

IMPLEMENTING GAZE-CORRECTED VIDEOCONFERENCING

Jim Gemmell
Microsoft Research

455 Market St.
San Francisco, CA, 94105, USA

jgemmell@microsoft.com

Dapeng Zhu
Stanford University

Computer Science Department
353 Serra Mall

 Stanford, CA, 94305-9025, USA
dapengz@stanford.edu

Abstract
Lack of gaze awareness is a key failure that

hinders the widespread acceptance of videoconferencing.
GazeMaster is a project which attempts to provide a
software solution to gaze awareness and eye contact.
Previous publications have described the general
approach of GazeMaster. This paper describes our
implementation experience, giving more details of our
software architecture, and explaining our approach to
head modeling. Our results with respect to video,
graphics, and networking are solid. Our computer vision
technology, while promising, is still immature, and
requires further research.

Key Words
Gaze, video-conference, computer vision, 3D modeling

Introduction
GazeMaster is a Videoconferencing system

designed to provide eye-contact and gaze awareness. An
in-depth discussion of its motivation and design is
presented elsewhere [1]. In this paper, we describe our
experience implementing GazeMaster. Software issues
are covered in detail, and remaining open issues are
enumerated.

Gaze awareness and eye contact are important to
face-to-face communication, providing signals for turn
taking, and also for creating a favorable impression1 [2,
3]. Unfortunately, most videoconferencing systems do not
provide gaze awareness or eye contact. This is due to the
fact that when the user is looking at another party on their
screen, they are not looking in to the camera (Figure 1,
top). The image of someone looking away from the

1 Adjectives for people using increased eye
contact include confident, mature, and sincere, while
those using less eye contact are described as cold,
pessimistic, defensive, immature, and evasive.

camera will never appear to make eye contact (Figure 1,
middle), while the image of someone looking into the
camera will always appear to make eye contact (Figure 1,
bottom).

Figure 1: Top: gaze directed at display, not at camera;

middle: not looking at camera – no eye-contact;
bottom: looking at the camera – eye contact

Another problem that videoconferencing faces is
lack of ubiquity: if no-one else has a videoconferencing
system compatible with yours, it is not much use.
Therefore, a critical goal for GazeMaster is that it be
feasible as a software upgrade to common hardware: a PC
with a single camera. This precludes approaches such as
morphing from stereo views [4] or using special hardware
(e.g., half-silvered mirrors – see [1] for a description of
hardware alternatives).

GazeMaster’s innovation lies in the processing
of each video stream. In each frame of video, computer
vision techniques are applied to detect the
position/orientation of the head and the outline of the eyes
(this is referred to as “segmenting” the eyes). This
computer vision data is sent across the network along
with the video frames. On the receiving end, the computer
vision data can be used to alter the video image: eyes can
be cut out and replaced with synthetic eyes, and the video
of the face can be texture-mapped on a head model,
allowing the head to be rotated in virtual 3D space. Figure
2 illustrates GazeMaster video processing.

Our head-pose tracking system is based on [5].
We have attempted to further the state of the art, for
example in eye segmentation [6], and in feature detection
[7]. However, computer vision remains an outstanding
problem for GazeMaster. None of the techniques we have
used are sufficiently robust for a wide population of users
in everyday environments. GazeMaster awaits further
maturity in the computer vision field before it can be
widely deployed.

In the remainder of this paper, we describe our
implementation of GazeMaster in more detail. We cover
the software architecture and APIs used, the approach
taken for head modeling, and special features required to
debug such a system.

GazeMaster Software
GazeMaster leverages a number of application

programming interfaces (APIs) in the Windows Platform
SDK. DirectX SDK is used for 3D rendering. DirectShow
is used for media flow, and to take advantage of standard
video codecs. WinSock is used for networking.2

The current version of GazeMaster uses IP
multicast for network transmission. For simplicity,
packets are simply encapsulations of DirectShow media
buffers. In our LAN setting, loss was not an issue. To
make the software more generally applicable, it would be
advantageous to use a standard for video transport such as
RTP (this would allow non-GazeMaster-enhanced clients
to at least render the raw video). Loss should also be
addressed. GazeMaster supports H.263, H.261 or motion-
JPEG video coding, and any other DirectShow codec
could be easily substituted.

2 Information on these SDKs can be found at
msdn.microsoft.com

Video
capture

Splitter

Video
encode

Vision
analysis

Network
send

Network
sink

Network
source

Renderer

Video
decode

3D
modelling

Network
receive

Network

Figure 2: Video processing in GazeMaster. Rectangles
denote DirectShow filters; ovals denote c++ classes.

DirectX takes advantage of the 3D acceleration
in modern display cards, making the CPU burden for 3D
rendering negligible (on a 1GHz Pentium, rendering
added only 2-3% processor load). Each video frame must
be decoded, and copied to a buffer for use as a texture-
map. Points in the texture map are indicated as
corresponding to each vertex in the head model. After
this, the 3D hardware does the rest.

