
PRACTICAL REAL-TIME VIDEO CODEC FOR MOBILE DEVICES

Keman Yu1, Jiangbo Lv*2, Jiang Li1 and Shipeng Li1

1Microsoft Research Asia, Beijing, China
2Department of Information and Electronic Engineering, Zhejiang University, Hangzhou, China

* The work presented in the paper was carried out at Microsoft Research Asia.

ABSTRACT

Real-time software-based video codec has been widely used on
PCs with relatively strong computing capability. However,
mobile devices, such as Pocket PCs and Handheld PCs, still
suffer from weak computational power, short battery lifetime and
limited display capability. We developed a practical low-
complexity real-time video codec for mobile devices. Several
methods that can significantly reduce the computational cost are
adopted in this codec and described in this paper, including a
predictive algorithm for motion estimation, the integer discrete
cosine transform (IntDCT), and a DCT/Quantizer bypass
technique. A real-time video communication implementation of
the proposed codec is also introduced. Experiments show that
substantial computation reduction is achieved while the loss in
video quality is negligible. The proposed codec is very suitable
for scenarios where low-complexity computing is required.

1. INTRODUCTION

In the past years, research on video compression is focused on
improving rate-distortion performance. In order to achieve
higher coding efficiency, video coding techniques trend to be
more elaborate and complex. This leads to higher requirements
of the computing capability. More and more users are seeking
real-time video communication services with the rapid
development of wired and wireless networks. However, real-time
software-based video encoding introduces a tradeoff between
compression efficiency and complexity. How to reduce the
computational requirements as much as possible without
obviously compromising the video compression efficiency is one
of the key issues in research on video communication.

Recent years have witnessed the rapid development of the
mobile devices with wireless connections. With the continuing
improvement of storage capacity and computing capability,
software-based video coding on mobile devices is becoming
economically viable. The emergence of digital cameras for
mobile devices also provides conditions for real-time video
communication. H.263 [1] is an ITU-T recommended video
coding standard and has been broadly used in video
conferencing on PCs. However, the conventional H.263 encoder
is still computationally expensive and practically not feasible for
mobile devices. In our experiments of coding a general video
clip in QCIF format, the average frame rate achieved on an iPAQ
3650 Pocket PC is only about 1 fps.

For this reason, we investigated the resource distribution of
the H.263 video encoder which uses integer-pixel full search on

motion estimation and floating-point DCT. Figure 1 shows the
distribution of the execution time for a testing sequence. In this
figure, motion estimation, DCT/IDCT and quantization which
utilize 73%, 16% and 4% of the execution time respectively are
the three primary computationally-intensive components. Thus,
the goal of this paper clearly is to improve these three
components.

6%

4%

16%

73%

1%

Motion Estimation
DCT/IDCT
Quantization
I/O
Other

Figure 1: Execution-time distribution for Miss America sequence

in QCIF.

The rest of this paper is organized as follows. Section 2
describes the approaches we use to speed up video compression.
Experimental results are shown in Section 3. Section 4 presents a
practical video communication implementation on mobile
devices. Finally, Section 5 concludes this paper and gives future
directions.

2. APPROACHES

Figure 2 shows the diagram of the proposed video encoder. The
structure is similar to that of the H.263 encoder and is
compatible with the H.263 bitstream syntax. The Rate Control
component enables the output bit rates to be adaptive to the
target. Motion estimation, DCT/IDCT and Quantizer are three
critical modules which consume the majority of the execution
time in this architecture. The rest of this section will introduce
approaches that can speed up the execution of these three
modules.

Figure 2: The structure of the proposed video encoder.

III - 5090-7803-7965-9/03/$17.00 ©2003 IEEE ICME 2003

➠ ➡

2.1 Low-Complexity Motion Estimation Algorithm

Motion estimation (ME) is efficient in eliminating temporal
redundancy between adjacent frames. At the same time, motion
estimation is also regarded as a vital component in a video
encoder as it consumes the largest amount of computational
resources. There are significant advances in fast motion
estimation techniques in recent years for alleviating the heavy
computation load, such as the diamond search (DS) [2], the
small-cross-diamond search (SCSD) [3] and the predictive
algorithm (PA) [4]. The complexity of the PA algorithm is the
lowest among these fast motion estimation approaches, and its
time is relatively constant as there is no recursive searches in this
algorithm. We analyze the PA algorithm and propose an
appropriate number of candidate predictors and an adaptive
motion vector (MV) refinement method.

