Linear Multi View Reconstruction
with Missing Data

Carsten Rother and Stefan Carlsson*

Computational Vision and Active Perception Laboratory (CVAP)
Dept. of Numerical Analysis and Computer Science
KTH, SE-100 44 Stockholm, Sweden
Email: {carstenr, stefanc}@nada.kth.se

Abstract. General multi view reconstruction from affine or projective
cameras has so far been solved most efficiently using methods of factor-
izing image data matrices into camera and scene parameters. This can
be done directly for affine cameras [18] and after computing epipolar
geometry for projective cameras [17]. A notorious problem has been the
fact that these factorization methods require all points to be visible in
all views. This paper presents alternative algorithms for general affine
and projective views of multiple points where a) points and camera cen-
ters are computed as the nullspace of one linear system constructed from
all the image data b) only three points have to be visible in all views.
The latter requirement increases the flexibility and usefulness of 3D re-
construction from multiple views. In the case of projective views and
unknown epipolar geometry, an additional algorithm is presented which
initially assumes affine views and compensates iteratively for the perspec-
tive effects. In this paper affine cameras are represented in a projective
framework which is novel and leads to a unified treatment of parallel and
perspective projection in a single framework. The experiments cover a
wide range of different camera motions and compare the presented al-
gorithms to factorization methods, including approaches which handle
missing data.

Keywords: Structure from Motion, Linear Multiple View Reconstruc-
tion, Missing Data, Affine and Projective Cameras.

1 Introduction

Efficient 3D reconstruction from multiple camera views is a problem of great im-
portance in computer vision with far reaching applications. It has also received
considerable attention over the years as seen from the number of publications
[2,5-7,9-21] and books [4,1] devoted to the topic. It is generally accepted that
for parallel projection the factorization method of Tomasi-Kanade [18] is nu-
merically the most satisfying. It is optimal under the assumption of isotropic
* This work was supported by the Swedish Foundation for Strategic Research in the
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Gaussian noise in the image data. For perspective projection, the projective
factorization of Sturm-Triggs [17,19] has been demonstrated to be one of the
most numerically efficient methods, see e.g. [5]. This method is similar to affine
factorization but requires known epipolar geometry. Both these methods have
a major disadvantage, however, in the fact that they require all points to be
visible in all views. This of course limits their usefulness in most common mul-
tiple view situations where points eventually will be occluded as the camera
viewpoint changes. Some suggestions to overcome this problem has been made
[9,18], but they require careful analysis and selection of image data in order
to be used. Alternative methods for handling missing data for affine [10] and
projective views [20] use the so-called closure constraints. The idea is to obtain
the camera’s motion linearly and simultaneously from a series of bi- or tri-focal
tensors.

Ideally, an algorithm for multiple view reconstruction should utilize all avail-
able image data directly in an efficient manner. Obviously, a minimum overlap
of views is necessary for the computation of relative camera positions [14].

In [15] a linear algorithm for multi view reconstruction was presented which
requires four coplanar reference points to be visible in all views. All image data,
except for image data from points on this reference plane, is used directly to
recover points and camera centers simultaneously. The key idea is to map the
reference plane to infinity which transforms the projective multi camera situation
to the case of purely translating calibrated cameras. In this paper we will demon-
strate that there are more multiple view situations which can be transformed to
this mathematically simpler structure of translating calibrated cameras. Namely,
these are exactly the cases for which affine and projective factorization can be
applied:

e general affine cameras
e general projective cameras with known relative epipolar geometry.

No assumption about the scene structure is needed. The main differences of our
approach to the bilinear factorization methods are:

e the selection of a finite plane as the plane at infinity
e the allowance of arbitrary missing data, with three points visible in all views
e the computation of the null space of one image data matrix.

The fact that a finite plane will be mapped to infinity is a potential problem
for numerical calculations. However, we will demonstrate practically and experi-
mentally that this problem can be handled. Additionally, we present an iterative
algorithm for the case of projective cameras and unknown epipolar geometry
that initially assumes affine views and compensates iteratively for the perspec-
tive effects. A similar idea has been suggested by [4,6,19] to circumvent the
pre-estimation of the epipolar geometry for projective factorization. In this pa-
per affine cameras are represented in a projective framework. This is novel and
leads to a unified treatment of parallel and perspective projection in a single
framework.



