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Abstract 
Lack of gaze awareness is a key failure that 

hinders the widespread acceptance of videoconferencing. 
GazeMaster is a project which attempts to provide a 
software solution to gaze awareness and eye contact. 
Previous publications have described the general 
approach of GazeMaster. This paper describes our 
implementation experience, giving more details of our 
software architecture, and explaining our approach to 
head modeling. Our results with respect to video, 
graphics, and networking are solid. Our computer vision 
technology, while promising, is still immature, and 
requires further research. 

Key Words 
Gaze, video-conference, computer vision, 3D modeling 

Introduction 
GazeMaster is a Videoconferencing system 

designed to provide eye-contact and gaze awareness. An 
in-depth discussion of its motivation and design is 
presented elsewhere [1]. In this paper, we describe our 
experience implementing GazeMaster. Software issues 
are covered in detail, and remaining open issues are 
enumerated. 

Gaze awareness and eye contact are important to 
face-to-face communication, providing signals for turn 
taking, and also for creating a favorable impression1 [2, 
3]. Unfortunately, most videoconferencing systems do not 
provide gaze awareness or eye contact. This is due to the 
fact that when the user is looking at another party on their 
screen, they are not looking in to the camera (Figure 1, 
top). The image of someone looking away from the 

                                                           

1 Adjectives for people using increased eye 
contact include confident, mature, and sincere, while 
those using less eye contact are described as cold, 
pessimistic, defensive, immature, and evasive. 

camera will never appear to make eye contact (Figure 1, 
middle), while the image of someone looking into the 
camera will always appear to make eye contact (Figure 1, 
bottom). 

 

 

 
Figure 1: Top: gaze directed at display, not at camera; 

middle: not looking at camera –  no eye-contact; 
bottom: looking at the camera – eye contact 

Another problem that videoconferencing faces is 
lack of ubiquity: if no-one else has a videoconferencing 
system compatible with yours, it is not much use. 
Therefore, a critical goal for GazeMaster is that it be 
feasible as a software upgrade to common hardware: a PC 
with a single camera. This precludes approaches such as 
morphing from stereo views [4] or using special hardware 
(e.g., half-silvered mirrors – see [1] for a description of 
hardware alternatives). 



 

GazeMaster’s innovation lies in the processing 
of each video stream. In each frame of video, computer 
vision techniques are applied to detect the 
position/orientation of the head and the outline of the eyes 
(this is referred to as “segmenting” the eyes). This 
computer vision data is sent across the network along 
with the video frames. On the receiving end, the computer 
vision data can be used to alter the video image: eyes can 
be cut out and replaced with synthetic eyes, and the video 
of the face can be texture-mapped on a head model, 
allowing the head to be rotated in virtual 3D space. Figure 
2 illustrates GazeMaster video processing. 

Our head-pose tracking system is based on [5]. 
We have attempted to further the state of the art, for 
example in eye segmentation [6], and in feature detection 
[7]. However, computer vision remains an outstanding 
problem for GazeMaster. None of the techniques we have 
used are sufficiently robust for a wide population of users 
in everyday environments. GazeMaster awaits further 
maturity in the computer vision field before it can be 
widely deployed. 

In the remainder of this paper, we describe our 
implementation of GazeMaster in more detail. We cover 
the software architecture and APIs used, the approach 
taken for head modeling, and special features required to 
debug such a system. 

GazeMaster Software 
GazeMaster leverages a number of application 

programming interfaces (APIs) in the Windows Platform 
SDK. DirectX SDK is used for 3D rendering. DirectShow 
is used for media flow, and to take advantage of standard 
video codecs. WinSock is used for networking.2 

The current version of GazeMaster uses IP 
multicast for network transmission. For simplicity, 
packets are simply encapsulations of DirectShow media 
buffers. In our LAN setting, loss was not an issue. To 
make the software more generally applicable, it would be 
advantageous to use a standard for video transport such as 
RTP (this would allow non-GazeMaster-enhanced clients 
to at least render the raw video). Loss should also be 
addressed. GazeMaster supports H.263, H.261 or motion-
JPEG video coding, and any other DirectShow codec 
could be easily substituted. 

                                                           

2 Information on these SDKs can be found at 
msdn.microsoft.com 
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Figure 2: Video processing in GazeMaster. Rectangles 
denote DirectShow filters; ovals denote c++ classes. 

