Hierarchical Wavelet Networ ks for Facial Feature L ocalization

Abstract

We present a technique for facial feature localization us-
ing a two-level hierarchical wavelet network. Thefirst level
wavelet network is used for face matching, and yields an
affine transformation used for a rough approximation of
feature locations. Second level wavelet networks for each
feature are then used to fine-tune the feature locations.

Construction of a training database containing hierar-
chical wavelet networks of many faces allows features to be
detected in most faces. Experiments show that facial feature
localization benefits significantly from the hierarchical ap-
proach. Results compare favorably with existing techniques
for feature localization.

1. Introduction

Automated initialization of feature location is a require-
ment of many tracking algorithms that take advantage of
temporal continuity of the target. In this paper, we describe
an approach to automatic initialization using hierarchical
wavelet networks. Our application is facial feature local-
ization for the purpose of initializing facial feature tracking,
but the approach is applicable to other target types.

Tracking algorithms that are based on tracking sets of
compact visual features, such as edge corners or small im-
age patches, are especialy difficult to initialize because
each feature in itself is rarely unique — brute-force raster-
scan searches of such small features will result in many
possible candidates, of which only a small handful may be
desirable matches (Figure 1).

This suggests that features with larger support should be
used, but features with larger support are also likely to be
less precisein their localization, as image features far away
from the feature in question bias localization. For exam-
ple, many frontal face detectors[15, 16, 17] could trivialy
be converted to frontal eye detectors, by assuming that eyes
are located at certain relative coordinates with respect to a
detected face, and in fact, some face detectors overlay mark-
ers on the eyes, as evidence of a detected face [15, 16]. At
a given resolution, whole faces contain more information
than the eyes alone, and so the larger support of the face
provides greater constraints in the search for eyes. On the
other hand, the larger support also means that eye localiza-

Figure 1. Candidates for an eye corner from a
face image.

tion is imprecise because the face-eye relationship varies
from image to image. Variations in facial geometry alone
make it impossible to pinpoint pupils or eye corners using
such atechnique.

We present an algorithm which solvesthis problemviaa
hierarchical search using Gabor wavelet networks (GWNSs,
[9]). This approach allows effective object representation
using a constellation of 2D Gabor wavel ets that are specifi-
cally chosen to reflect the object properties.

For application to facial feature detection, we construct
a training database of face images and their 2-level GWN
representations. The first level GWN, representing the en-
tire face, is used to find aface in the database that is similar
to the target, and to determine an affine transformation to
describe any differencein the orientation of the faces. The
second level GWNSs, representing each feature, are initial-
ized in positions according to the affine transformation from
thefirst level GWN. They are then allowed to move slightly
to minimize their difference from the new face. This fa-
cilitates adjustments to account for slight differencesin the
geometry of the database face and the target. The final po-
sition of the child-wavelet networks is the estimate of the
feature positions.

The remainder of the paper is organized as follows. In
Section 2, we explain Gabor wavelet networks, which form
the basis for our approach, and introduce hierarchies of
GWNs, as well. Section 3 discusses the algorithmic de-
tails of our feature-localization system and shows results on
a hand-annotated database of faces and facial features. Fi-
nally, Section 4 reviews related work.



2. Wavelet Networks

A wavelet network consists of a set of wavelets and as-
sociated weights, where its geometrical configurationis de-
fined with respect to a single coordinate system. It can be
further transformed by a parametrized family of continuous
geometric transformations. Wavelet Networks [20] havere-
cently been adapted for image representation [9] and suc-
cessfully applied to face tracking, recognition, and pose es-
timation [1, 9]. Here, we apply them to the problem of fea-
ture localization.

2.1 Basics

The congtituents of a wavelet network are single
wavelets and their associated coefficients. We will consider
the odd-Gabor function as mother wavelet. It iswell known
that Gabor filters are recognized as good feature detectors
and providethe best trade-off between spatial and frequency
resolution[11]. Considering the 2D image case, each single
odd Gabor wavelet can be expressed as follows:
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allow scaling, orientation, and trandation. The parameters
are defined with respect to a coordinate system that is held
fixed for all wavelets that a single wavelet representation
comprises. A Gabor wavelet network for a given image
consistsin aset of n such wavelets {¢n, } and a set of asso-
ciated weights {w, }, specifically chosen so that the GWN
representation:
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best approximates the target image.