2 Structure, Motion and the Infinite Homography

General perspective projection of a 3D point P; onto the 2D image point p;; can
be described in homogeneous coordinates as:

pij ~ Hy (I| —Q;) P, ~ H; (P, — Qy), (1)

where H; (I | — Q;) represents the 3 x 4 projection matrix of camera j. Non-
homogeneous coordinates are denoted with a bar, e.g. Qj, and homogeneous
coordinates without a bar, e.g. p;;. The symbol “~” means equality up to scale.
Let us consider the homography H; in more detail. A point P = (X,Y, Z,0)T,
which lies on the plane at infinity 7., is mapped by eqn. (1) onto the image
plane 7; as:

X
pij ~ Hj [ Y ]. (2)
A

Therefore, H; can be considered as the infinite homography® between the plane
at infinity 7., and the image plane ;. From eqn. (1) we see that if H; is known,
we are left with a linear and symmetric relationship between non-homogeneous
points and camera centers:

p;; ~ H'pi; ~ P — Q. (3)
This suggests the following approach for structure and motion recovery:

1. Determine the infinite homographies H
2. Reconstruct points and camera centers.

Section 3 will discuss several ways to determine H; for affine views, projective
views and scenes containing a reference plane.

If H; is known, eqn. (3) can be transformed into three projection relations,
where the unknown scale is eliminated by taking ratios:

;'kj J =0 (4)

with pj; = (z;‘j,y;*j,w;*j)T, P, = (X;,Y;, Z;)T and Q; = (A;, B;,C;)T. Therefore,
each scene point P; visible in view j provides three linear relations of the form
(4) which can be put into a set of linear equations (SLE). For n points and m
views the SLE has the form (explicit in [15]):

L h =0 with
h=(X1,Y1,2Z1,..., X0, Yo, Zn, A1, B1,Ch, ..., Apy B, Co)T. (5)
! Note, the definition of the infinite homography is slightly different to [4, 1].



The Singular Value Decomposition (SVD) of L shows that L has a four di-
mensional null-space. However, three of the four singular vectors of the null-
space have the trivial form: P, = Q; = (1,0,0)7, P, = Q; = (0,1,0)T and
P = Qj = (0,0,1)T. Therefore, the summation of all four singular vectors of
the null-space gives the non-trivial solution for all camera centers and points.
However, points on the plane at infinity 7, increase the dimensionality of the
null-space of L (see [15]). Therefore, the projection relation of those points have
to be excluded from the SLE. Since the infinite homography H; is known, those
points can be reconstructed directly with eqn. (2). How such points are detected
automatically and how the SLE is formulated in an optimal way will be discussed
in section 4. Let us summarize the main advantages of this approach:

e One linear system containing all image data
o Missing data can be handled
e Points and cameras are determined simultaneously.

3 Determine the Infinite Homographies

It was shown in [15] that the infinite homographies H; can be determined if the
scene contains a reference plane visible in all views. However, in this section we
will show that H; can be determined for affine or projective cameras and general
scenes without constraints on the scene structure. Additionally, for projective
cameras the epipolar geometry has to be known. Let us begin with the reference
plane case.

3.1 Reference Plane

In order to determine Hj, it was assumed in [15] that four coplanar scene points
Py, Py, P3, P, are visible in all views. The coordinates of these reference points
were chosen in a canonical way in the projective space P3. Furthermore, the
image basis p;; was mapped to the normalized projective image basis pj; with
D1j, P25, P35, P4j as basis points. This corresponds to the following mapping of
the reference points onto the image plane j:

P P P P

- ij p;j pgj ij

(1) (1) 8 } 1 0 0 1. (6)
0o 1 0o 1 0 1

0o o0 o 0o 0 1 1

We see that all the reference points lie on the plane at infinity. This means that
in the particular chosen projective space, the reference plane is the plane at
infinity. This transformation was noted in [21] as a fundamental requirement for
obtaining the linear relationship between points and camera centers (see eqn.
(3)). The infinite homography of each image j can now be derived from eqn. (2)
as H; = I. Alternatively, H; could be derived from the inter-image homographies
induced by the reference plane.