The algorithm utilizes the characteristics that macroblocks
(MB) close to the current MB, in time and in space, are highly
probable to have the same motion. Instead of testing all possible
MVs as full search (FS) does, the previously calculated MVs of
the contiguous MBs comprise a set of candidate predictors, then
the best candidate predictor, i.e. the MV with the lowest sum of
absolute differences (SAD), is corrected by the refinement phase.

In our investigation, the candidate predictors set which is
composed of three MVs plus a null vector, as shown in Figure 3,
achieved a good trade-off between computational savings and
performance loss.

Figure 3: The candidate predictors set: two spatial predictors
belonging to the same frame, one temporal predictor belonging
to the previous frame and a null vector.

The goal of the refinement phase is to make the best

predictor approximate to the real motion. The method of PA is to
search the optimal MV at the eight points around the best
predictor. An adaptive search approach is proposed in this paper.
The SAD of the best predictor is evaluated for choosing the
testing points. The refinement processes are divided into the
following three cases according to the comparison results of the
SAD and two thresholds, TH1 and TH2, as shown in Figure 4.

Case 1: SAD <= TH1, only four points on the cross
direction are tested;

Case 2: TH1 < SAD <= TH2, eight points around the best
predictor are covered;

Case 3: SAD > TH2, eight points which are two pixels away
from the best predictor are involved.

Figure 4: Refinement vectors in three different cases.

In some circumstances, for example when scene changes or

there is a sudden motion change, the best predictor is not reliable,

which can be indicated by a large SAD value. Increasing the
search area, as shown in case 3, addresses this issue. Suitable
values are TH1=4000 and TH2=6000 according to our
experiments on many sample sequences. Table 1 shows the
distribution of refinement vectors, which indicates that case 1
covers over 95% of the cases. Consequently, the average number
of SAD operations per MB shown in this table is fairly small.
Table 2 compares the performance between PA and FS. Using
the PA method, a 18.5 to 20-fold speed increase on motion
estimation is achieved whilst the average Peak Signal-to-Noise
Ratio (PSNR) degradation is marginal.

Table 1: Distribution of refinement vectors and average number of SAD
operations per MB for the QCIF sequences coded at 15 fps and 56 kbps

 Case1 Case2 Case3 SAD OP
Miss_am 99.99% 0.01% 0 4.86

News 98.17% 1.40% 0.43% 4.85
Carphone 95.71% 2.91% 1.38% 5.51

Coastguard 96.82% 2.93% 0.25% 6.04

Table 2: Average PSNR degradation and speed improvement ratio of the
ME module comparing to FS with a search distance of 15 pixels

 PSNR loss (dB) Speed improvement ratio
Miss_am 0.13 18.95

News 0.00 18.44
Carphone 0.20 19.31

Coastguard 0.13 19.88

2.2 Integer DCT and inverse DCT

The discrete cosine transform (DCT) is widely used in video
coding standards such as H.263 and MPEG-4 [5]. The
conventional floating-point DCT (FloatDCT) contains
substantial floating-point operations, especially the
multiplications which require heavy computation and power
resources in mobile devices. An Integer DCT (IntDCT) [6]
method that can greatly increase the efficiency is adopted in the
proposed codec. The implementation of IntDCT is in the form of
shift operations and additions, and all internal nodes have finite
precision. An 8-pt IntDCT scheme with a complexity of 45
additions and 18 shift operations provides comparable
performance to FloatDCT and is suitable for mobile scenarios.

In the proposed codec, the forward IntDCT is used in the
encoder followed by the inverse IntDCT in the decoder. The
PSNR degradation of this scheme is only about 0.2 to 0.5 dB in
contrast to FloatDCT and inverse FloatDCT, whereas about 2.6
to 3.5-fold speed increase is achieved as shown in Table 3.

Table 3: Average PSNR degradation and speed improvement ratio of
DCT/IDCT module for the QCIF samples coded at 15 fps and 56 kbps

 PSNR loss (dB) Speed improvement ratio
Miss_am 0.53 2.86

News 0.42 3.54
Carphone 0.30 2.59

Coastguard 0.23 2.62

2.3 DCT/Quantizer Bypass Algorithm

Besides the motion estimation and DCT components,
quantization which involves multiplications also requires
significant computations. It is possible to skip some of the DCT
and quantization calculations [7] [8]. The DCT/Quantizer

III - 510

➡ ➡

Bypass algorithm is a straightforward and efficient method to
reduce computations with virtually no visible loss in video
fidelity.