2.2. Compression as L earning

Assuming we have a single training image, 1, that is
truncated to the region that the target object occupies, we
learn GWN representation parameters as follows:

1. Randomly drop n wavelets of assorted position,
scale, and orientation, within the bounds of the tar-
get object.

2. Perform gradient descent (e.g. via Levenberg-
Marquardt optimization [13]) over the set of parame-
ters {w;, n; }, to minimize the difference between the
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Figure 2. The image shows a facial recon-
structions with variable accuracy, consid-
ering (from left to right) 52, 116 and 216
wavelets.

GWN representation and the training image:
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3. Save the geometric parameters, n;, and the weights,
w;, for al n wavelets. Letv = [wiws ... w,]! de
note the concatenated vector of weights.

Step 2 minimizes the difference between the GWN rep-
resentation of the training image and the training image it-
self. A reasonable choice of n results in a representation
that is an effective encoding of the training image. One
advantage of the GWN approach is that one can trade-off
computational effort with representational accuracy, by in-
creasing or decreasing i (see Fig. 2).

We note herethat if the parametersfor awavelet, vn, (X),
are fixed, then its coefficient, w;, on an image, |, can be
computed easily from the image by taking theinner product
of the wavelet's dual, ¥n, (x), with |: w; = (I, 4n,). Here,
(¢n; (X),¥n, (X)) = d;; (see[1, 9] for more details).

2.3. Localization

GWNs may be further transformed by a bijective geo-
metric transformation, T, parametrized by «, such that
the GWN representation ¥(x) is mapped to ¥ (T (x)).
Localization of an object represented by ¥ can then be
seen as finding the optimal parameters, o, of T that allow
(T *(x)) to best reconstruct aportion of theimage. Given
a hypothesized set of parameters, «, one way to determine
whether it performs a good reconstruction is to compute
(T, *(x)) and then compute the L,-norm between it and
the image (within ¥'s support region).

If thetransformation T islinear it can be treated as being
“pushed back” to theindividual wavelets, 1 n, (x), that make
up the GWN representation. In this case, we do not have
to laborioudly reconstruct images to compute the L 5-norm.
Instead, given a hypothesized set of parameters, a, we can
now transform the constituent wavelets accordingly, com-
pute their weights, w, on theimage, |, and directly compute
Ly-norm asfollows:
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wherev; = (1(x),4n, (T (x))).
Theterms (¢n,, ¢n,) areindependent of o up to ascalar
factor, thus further facilitating on-line computations.

2.4. Hierarchical Wavelet Networks

Hierarchical wavelet networks are best envisioned as a
tree of wavelet networks. Each node of the tree representsa
single wavelet network together with its coordinate system.
Each child node is associated with a fixed local coordinate
system that is positioned, scaled, and oriented with respect
to its parent. Child nodes represent wavelet networks in
themselves. Relationships between the wavelet parameters
in aparent node and achild node are not fixed apriori. That
is, thishierarchical structure only imposesdirect constraints
on the relative positioning of coordinate systems between
nodes, not on the wavel ets themsel ves.

Structured in this way, wavelet networks occurring
higher (toward the root) in the tree constrain their child-
node wavel et networksin such away asto avoid significant
geometric deviations while offering enough flexibility that
local distortions can still be modeled.

3. Implementation

Our test system was developed to provide initialization
for a3D facial posetracker. The tracking system (described
in[2, 3]) uses nine tracked features on a subject’s face—in-
ner and outer corners of both eyes, three points on the nose,
and two mouth corners. Each feature is tracked by a combi-
nation of low-resolution, sum-of-absol ute-differences tem-
plate matching and iterative sub-pixel tracking of small im-
age patches [7, 10]. Both feature-tracking algorithms re-
quire accurate initial localization of the nine features, per
subject, in order to track. Previously, these points were ini-
tialized manually for each subject; by implementing the al-
gorithms described above, we were able to automate this
processfor arange of subjects. Inthe remaining sequences,
facial features will refer to eight of these features (not in-
cluding the nose tip — this is estimated as the midpoint be-
tween nostrils, because local image information is insuffi-
cient for accurate localization).

3.1. Training Database

Our training database includes the following for each
face:
the original image,
abounding box for each facial feature,
a bounding box for the whole face,
a GWN representation of the region inside the face
bounding box, and
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Figure 3. Training database: (a) face image
(b) GWN representation of face (c) GWN of
features.

e aGWN representation of the region inside each facial
feature bounding box.

Faces are well-represented with a GWN of 52 wavelets, as
shownin Figure 2 (Cf. the Gabor jet approach, whichwould
require many more wavelets). Each facial feature is repre-
sented by a GWN comprising nine wavelets.

3.2. Level One: Face Matching

Assume we are given an image known to have a face
present together with the approximate location of the face
(e.g., viaface detection [15, 16, 17]). Thefirst step in fea-
ture localization we call face matching. The task isto find
the “best match” face from our database of faces, using the
first level of the GWN hierarchy and a nearest-neighbor al-
gorithm.