DirectShow is an API for media playback,
transformation, and capture. At the heart of the
DirectShow is a modular system of pluggable components
called filters, arranged in a configuration called a filter
graph. A component called the filter graph manager
oversees the connection of these filters and controls the
stream's data flow. Each filter is a COM component, with
media IO interfaces called “pins” (after the pins on an
integrated circuit chip). For details about DirectShow, the
reader is referred to the Microsoft Platform SDK
documentation. For the purposes of the paper, it is
sufficient to understand that GazeMaster uses some
standard DirectShow filters, creates some new ones of its
own, and controls data flow via DirectShow.

Each GazeMaster client runs two pieces of
software: and outgoing component and an incoming
component. The outgoing component captures audio and
video, runs the vision component on the video to
determine head pose, eye segmentation, and eye gaze
direction, and sends the audio, video, and vision data
across the network. It also captures and transmits audio.
The incoming component receives audio, video and vision
data from other users across the network. It uses the
vision data along with the video to modify the head and
eyes in each video frame so as to give the desired head
pose and eye gaze. It also receives audio from the
network, and plays it using Microsoft DirectSound to
locate it in 3D space. Figure 2 shows GazeMaster’s video
architecture.

The GazeMaster Head model
The 3D head model used by GazeMaster is

intentionally simplified. To texture map video images
onto an extremely accurate head model would require
robust tracking of many features of the head. For
example, suppose we modeled the cheek with its muscles.
To accurately map the video of the cheek onto the 3D
model, we would need to track enough points on the
cheek to manipulate the cheek muscles in the model. As
we will discuss later, it is extremely challenging to track
even the easiest features (the cheek, for example, is very
difficult to track due to its uniformity in color). To avoid
this stringent vision requirement, we use a simple head
model.

The simplest head model would be a plane.
However, when rotating a plane in 3D space, no occlusion
will occur as the head turns, preventing the perception of
a turning head (instead, the user perceives it much as
viewing a portrait from the side – the head pose is
interpreted as being the same as in the straight on view).
As the head turns, it is important that occlusion occurs
due to the curvature of the head, and prominent features
of the head like the nose. That is, as the head turns away,
the far cheek and far side of the nose should not be
visible.

Figure 3: GazeMaster head model. Top: Bezier
patches with no subdivision. Middle: patches

subdivided. Middle: patches subdivided and shaded.

While modeling some curvature for the major
head features to achieve occlusion is important, modeling
minor features is not. Shadows and creases in the face
will be present in the video already, and will be perceived
as depth information. Therefore, our head model consists
of an egg-like head shape, with a protrusion for the nose,
indentation at the eye sockets, and outward curvature for
the eyes themselves (see Figure 3).

For eyeball synthesis, we have demonstrated that
even very simple planar models inside the segmented eye
area can be very convincing, as shown in Figure 4: (a)
Original image (b) eyes replaced with planar modelFigure
4 [1]. However, as discussed below, we have found eye
segmentation to be very challenging. Therefore, our
current prototype does not synthesize the eye; it merely
provides some outward curvature to the eyes and texture

maps the eyes from the video. This method has been able
to achieve gaze-adjustment, but is not totally satisfying in
regards to establishing eye-contact (see below). Note,
however, that eyeball synthesis would be primarily used
for horizontal gaze adjustments only, as vertical
adjustments lead to changes in facial expression (see [1]
for an explanation).

(a)

(b)

Figure 4: (a) Original image (b) eyes replaced with
planar model

The GazeMaster head model is constructed
mathematically from the spacing of the feature points that
we track on the face, which include the eye corners, and
the nostrils. Constants are multiplied by the eye-spacing,
or eye-nostril spacing to estimate values for the head
width at the forehead and chin, head height, and the width
and depth of the nose. Bezier patches are used for each
region of head. For example, the corner of one patch at
the corner of the eye is defined as:

(LeftEye.LeftCorner.x - EyeGapX/4.0,
LeftEye.LeftCorner.y - EyeGapX/2.0, CIRC(fLeftX))

Where CIRC is a macro the finds points on a
circle with a predefined radius that we are using as the
shape across the brow.

The constants that we use require slight
adjustment for different heads. Therefore, a persons head
is represented in GazeMaster by a file containing the
location of the feature points in a head-on view, along
with the constants. The per-person initialization step
required to acquire this data simply involves running the
vision software on a head-on image, and “nudging” the
constants until a satisfactory head model is produced.