DirectX takes advantage of the 3D acceleration 
in modern display cards, making the CPU burden for 3D 
rendering negligible (on a 1GHz Pentium, rendering 
added only 2-3% processor load). Each video frame must 
be decoded, and copied to a buffer for use as a texture-
map. Points in the texture map are indicated as 
corresponding to each vertex in the head model. After 
this, the 3D hardware does the rest. 



 

DirectShow is an API for media playback, 
transformation, and capture. At the heart of the 
DirectShow is a modular system of pluggable components 
called filters, arranged in a configuration called a filter 
graph. A component called the filter graph manager 
oversees the connection of these filters and controls the 
stream's data flow. Each filter is a COM component, with 
media IO interfaces called “pins” (after the pins on an 
integrated circuit chip). For details about DirectShow, the 
reader is referred to the Microsoft Platform SDK 
documentation. For the purposes of the paper, it is 
sufficient to understand that GazeMaster uses some 
standard DirectShow filters, creates some new ones of its 
own, and controls data flow via DirectShow. 

Each GazeMaster client runs two pieces of 
software: and outgoing component and an incoming 
component. The outgoing component captures audio and 
video, runs the vision component on the video to 
determine head pose, eye segmentation, and eye gaze 
direction, and sends the audio, video, and vision data 
across the network. It also captures and transmits audio. 
The incoming component receives audio, video and vision 
data from other users across the network. It uses the 
vision data along with the video to modify the head and 
eyes in each video frame so as to give the desired head 
pose and eye gaze. It also receives audio from the 
network, and plays it using Microsoft DirectSound to 
locate it in 3D space. Figure 2 shows GazeMaster’s video 
architecture.  

The GazeMaster Head model 
The 3D head model used by GazeMaster is 

intentionally simplified. To texture map video images 
onto an extremely accurate head model would require 
robust tracking of many features of the head. For 
example, suppose we modeled the cheek with its muscles. 
To accurately map the video of the cheek onto the 3D 
model, we would need to track enough points on the 
cheek to manipulate the cheek muscles in the model. As 
we will discuss later, it is extremely challenging to track 
even the easiest features (the cheek, for example, is very 
difficult to track due to its uniformity in color). To avoid 
this stringent vision requirement, we use a simple head 
model. 

The simplest head model would be a plane. 
However, when rotating a plane in 3D space, no occlusion 
will occur as the head turns, preventing the perception of 
a turning head (instead, the user perceives it much as 
viewing a portrait from the side – the head pose is 
interpreted as being the same as in the straight on view). 
As the head turns, it is important that occlusion occurs 
due to the curvature of the head, and prominent features 
of the head like the nose. That is, as the head turns away, 
the far cheek and far side of the nose should not be 
visible.  

 

 

 
Figure 3: GazeMaster head model. Top: Bezier 
patches with no subdivision. Middle: patches 

subdivided. Middle: patches subdivided and shaded. 

While modeling some curvature for the major 
head features to achieve occlusion is important, modeling 
minor features is not. Shadows and creases in the face 
will be present in the video already, and will be perceived 
as depth information. Therefore, our head model consists 
of an egg-like head shape, with a protrusion for the nose, 
indentation at the eye sockets, and outward curvature for 
the eyes themselves (see Figure 3).  

For eyeball synthesis, we have demonstrated that 
even very simple planar models inside the segmented eye 
area can be very convincing, as shown in Figure 4: (a) 
Original image (b) eyes replaced with planar modelFigure 
4 [1]. However, as discussed below, we have found eye 
segmentation to be very challenging. Therefore, our 
current prototype does not synthesize the eye; it merely 
provides some outward curvature to the eyes and texture 



 

maps the eyes from the video. This method has been able 
to achieve gaze-adjustment, but is not totally satisfying in 
regards to establishing eye-contact (see below). Note, 
however, that eyeball synthesis would be primarily used 
for horizontal gaze adjustments only, as vertical 
adjustments lead to changes in facial expression (see [1] 
for an explanation). 