The algorithm is based on two observations: first, for most
sequences at low bit rates, a significant portion of MBs have
DCT coefficients that are all reduced to zero after quantization;
secondly, in the majority of the inter-macroblocks, the DC
coefficient of DCT has a larger magnitude than all the other
coefficients in a transformed block. Since the coefficients in a
block will quantize to zeros only if their magnitudes are less than
2Q, where the variable Q is the quantization parameter, it is
possible to predict all-zero quantized (AZQ) MBs using the DC
coefficient, and the DCT and quantization calculations
associated with those MBs can be eliminated. A substantial
saving can be achieved in this way.

In the original algorithm, a macroblock is regarded as AZQ
if all DC coefficients of four 8x8 luminance blocks in the MB
have magnitudes less than 2Q. As concluded in that paper, under
a few conditions, the fidelity degradation is visible and manifests
itself as chrominance changes while no distortion appears in the
luminance. This is because AZQ blocks are predicted solely on
luminance values, which may be an inaccurate indicator for
chrominance blocks. In our proposed scheme, chrominance
values are taken into account to make the criterion more
stringent. Since the DC term corresponds to 1/8 sum of the
values in the 8x8 block, two criterions are defined as follows.

Criterion1: QSumLumBlock ×< α
Criterion2: QSumChromBlock ×< β
A macroblock is identified as AZQ only when all four

luminance blocks satisfy criterion 1 and two chrominance blocks
satisfy criterion 2. Suitable parameters in practice are α=8 and
β=16, which tighten the condition slightly. Although these more
stringent criteria will miss some macroblocks that should be
identified as AZQ, they also reduce the number of incorrectly
selected macroblocks, which can degrade the final picture
fidelity. Meanwhile, the chrominance quality can also be
preserved.

The DCT/Quantizer bypass process is only performed on
inter-macroblocks, because intra-macroblocks are less likely to
satisfy the condition that the DC coefficient has the largest
magnitude.

Table 4 shows that substantial DCT and quantization
calculations are skipped while the PSNR degradation is marginal.
In the table, a negative degradation actually means PSNR
improvement. This is possible because not only computations are
reduced but also the bits required to code those macroblocks are
reduced, and then the saved bits improve the overall PSNR.

Table 4: Percentage of DCT/Quantizer bypassed and average PSNR
degradation for the QCIF samples coded at 15 fps and 56 kbps

 Bypassed PSNR degradation (dB)
Miss_am 17.64% 0.02

News 35.10% 0.14
Carphone 10.55% -0.03

Coastguard 8.74% -0.03

3. EXPERIMENTAL RESULTS

To examine the effectiveness of the aforementioned algorithms
on reducing computation time and preserving video quality, we
chose sequences with vastly varying content from standard

MPEG-4 test video clips to test the performance of the overall
encoder. The results of the Miss_am and Carphone sequences
are shown in this paper. The Miss_am sequence represents
scenes with little head-and-shoulder movements and a still
background. The Carphone sequence has large facial motion and
a fast moving background. Both sequences are in QCIF format
and encoded at 15 frames per second and 56 kbps.

Figure 5 shows the PSNR performance of the proposed
encoder and an unoptimized encoder which uses full search on
motion estimation and the FloatDCT without DCT/Quantizer
bypass method. From the experimental result, the two PSNR
curves are close in each figure and the proposed encoder
provides relatively satisfactory performance in different video
sequences with low and high motion activities.

Miss_am

30.00

32.00

34.00

36.00

38.00

40.00

42.00

0 20 40 60 80 100 120 140
Frame number

P
S

N
R

 (d
B

)

Unoptimized encoder
Proposed encoder

Carphone

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0 20 40 60 80 100 120 140
Frame number

P
S

N
R

 (d
B

)

Unoptimized encoder
Proposed encoder

Figure 5: PSNR comparison between the unoptimized encoder
and the proposed encoder, average PSNR degradations are 0.68

dB and 0.47 dB respectively.

(a) (b)

(c) (d)

Figure 6: Miss_am frame number 50 and carphone frame
number 58 coded by unoptimized encoder (a) (c) and by
proposed encoder (b) (d), PSNR degradations are 0.51 dB and
0.45 dB respectively.

III - 511

➡ ➡

Four reconstructed frames encoded by the unoptimized
encoder and by the proposed encoder are shown in Figure 6 for
subjective evaluation. No significant subjective degradation is
present using the proposed encoder.

The unoptimized encoder and the proposed encoder were
also tested on mobile devices. Table 5 shows the maximum
frames rates achieved on an iPAQ 3650 Pocket PC which
possesses a 206 MHz StrongARM processor and 32MB RAM.
From the experimental results, we can see that the computational
cost has been significantly reduced using the proposed methods
and the resultant frame rate is worthy of consideration for mobile
devices.