For each candidate face, we begin by determining an
affine transformation of the level-one GWN that registers
the candidate with the target image, as explained in Sec-
tion 2.3. Levenberg-Marquardt optimization was used to
find the best affine parameters. The residua score in
wavel et subspace (Equation 4) is then minimized over can-
didates to suggest the best-match face from our database.
Intuitively, this score gives an indication of how good a can-
didate is, for the purposes of initialization of Level Two,
below.

Note that at this point, we can generate reasonable hy-
potheses for feature positions aready, simply by applying
the affine transformation to the relative positions of the
features with respect to the whole face, as marked in our
database. The success rate of these first-level hypothesesis
givenin Table 1.

In the next subsection, we show how these estimates are
further refined by level-two analysis.

3.3. Level Two: FeatureL ocalization

Level One gives us an initia starting point for finer
search. Therefinement processisidentical in the abstract to
how we computed the affine transformation in Level One.
The details are dlightly different:
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Figure 4. First-level matching: Sum of feature
position differences vs face match score for
one face.

We do not alow arbitrary affine transformations for fa-
cial features, because local features tend to have far fewer
image constraints. A problem akin to the “aperture effect”
comes into play, and this is aggravated by searching over
too many degrees of freedom. Since we aready know the
facial orientation, scaling and expected aspect ratio from
Level One, we restrict our search to trandlational parame-
ters, only.

For each feature, we perform a brute-force search within
a limited window for a position that minimizes the score
in wavelet subspace between a candidate level-two feature
GWN, and the target image.

Note that candidate feature GWNs may be drawn from
any of the facesin our database, not just the GWNs that are
associated with the best-match face from Level One. This
gives even arelatively small database the power to match
a considerable segment of the population, by mixing and
matching features from different faces.

3.4. Resaults

Experimental validation of our approach was obtained
by constructing a database of 100 faces, drawn from the
Yale and FERET Face Databases [4, 12]. To test, we per-
formed aleave-one-out series of 100 experiments, wherefor
each face, we apply featurelocalization using the remaining
database of 99 faces. For each set of automated feature lo-
calizations, we compare with the hand-marked locations of
each feature.

Figure4 plotsthe sum of feature position differencesver-
sus face score for a single face, with all other faces in the
database scored against it. This figure demonstrates that
a good score aways corresponds to a small position dif-
ference. To show that there is considerable advantage to
additional layers in the hierarchy, we compare feature lo-
calization results using only one level to using both levels.

for 1- and 2-level hierarchies. A feature was
counted as accurately detected if it was local-
ized to within 3 pixels of the point marked by
hand.
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Figure 5. Sum of feature position differences,
for each face, for 1- and 2-level systems.

Table 1 compares feature localization rates for both 1- and
2-level systems. An “accurate” localization is characterized
as one in which the feature was localized to within 3 pix-
els (L»-distance) of the hand-marked position. Note that
features are localized consistenly more accurately for all
features with two levels rather than one. Figure 5 shows
this same trend broken down differently. The solid linein-
dicates the total SAD in feature position between 2-level
localization and hand-annotation; the dashed line is for 1-
level localization. Except in a two or three rare instances,
the 2-level localization is far superior.

Finally, we offer random examples out of the 100 exper-
iments for visual examination. Figure 6 shows a clear im-
provement in feature localization with two levels. Note that
just about every feature is accurately localized by two-level
matching.

Figures7 and 8iillustrate further cases of accurate andin-
accurate detection cases using the two-level hierarchy. Fig-
ure 8 shows examples of some rare failure cases. Among
failures, these examples are typical — eyebrows or shadows
under the eyes are sometimes mistaken for the eyes them-
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Figure 6. Feature detection results. Improved
accuracy by using hierarchical localization.

selves, and specular reflection from glasses can obfuscate
eye corners.

4. Related Work

Other facial feature detection approaches exist. One ap-
proach detects feature points using hand-crafted geometric
models of features [19]. The goa of this work, however, is
in detection of faces by looking for groupsof facial features,
so feature localization accuracy is low. Other work trains
separateface and facial feature detectors, wherefeaturesare
trained for maximum discriminability from among a train-
ing set [5]. Thiswork is presented without quantitativemea-
sures of feature localization. Steerable filters and geometri-
cal models have also been used to find facial features with
high accuracy[8]. A coarse-to-fine image pyramid is em-
ployed to localize the features, but the technique requires
high-resolution imagery in which sub-features such as the
whites of the eye are clearly visible as such. Color seg-
mentation can also be used to estimate approximate feature
locations [6]. These estimates, reported to have a precision
of up to +2 pixels, can befurther refined viagrayscaletem-
plates to sub-pixel accuracy. For each individual and each
face feature nine 20 x 20 pixel templates are given, but no
generalization to unknown faces is discussed. Finaly, neu-
ral networks have been used to detect eyes and eye corners
[14]. Results approach 96% correctly detected eye corners
while alowing avariance of two pixels, but these resultsare
for eyes only, which are less deformabl e than mouths.