 
(a) 

 
(b) 

Figure 4: (a) Original image (b) eyes replaced with 
planar model  

The GazeMaster head model is constructed 
mathematically from the spacing of the feature points that 
we track on the face, which include the eye corners, and 
the nostrils. Constants are multiplied by the eye-spacing, 
or eye-nostril spacing to estimate values for the head 
width at the forehead and chin, head height, and the width 
and depth of the nose. Bezier patches are used for each 
region of head. For example, the corner of one patch at 
the corner of the eye is defined as: 

(LeftEye.LeftCorner.x - EyeGapX/4.0, 
LeftEye.LeftCorner.y - EyeGapX/2.0, CIRC(fLeftX)) 

Where CIRC is a macro the finds points on a 
circle with a predefined radius that we are using as the 
shape across the brow. 

The constants that we use require slight 
adjustment for different heads. Therefore, a persons head 
is represented in GazeMaster by a file containing the 
location of the feature points in a head-on view, along 
with the constants. The per-person initialization step 
required to acquire this data simply involves running the 
vision software on a head-on image, and “nudging” the 
constants until a satisfactory head model is produced. 

Manipulation of the head orientation with our 
head model works quite well (Figure 7 shows the original 
video along with the head model tilted downwards by 17 
degrees). However, we have found that the modeling 
around the eyes is very sensitive, and any inaccuracies in 
the model or the texture mapping (due to inaccuracies in 
the vision information) may yield undesired gaze 
adjustments. For example, see Figure 5. At top, the head 
is rotated downward by 21 degrees. At bottom, the 
rotation is increased to 23 degrees. Notice, however, that 
the left eye actually appears to be looking further upward. 
Close examination of the top of the left eye in the bottom 
image shows how the eye has been mapped too high on 
the eye in the model to give this effect. Improvements in 
the head model, and in eye tracking may be able to solve 
this. It may also be helpful to track the pupil locations, 
and consider what gaze direction will be achieved by 
mapping the pupil on to different parts of the eye-model 
curve.  

 

 
Figure 5: Eyes are very sensitive to the model and 

their mapping. At top, the head is rotated downward 
by 21 degrees. At bottom, the rotation is increased to 
23 degrees. Notice, however, that the left eye actually 

appears to be looking further upward.  

Currently, our model is just of the face area. It 
would be nice to have the rest of the head, and even the 
person’s body. One approach would be to have a static 
full head model with our face superimposed. If the change 



 

in head orientation is small enough, a quick and dirty 
solution is to simply show the head model in front of the 
original video, as illustrated in Figure 6. In this case, the 
head model cannot extend as high into the forehead, or it 
will be seen sticking above the original video head as it 
rotates downward. 

 

Figure 6: Face model superimposed on original video 
to recover the rest of the head and the body. The 

model has a downward rotation of 17 degrees. We 
shortened the forehead to avoid having the top corners 

of the model sticking above the original video head. 

Debugging Support 
In order to debug a system like GazeMaster, it is 

necessary to include many features in the software that 
wouldn’t be needed in a videoconferencing product: 

• Recorded material must be supported, to allow 
problem sequences to be exactly repeated with 
different versions of the code. Pause, play, and 
stepping through the video frames are necessary 
to allow examination of particular problem video 
frames. The software should support a file source 
both in place of a network reception, and in place 
of a camera source. 

• 3D zoom and pan is needed to support close 
inspection of particular features on the face. 

• To debug the head model, it must be viewable in 
wire frame and shaded modes, in addition to 
having the video texture-mapped on it. We found 
it most helpful to show the shaded model, the 
texture-mapped model, and the raw video 
simultaneously (see Figure 7). 

• The orientation of the head model must be fully 
adjustable so that it can be viewed from different 
angles. 

• The vision tracking points may need to be visible 
to determine if tracking inaccuracies are the 
source of a problem (in Figure 7 they are marked 
with blue crosses). 

 
Figure 7: Debugging with raw video, texture-mapped 

head model, and shaded head-model. The frame 
number, orientation of the head, and adjustment of 

orientation is displayed in the upper left corner. Vision 
tracking points are marked with blue crosses. 

Conclusion 
Lack of Gaze awareness is one critical failing 

that prevents widespread acceptance of 
videoconferencing. Another is lack of ubiquity, so we 
have sought a solution that can be a software upgrade to a 
PC with a single camera. We have described our software 
architecture, and explained our approach to head 
modeling and debugging support. Our computer vision 
technology, while promising, is still immature. However, 
we are pleased with our results with respect to video, 
graphics, and networking. With additional work, we 
believe that gaze-aware videoconferencing will become a 
reality. 
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