3.2 Affine Cameras
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Fig. 1. Determine a fourth coplanar point for affine (a) and projective (b) views.
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Fig. 2. Moving the plane at infinity 7o from its “true” location to the reference plane.

Let us assume that three reference points Py, P>, P3 are visible in all views.
These three points uniquely define a reference plane. The basic idea is to deduce
a fourth “virtual” reference point which lies on the reference plane as well. Let
us define the coplanar 3D point Py as Py = P5 + P, — Py (see fig. 1 (a)). Since
affine cameras perform a parallel projection on scene points, the affine image of
Py in view j is psj = ps;j + p2j — p1j. Alternatively, the fourth point could be
chosen as the centroid of the three reference points.

However, how are affine cameras embedded in the projective framework de-
rived in the previous section? Let us reconsider the mapping of a general pro-
jective camera as in eqn. (1):

mi1 Mmi2 M1z Mig
pij ~ | ma1 ma2 maz mas | B (7)
U1 V2 U3 Vg

The last row of the camera matrix is the principle plane mppin = (v1,v2, v3, vg)T
of the camera which contains the camera center and is parallel to the image plane.
In a projective space where the plane at infinity is at its true location, the princi-
ple plane of an affine camera is the plane at infinity, i.e. Tpqin = moo = (0,0,0,1)T
(fig. 2 left). However, we have seen in the previous section that in order to de-
termine Hj, the reference plane has to be the plane at infinity in the particular
chosen projective space (fig. 2 right). This means that in this particular projec-
tive space all camera centers lie on a plane ,,;, which is different to 7. Eqn.



(7) can now be transformed into eqn. (1) with non-homogeneous coordinates for
the camera centers and scene points. From the four coplanar reference points, the
infinite homographies H; can be derived with eqn. (2) and (6). The reconstructed
cameras provide the principle plane mp,;,, which contains all camera centers. Fi-
nally, by mapping m,,i» to 7o the projective reconstruction transforms into an
affine reconstruction.

How does this approach compare to other affine reconstruction methods? In
our approach 6 parameters of each affine camera are determined directly by the
infinite homographies. The remaining 2 unknown parameters, which represent
the direction of an affine camera, are reconstructed simultaneously with the scene
points. In contrast to this, affine factorization [18] determines 2 parameters of
each affine camera in forehand. The remaining 6 parameters of each camera are
determined simultaneously with the scene points. However, this method does not
allow missing data. It has been shown [6, 12] that all 8 unknown parameters of
an affine camera could be determined directly by choosing a special affine basis
in the scene and in the image. However, from an numerical point of view this is
less favourable.

3.3 Projective Cameras

Let us assume that the three reference points P;, P», P3 have canonical coor-
dinates in the projective space and in the image as in eqn. (6). The infinite
homography for each view j is then described as:

aj 0 0
Hi=10 b 0]. (8)
0 0 1

The arbitrary scale of the matrix is fixed by setting H;(3,3) = 1. The variables
a; and b; are unknown in each view j and can be considered as the mapping of
point (1,1,1,0)T into view j: H; (1,1,1)T = (a;,b;,1)T. Let us assume that the
epipolar geometry is known, i.e we have the fundamental matrices between each
pair of views which have at least seven points in common. We denote the epipole
€ij = (eijx, €ijys eijw)T as the projection of camera center j into view i (see fig.
1(b)). The inter-image homography from view i to view j via a certain plane is
defined as H;; = HZ-_1 H; where H;, H; denote the respective homographies as
defined in eqn. (1). Since the epipols between two views are in correspondence
via any plane in the scene (see fig. 1(b)), we may write:

€ji ~ Hij €ij <~ HZ €ji ~ Hj €ij- (9)
Taking equation (8) and (9) we obtain two constraints between views ¢ and j:
i €jiz Cijw — Qj €ijx €jiw =0
bi ejl-y eijw — bj eijy ejiw =0. (10)

All the a;’s and b;’s may now be determined separately but simultaneously. Each
pair of images 7 and j, which are linked by a fundamental matrix, gives an linear



equation in a;,a; and b;,b; respectively. With m images we obtain two sets of
linear equations:

Lo hg = 0 with hy = (a1,...,am,)T and
Ly, hy = 0 with hy = (b1, ..., by)T. (11)

The last singular vector of the SVD of L, and L; gives the solution for h, and
hy respectively. The vector h, and hy have an arbitrary scale which corresponds
to the fact that the fourth unknown reference point on the reference plane has
two degrees of freedom.