Table 5: Maximum frame rates (fps) obtained on iPAQ 3650

 Unoptimized encoder Proposed encoder
Miss_am 1.42 10.93

News 1.45 12.04
Carphone 1.3 10.12

Coastguard 1.11 9.86

4. A PRACTICAL VIDEO COMMUNICATION
IMPLEMENTATION ON MOBILE DEVICES

We developed a video communication system, for both PCs and
mobile devices using the complexity-reduction algorithms
presented in the previous section. Currently, the Mobile Device
versions support the majority of the Handheld PCs and Pocket
PCs which are based on StrongARM, XScale, MIPS or SH3
processors, and support several types of digital cameras,
including HP Jornada pocket camera, FlyCAM-CF camera,
FlyJacket iCAM, and Pretec CompactCamera.

The system is composed of three layers: interface layer,
service layer and network layer as shown in Figure 7. The
aforementioned video compression and decompression
techniques are employed in the service layer, and serve as a core
component of the system. The ILS (Internet Locator Service)
component is used to find other online users, and the
Microsoft .NET Messenger Service component and the SIP
(Session Initiation Protocol) component are used to manage a
buddy list and obtain buddy presence information. The three
components can effectively facilitate video communication
among users.

Figure 7: Video communication system architecture

Table 6 shows the frame rates achieved using this system on
different mobile devices and different cameras. These frame rates
are less than that shown in Table 5, because besides compressing

pictures using the proposed encoder, there are several primary
time-consuming processes, including capturing video frames,
performing color space conversions and transporting compressed
bitstream via networks. In practice, the image resolution is
160x120 and the target bit rate is 56kbps. Results show that
smooth real-time video communication can be realized by using
the proposed system.

Table 6: Maximum frame rates (fps) obtained on different devices

Mobile device HP camera FlyCAM-CF FlyJacket iCAM
iPAQ 3650
Pocket PC

6.6 6.3 7.7

HP Jornada 720
Handheld PC

7.0 Not applicable Not applicable

5. CONCLUSIONS

In this paper, a low-complexity video coding scheme is proposed
and a practical video communication implementation is
presented.

Similar to the H.263 encoder, motion estimation, DCT and
quantization are the three primary computation-consuming
modules in the video encoder. In our architecture, the
complexity of motion estimation is significantly reduced by the
predictive algorithm in comparison to other fast motion
estimation methods, the integer DCT approach is much faster
than conventional floating-point DCT, and the DCT/Quantizer
bypass algorithm can substantially save resources by skipping
some of the DCT and quantization calculations. Experimental
results show that the PSNR degradation is small and significant
computation reduction is achieved. The proposed techniques
have applications where low-complexity computing is required,
and is especially suitable for mobile devices.

Future directions may include offering error resilience for
wireless or unreliable packet-based transport networks and
improvements in compression efficiency and picture quality.

6. ACKNOWLEDGMENT

The authors thank Steve Lin for proofreading the paper.

7. REFERENCES

[1] ITU-T Recommendation H.263 Video coding for low bit rate

communication, 02/98.
[2] S. Zhu and K.K Ma, A new diamond search algorithm for fast

block-matching motion estimation, IEEE Trans. On Image
Processing, vol. 9, no. 2, pp.287-290, Feb 2000.

[3] C.H. Cheung, L.M. Po, A Novel Small-Cross-Diamond Search
Algorithm for Fast Video Coding and Videoconferencing
Applications, ICIP 2002, pp.681-684.

[4] A. Chimienti, C. Ferraris and D. Pau, A Complexity-Bounded
Motion Estimation Algorithm, IEEE Trans. On Image Processing.
vol. 11, no. 4, pp.387-392, Apr 2002.

[5] ISO/IEC JTC1/SC29/WG11 N3312 Coding of moving pictures and
audio March 2000/Noordwijkerhout.

[6] Y.J. Chen, S. Oraintara and T. Nguyen, VIDEO COMPRESSION
USING INTEGER DCT, ICIP 2000, Vancouver, Canada.

[7] A. Yu, R. Lee and M. Flynn, Performance Enhancement of H.263
Encoder Based On Zero Coefficient Prediction, ACM Multimedia
97, Seattle, USA, pages 21-29.

[8] M.T. Sun, I.M. Pao, Statistical Computation of Discrete Cosine
Transform in Video Encoders, Journal of Visual Communication
and Image Representation, vol. 9, no. 2, Jun 1998, pp.163-170

III - 512

➡ ➠

