single Polygon. This scene contains alarge textured polygon
with size 512x512, viewed in perspective. The polygon is
tessellated into 64 x 64 tiles and covered by a large 512x512
texture pyramid with 4 levels. Since the polygon is clipped
by the viewing frustum, only 19 percent of the texels are re-
quested by the rasterizer, and this portion iswedge-shaped due
to the perspective view. Our algorithm synthesizes 23 percent
of al cache pixels. Although this is dightly larger than 19
percent, it is still 4 times faster than synthesizing the whole
texture using K-coherence search.
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Figure 3: Texture cache performance for several scenes: teapot, polygon,
and quake. (Top) The screen shots of the 3 scenes, along with the frame
size and total number of requested texels. (Middle) The requested texels
for the teapot (only the highest resolution) and polygon (all 4 resolutions)
scenes. The black regions indicate texels not requested (and therefore not
synthesized). (Bottom) The cache size v.s. performance. We measure the
performance in terms of computation ratio, which is the average number of
computed texels per requested texel. The cache replacement policy is LRU.
We also mark wall-clock simulation time (synthesis + cache emulation) at
several key cache sizes.

e Quake. This scene shows a frame from the OpenGL port of
the video game Quake, containing mainly architectural walk-
throughs with large polygons. We choose this benchmark to
see how rasterizing large polygons may degrade cache coher-
ence. The original Quake game uses many small textures to
reduce texture load; although this works well for regular pat-
terns such as brick walls, small textures may introduce unnat-
ural visual repetitions for stochastic textures such as the lava.
Our algorithm can address is problem by synthesizing large
textures on the fly from asmall input. We demonstrate this by
synthesizing the lava texture with size 512x 512 from a small
64x 64 crop, and eliminate the majority of the unnatural repe-
titions in the rendering.

We measure the performance of our algorithm by computation
ratio, which we define to be the average number of synthesized
texels per requested texel. The performance is better when the
computation ratio is lower since less computation is involved. In
Figure 3, we plot the computation ratio versus different cache sizes
for al three benchmarks. The algorithm performs reasonably well
at small cache sizes (between 2K to 8K), and the computation
ratio drops as the cache size increases. The performance remains

roughly constant after the cache size reaches 8K, indicating that
a small cache size is sufficient to hold the working set for these
scenes.

Computation Time

As shown in Figure 2, our current implementation takes a few
seconds to generate typical textures on a commodity PC without
any hardware acceleration. This is sufficiently fast for interactive
applications with small windows (such as the ray tracer shown in
the video). However, for full-screen applications such as the Quake
game in Figure 3, our current implementation is not fast enough.
We plan to address this issue by implementing our algorithm on a
programmable graphics hardware. Thisis likely to provide at least
2 orders of magnitude speed-up over our software-only implemen-
tation.

5 Conclusions and Future Work

In this paper, we have presented and analyzed a new algorithm for
order-independent texture synthesis. The algorithm allows texture
samplesto be generated in arbitrary order on demand, yet the result-
ing texture always looks the same. The agorithm has comparable
image quality with the state of art algorithms. It is computationally
efficient with K-coherence search. It is storage efficient due to its
use of atexture cache. We demonstrate that small caches are suffi-
cient by analyzing our agorithm through different texture mapping
scenes.

There are several possible directions for future work. Although
our agorithm is fast enough for software applications such as ray
tracing and image editing, it needs furthur speed improvements
to be practical for hardware polygonal rasterizers. This can be
achieved by finding a search agorithm more efficient than K-
coherence search. Another possibility istoimplement our algorithm
as afragment program in new generation GPUs. The fragment pro-
gram would synthesize the texture in multiple passes, where each
pass renders a specific generation/resolution of the texture. Our al-
gorithm can also be used as a texture decompresser for a software
viewer such as VRML or QuickTime VR. Thiswould substantially
reduce the storage space and transmission time for viewing scenes
containing large textured regions. Finally, our algorithm can beim-
plemented in a shading language and integrated with aray tracing
package. This could make statistical texture synthesis more useful
to animators, who are more accustomed to procedural shaders.
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