The advantage of deriving the infinite homographies in this way is that all
homographies are determined in one step which implies that the complete infor-
mation given by the geometry is used simultaneously.

3.4 Known Structure and Cameras

For an iterative structure and motion algorithm, we would like to update the
infinite homography H; on the basis of known 3D scene points and cameras.
This means that P; and @); are known and we obtain:

pij ~ Hj (I'| —=Qj) P ~ Hjpj; (12)

where p;; is the projection of point P; by camera ( I | — Q;). Since p;; and
p;; are known, the infinite homography H; can be determined for each image j
individually with e. g. the normalized 8-point algorithm (see [3]).

3.5 Choice of reference points

In practice more than three points might be visible in all views of a multiple view
situation. Naturally the question arises of how to find the optimal three reference
points. Let us consider the criteria for good reference points. Firstly, a camera
center must not lie on the reference plane. This means that the three reference
points must not be collinear in any view. Secondly, in the presence of noise the
infinite homography is determined more accurately if the projected reference
points are far apart in the image. Since the two criteria are not contradictive, we
choose as reference points those three points which are “least collinear”. This is
done by considering the distance between one reference point to the line defined
by the other two reference points.

4 Structure and Motion with Infinite Homographies

We have seen that with the knowledge of H; the relationship between known
image points pj; and unknown points P; and camera centers Q; is linear (see
eqn. (3)). Furthermore, eqn. (3) shows that changing the image basis by a ho-
mography B and individually scaling the image points p;; by s;; does not alter
this relationship:

K3



How to choose B and s;; in an optimal way will be discussed in this section.
If B and s;; are known, p’ij can be derived and we obtain a set of linear
equations (SLE) as in section (2):
L h =0 with
h= X\, Y, 21, X, V0, Z, AL B, O A B, Cr )T (14)
Since points which are on or “close” to the reference plane potentially increase
the numerical stability of the reconstruction, the projection relations of such
points have to be excluded from the SLE. However, how can these points be
detected automatically? One idea is to exclude successively points from the SLE

which are close to the reference plane. Therefore, a ranking of all points on the
basis of their distance to the reference plane has to be known.

4.1 Distance between points and reference plane
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Fig. 3. Parallax geometry for (a) projective and (b) affine cameras.

Let us consider a configuration with two cameras @1, @2, a 3D point P and
a reference plane m where P does not lie on 7 (fig. 3(a) depicts a top view). The
inter-image homography from the first to the second view via the reference is as
defined in the previous section: Hys = Hy L' H,. The residual parallax vector in
the second view is given as v = py — His p1. Obviously, v is null if P lies on 7.
However, v vanishes as well if P lies on the baseline of the two views. Therefore,
the distance of a point to the reference plane can not be determined directly
from its parallax vector. Let us define ; = %7 where h; is the perpendicular
distance of P; to the reference plane and d; is the depth of P; with respect to the
first view (see fig. 3(a)). It is known [8] that the relative depth 2! of two points
Py and P, can be derived directly from their parallax vectors vy, vo. This means
that the relative distance Z—; of two points depends on both their parallax vectors
and their depths. However, if we assume parallel projection, d; is constant and
we obtain the relative distance of two points as:
T hy _

= = == 15
Yo ha w2 (15)

Fig. 3(b) depicts a configuration with affine cameras where hy = hy and therefore
v1 = vo. We will use eqn. (15) as an approximation for projective cameras.



The original task was to determine a unique function dis(P;) which represents
the distance between a point P; and the reference plane. Eqn. (15) supplies a
distance function dis;, ;,(-) between each pair of views ji, j2, which is unique up
to scale. A unique function dis(-) can be obtained by recursively merging the set
of functions dis;, ;,(-). Finally, dis(-) is scaled so that the maximal distance of a
point to the reference plane is equal to one, i.e. dis(-) € [0, 1].