Manipulation of the head orientation with our
head model works quite well (Figure 7 shows the original
video along with the head model tilted downwards by 17
degrees). However, we have found that the modeling
around the eyes is very sensitive, and any inaccuracies in
the model or the texture mapping (due to inaccuracies in
the vision information) may yield undesired gaze
adjustments. For example, see Figure 5. At top, the head
is rotated downward by 21 degrees. At bottom, the
rotation is increased to 23 degrees. Notice, however, that
the left eye actually appears to be looking further upward.
Close examination of the top of the left eye in the bottom
image shows how the eye has been mapped too high on
the eye in the model to give this effect. Improvements in
the head model, and in eye tracking may be able to solve
this. It may also be helpful to track the pupil locations,
and consider what gaze direction will be achieved by
mapping the pupil on to different parts of the eye-model
curve.

Figure 5: Eyes are very sensitive to the model and

their mapping. At top, the head is rotated downward
by 21 degrees. At bottom, the rotation is increased to
23 degrees. Notice, however, that the left eye actually

appears to be looking further upward.

Currently, our model is just of the face area. It
would be nice to have the rest of the head, and even the
person’s body. One approach would be to have a static
full head model with our face superimposed. If the change

in head orientation is small enough, a quick and dirty
solution is to simply show the head model in front of the
original video, as illustrated in Figure 6. In this case, the
head model cannot extend as high into the forehead, or it
will be seen sticking above the original video head as it
rotates downward.

Figure 6: Face model superimposed on original video
to recover the rest of the head and the body. The

model has a downward rotation of 17 degrees. We
shortened the forehead to avoid having the top corners

of the model sticking above the original video head.

Debugging Support
In order to debug a system like GazeMaster, it is

necessary to include many features in the software that
wouldn’t be needed in a videoconferencing product:

• Recorded material must be supported, to allow
problem sequences to be exactly repeated with
different versions of the code. Pause, play, and
stepping through the video frames are necessary
to allow examination of particular problem video
frames. The software should support a file source
both in place of a network reception, and in place
of a camera source.

• 3D zoom and pan is needed to support close
inspection of particular features on the face.

• To debug the head model, it must be viewable in
wire frame and shaded modes, in addition to
having the video texture-mapped on it. We found
it most helpful to show the shaded model, the
texture-mapped model, and the raw video
simultaneously (see Figure 7).

• The orientation of the head model must be fully
adjustable so that it can be viewed from different
angles.

• The vision tracking points may need to be visible
to determine if tracking inaccuracies are the
source of a problem (in Figure 7 they are marked
with blue crosses).

Figure 7: Debugging with raw video, texture-mapped

head model, and shaded head-model. The frame
number, orientation of the head, and adjustment of

orientation is displayed in the upper left corner. Vision
tracking points are marked with blue crosses.

Conclusion
Lack of Gaze awareness is one critical failing

that prevents widespread acceptance of
videoconferencing. Another is lack of ubiquity, so we
have sought a solution that can be a software upgrade to a
PC with a single camera. We have described our software
architecture, and explained our approach to head
modeling and debugging support. Our computer vision
technology, while promising, is still immature. However,
we are pleased with our results with respect to video,
graphics, and networking. With additional work, we
believe that gaze-aware videoconferencing will become a
reality.

Acknowledgements
We have had many collaborators on the

GazeMaster project: Tyler Beam, Thomas Kang, Volker
Krueger, Steven Seitz, Kentaro Toyama, and Larry
Zitnick. Gordon Bell, Jim Gray, and Roger Lueder helped
evaluate our prototypes and made many excellent
suggestions.

References
[1] Gemmell, Jim, Zitnick, C. Lawrence, Kang,

Thomas, Toyama, Kentaro, and Seitz, Steven,
Gaze-awareness for Videoconferencing: A
Software Approach, IEEE Multimedia, 7(4), Oct-
Dec 2000, 26-35.

[2] Argyle, Michael, Bodily Communication
(Madison, Connecticut, International Universities
Press, 1988).

[3] Novick, David G., Hansen, David G., Ward,
Karen, Coordinating turn-taking with gaze,
Proceedings of the International Conference on

Spoken Language Processing (ICSLP'96),
Philadelphia, PA, October, 1996, 188-191.

[4] Yang Ruigang and Zhang, Zhengyou, Model-
based Head Pose Tracking With Stereovision, The
5th International Conference on Automatic Face
and Gesture Recognition (FG02), May 20-21,
2002 Washington D.C., USA.

[5] KentaroToyama and G. Hager, Incremental Focus
of Attention for Robust Vision-Based Tracking,
International Journal of Computer Vision, 35(1),
1999, 45-63.

[6] Kang, Thomas, Gemmell, Jim, Toyama, Kentaro,
A Warp-Based Feature Tracker, Microsoft
Research Technical Report, MSR-TR-99-80,
October 1999.

[7] Feris, Rogério Schmidt, Gemmell, Jim, Toyama,
Kentaro, and Krueger, Volker, Hierarchical
Wavelet Networks for Facial Feature
Localization, The 5th International Conference on
Automatic Face and Gesture Recognition (FG02)
May 20-21, 2002 Washington D.C., USA.