4.2 The choice of the image basis

It has been shown in [3] that the normalization of image coordinates can dra-
matically influence the result of a computation based on image coordinates.
Normalization means that the centroid of all image coordinates is at the origin
and the average distance of an image point to the origin is equal to /2. If we
consider eqn. (13), normalization would involve to determine for each view j an
individual matrix Bj;, which represents the normalization. However, such a B;
would destroy the linear relationship between points and camera centers. There-
fore, the matrix B has to be determined independently of a certain view j. We
define:

m

1
B=2% 5/l (10
j=1
where H . H2 is the Frobenius norm of a matrix and m is the number of views.

4.3 Weighting the set of equations

Let us consider a point P; which is closer to the reference plane than another
point Ps. Since the reference plane is the plane at infinity in the chosen projective
space, the coordinates of the reconstructed point P; are larger than the ones of
P,. This means that in the presence of noise, the point with larger coordinates
is reconstructed more accurately. In order to eliminate this favoring of certain
points we suggest to choose? the scale factors in eqn. (13) as s;; = dis(P;) where
dis(-) € [0,1]. This means that points which are closer to the reference plane are
inhibited. The same applies to the equations in the SLE of such a point.

5 Outline of the Algorithms

The different ideas of the previous sections result in three algorithms: A-alg.
(for affine cameras), P-alg. (for projective cameras) and AtoP-alg. (an iterative
version for projective cameras). The AtoP-alg. assumes initially affine cameras
and compensates iteratively for the perspective effects. However, there is no
guarantee that the algorithm will converge to a global minimum. The algorithms
are composed of the following steps:

2 This particular choice of the scale factors s;; is motivated by the mapping (0, l)T —
(1,0)T and (1,1)” — (1,1)7 in the projective space P™.



1. Detect optimal three reference points (sec. 3.5)
2. Determine H; (sec. 3)
A-alg, AtoP-alg: assume affine cameras; P-alg: assume projective cameras
3. Determine distances between points and reference plane (sec. 4.1)
4. Exclude iteratively points from the SLE
5. Determine matrix B (sec. 4.2)
7. Determine scales s;; and image points p;j = sinBHj_lpinz (sec. 4.3)
8. Obtain P{,Q; by SVD (eqn. (14)) and P; on the ref. plane (eqn. (2))
9. Only AtoP-alg.: Update H; (sec. 3.4) and go to 3.
Stop if the RMS-error is either unchanged or increases
10. Take the best result on the basis of RMS-error
11. Undo the basis change: P, = B! P! and Qj =pB! Q;

The quality of the reconstruction is evaluated in terms of the Root-Means-Square
(RMS) error. However, other criteria could be used.

6 Experiments
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Fig. 4. The four different configurations: lateral movement — LAT (a), translational
movement towards the scene — TOW (b), circular movement — CIR (c) and 2 images
of a real sequence — TEA (d).

In order to demonstrate the performance of the algorithms, they were applied
to a wide range of different camera motions and scene settings. Fig. 4 depicts
four of them: three synthetic configurations (a-c) and a real sequence (d). Each
synthetic configuration consists of 50 points distributed uniformly in a sphere



and 12 cameras pointing towards the center of the sphere. They differ in the
type of camera motion: lateral — LAT (a), circular — CIR (c¢) and translational
towards the scene — TOW (b). The distances (in units) between cameras and
points are as in fig. 4. Additionally, a real sequence of 8 images (see fig. 4(d)) was
utilized. The camera circled around the teapot, similar to the CIR~configuration.
In order to conduct synthetic experiments on this sequence, a reconstruction of
the cameras and 96 points of the teapot (see fig. 8) served as the basis for
a synthetic configuration (TEA). If not stated explicitly, all the points of the
TEA-configuration are visible in all views, i.e. no missing data.

6.1 Synthetic Data

The synthetic experiments were carried out with respect to different levels of
Gaussian noise: o = 0,0.2,...,3.0 (standard deviation). In order to obtain av-
erage performance, the following two steps were conducted 20 times for each
noise level: a) randomly determine 50 scene points b) add Gaussian noise on
the reprojected 3D points. In case of projective cameras, the internal calibration
matrix was chosen as diag(500,500,1). Affine cameras were derived from the pro-
jective cameras by moving the center of projection to infinity where the image
size remained fixed (see [4]).

The computed reconstructions were evaluated in terms of the Root-Mean-
Square (RMS) error between reprojected 3D points and 2D image data (poten-
tially corrupted by noise). The performance of the three algorithms presented in
this paper: A-alg., P-alg. and AtoP-alg. is compared to affine factorization
of Tomasi-Kanade (TK-alg.) [18] and projective factorization of Sturm-Triggs
(ST-alg.) [17,19]. In [17] it is suggested to derive the initial “projective depths”
from epipolar geometry. Other authors, e.g. [6,4,5], have shown that initialis-
ing all the “projective depths” to one and reestimating them by reprojection
produce good results as well. This more simple approach was used in this paper.

Different Configurations Let us consider the performance of the A-alg. and
TK-alg. for different configurations (fig. 5 (a,b)). In this case, the scene is viewed
by affine cameras. The performance of the TK-alg. is equally good for all config-
urations and close to identical with the theoretical minimum, i.e. Cramer-Rao
lower bound (not shown). The differences between the results of the TK-alg.
and the A-alg. are not large but noticeable. Furthermore, the A-alg. performed
worse for the TOW-configuration than for the other three configurations. Since
the TOW-configuration has the shortest baseline relative to the scene (see fig. 4
(b)) this result can be expected.

Fig. 5 (c,d) shows the results of the P-alg. and ST-alg. with respect to differ-
ent configurations. In contrast to the previous section projective cameras were
used. As in the case of affine factorization, the ST-alg. is equally good for all
configurations and close to the theoretical minimum. The difference between the
results of the ST-alg. and the P-alg. are obvious. However, for practical noise
levels, e.g. ¢ = 1.0, the results of the P-alg. are still acceptable. A comparison
between the A-alg. (a,b) and P-alg. (c,d) shows that the results of the A-alg.
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Fig. 5. Graphs in respect to different configurations.

are better and the curves for the A-alg. are more linear. The only difference
between the A-alg. and P-alg. is the derivation of the infinite homographies. A
more detailed analyses confirmed that this derivation in the case of projective
cameras is fairly sensitive to noise in the epipols and reference points.

Finally, fig. 5 (e,f) depicts the performance of the AtoP-alg. for different
configurations with projective cameras. Additionally, the results of the A-alg. are
shown, which serve as the initialisation for the iterative AtoP-alg. The theoretical
minimum is displayed as well. The results of the A-alg. on the TEA-configuration
were off the scale (RMS-error between 18.4 and 19.1). It stands out, that for
all configurations the initial reconstruction of the A-alg. can be significantly
improved by the AtoP-alg. Particularly, in the case of no noise, i.e. ¢ = 0,
the AtoP-alg. converged for all configuration close to the theoretical minimum.



However, for higher noise levels, e.g. ¢ = 3.0, the AtoP-alg. did not always
converge close to the theoretical minimum, e.g. TOW-configuration.
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Fig. 6. Graphs for the case of perfect reference points.

Choice of Reference Points In this section we will repeat some of the ex-
periments of the previous section. However, Gaussian noise will be added to all
image points except for the three reference points. Fig. 6 depicts the results for
the case of affine (a) and projective cameras (b). In contrast to the previous
section, the performance of the A-alg. and TK-alg. (fig. 6 (a)) is close to identi-
cal. The same applies to the performance of the P-alg. and ST-alg. (fig. 6 (b)).
Further experiments on the AtoP-alg. and other configurations confirmed this
performance. This leads to the conclusion that, independent of the configuration,
the choice of reference points is crucial for the three presented algorithms.

Missing Data In the previous experiments was assumed that all 96 points of
the TEA-configuration are visible in all 8 images, i.e. no missing data. However,
in practice some points might be occluded in several views. Fig. 7 (a) shows the
“true” wvisibility matriz of the TEA-configuration. An element of this matrix is
set (black dot) if the respective point is visible in the respective view. It turns
out, that 33% of the entries are not set. If the correspondence between successive
frames were obtained by tracking, the final visibility matrix might look like in
fig. 7 (b). Each point, except for the three reference points, is only visible in
three successive views. The amount of missing data increases to 61%.

If all points are visible in all views, the optimal reference points correspond
to points on the body of the teapot (fig. 4 (d)). In the case of missing data (33%
or 61%), points on the rim and handle were detected as the best reference points.

Let us consider the performance of the A-alg. (fig. 7(d)) and the P-alg. (fig.
7 (e)) on these three types of visibility matrices: no missing data, 33% missing
data (fig. 7(a)) and 61% missing data (fig. 7(b)). The first observation is that
the performance of the A-alg. and P-alg. differs only slightly in respect to the
different cases of missing data. Further experiments confirmed the conclusion
that the performance of the three novel algorithms is “fairly” independent to the
amount of missing data. A more detailed analyses shows that both algorithms
performed less stable for the case of 61% missing data (zigzag shape of the
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Fig. 7. Visibility matrices (a,b) and graphs (c-e) for the case of missing data.

curves). This performance can be expected since “only” three successive views
(fig. 7(b)), i.e. short baseline, provide information about the 3D position of a
certain point in the scene.

In the last experiment we compare the A-alg. to two alternative methods
which handle missing data for affine views. Jacobs algorithm [9] fits a matrix of
rank 3 to the data matrix with missing elements (Fit-alg.)?. Kahl and Heyden
[10] use the centred affine tensors between successive two and three views to ob-
tain all camera matrices simultaneously by using the so-called closure constraints
(Closure-alg.). The main advantage of these methods is that the image data is
used in a uniform manner, i.e no selection of specific reference points. In contrast
to our approach, the image data is not used directly to obtain structure and mo-
tion simultaneously. Fig. 7(c) shows the result for a noise level of o = 2.0. The
visibility matrix in fig. 7(b) was used, where the number of points per view var-
ied. If a point is visible in more than 5 views the alternative methods performed
slightly better, which might be due to noise in the reference points. However,
in the case of more missing data, i.e. only 3 or 4 points per view, the alterna-
tive methods performed worse in this experiment. In case of the Closure-alg. an
explanation might be that the data is not sufficient to obtain good tensors.

6.2 Real Data

The 8 images of the teapot (see fig. 4 (d)) served as a real image sequence. On
the basis of this, 96 corresponding image points were selected manually which

3 We used the code available at http://www.neci.nj.nec.com/homepages/dwj/.
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Fig. 8. Top (a), side (b) and front (c) view of the reconstructed teapot (see fig. 4 (d)).

results in the “true” visibility matrix as in fig. 7 (a). The reconstruction obtained
with the P-alg. had an RMS error of 2.84 between reprojected 3D points and
select image points. Fig. 8 shows the top (a) side (b) and front (c) view of the
reconstruction which was metric rectified. Only those scene points which lie on
the contour in the top, side or front view of the teapot were reconstructed. The
AtoP-alg. performed with an RMS error of 2.06 where the initial reconstruction
determined with the A-alg. had a RMS error of 15.82.

7 Summary and Conclusion

We have presented two linear methods for the simultaneous computation of 3D
points and camera positions from multiple affine and projective views. This is
achieved by computing the nullspace of one linear system constructed from all
image data. In case of affine views the only requirement is that three points are
visible in all views. Additionally, for projective views the epipolar geometry has
to be known. In case of unknown epipolar geometry, a third iterative algorithm
for projective views has been presented. The treatment of affine and projective
cameras in a single, unified projective framework is a further, novel contribution.

The only other methods that use all image data directly are the factorization
algorithms for affine [18] and projective [17,19] views. However, in contrast to our
approach, they require all points to be visible in all views. Since points become
inevitably occluded in practice, we consider the presented methods as a major
and novel contribution to the problem of structure from motion. Alternative
reconstruction methods for handle missing data have been presented [9, 10, 20],
which have the advantage that data is used in a uniform manner, i.e no selection
of reference points. However, in contrast to our approach the image data is not
used directly to obtain structure and motion simultaneously.

The experiments, which covered a wide range of different camera motions and
scene settings, have shown that the presented algorithms perform very well for
practical noise levels. If the reference points are chosen carefully the performance
of the presented algorithms compared to affine and projective factorization meth-
ods is close to identical. Furthermore, the use of all available image data, which is
not available for factorization methods, is a most important numerical stabilising
factor in this approach.
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