Lastly, GWNs invite the closest comparison with the
well-known Gabor jet representations of facial features
[18]. The advantage of GWNs is that they offer a sparser

Figure 8. Feature detection results. Examples
of inaccurate detection.

representation of image data: Where jets can require up to
40 complex Gabor filters to approximate the local image
structure around a single feature point, GWNSs can make do
with nine, asin our implementation. This is a direct con-
sequence of alowing wavelets in a GWN to roam contin-
uoudly in their parameter space during training. Edge fea-
tures, which are building blocks of more complex features,
are thus efficiently captured at various scales by GWNSs.

5 Conclusion

We have presented a hierarchical wavelet network ap-
proach to feature detection. Our method takes a coarse-
to-fine approach to localize small features, using cascading
sets of GWN features.

We tested our results on the task of facial feature local-
ization, using one- and two-level hierarchies. For the one-
level implementation, GWNs are trained for the whole face;
for two levels, the second-level GWNs are trained for each
of eight facial features. Experiments show that the two-level
system outperforms the one-level system easily, verifying
the usefulness of a hierarchy of GWNs for feature localiza-
tion. Results compare favorably with other algorithms on
this task.

Some remaining issues include the following: How can
we determine the minimum number of wavel ets required for
each GWN? Can a subset of waveletsin a given network be
sufficient for good matching at a particular level? Finally,
how can we minimize the number of GWNSs necessary at
each level to capture the broad range of the set of real tar-
gets? We hope to examine these questions as future work.

References

[1] — —-.

2] — —-.

[3] — —-.

[4] P.N.Behumeur, J. P. Hespanha, and D. J. Kriegman. Eigen-
faces vs. Fisherfaces: Recognition using class specific lin-



(5]
(6]

(8l
(9

(10]

(11]

(12]

(13]

(14]

(19]

(16]

Figure 7. Feature detection results. Examples of accurate detection.

ear projection. |EEE Trans. Patt. Anal. and Mach. Intel.,
19(7):711-720, 1997. Special Issue on Face Recognition.
A. Colmenarez, B. Frey, and T. Huang. Detection and track-
ing of faces and facial features. 1999.

H. Graf, E. Casotto, and T. Ezzat. Face analysis for synthe-
sis of photo-realistic talking heads. In Proc. Int'l Conf. on
Autom. Face and Gesture Recog., pages 189-194, Grenoble,
France, March, 28-30, 2000.

G. Hager and P. Belhumeur. Efficient region tracking with
parametric models of geometry and illumination. PAMI,
20(10):1025-1039, October 1998.

R. Herpers and et al. Edge and keypoint detection in facial
regions. InKillington, VT, Oct. 14-16, pages 212-217, 1996.
V. Kriiger. Gabor wavelet networks for object representa-
tion. Technical Report CS-TR-4245, University of Mary-
land, CFAR, May 2001.

B. D. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In Proc. Int’|
Joint Conf. on Al, pages 674-679, 1981.

B. Manjunath and R. Chellappa. A unified approach to
boundary perception: edges, textures, and illusory contours.
|EEE Trans. Neural Networks, 4(1):96-107, 1993.

P. Phillips, H. Moon, S. Rizvi, and P. Rauss. Theferet evalu-
ation. InH. W. et al., editor, Face Recognition: From Theory
to Applications, pages 244-261, 1998.

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Nu-
merical Recipes, The Art of Scientific Computing. Cam-
bridge University Press, Cambridge, UK, 1986.

M. Reinders, R. Koch, and J. Gerbrands. Locating facial
features in image sequences using neural networks. 1997.
H. Rowley, S. Baluja, and T. Kanade. Neural network-based
face detection. |EEE Trans. Patt. Anal. and Mach. Intel.,
20:23-38, 1998.

H. Schneiderman and T. Kanade. A statistical method for 3d
object detection applied to faces and cars. In Proc. Computer

[17]
(18]

[19]

[20]

Vision and Patt. Recog., pages 749751, Hilton Head Island,
SC, June 13-15, 2000.

P. Violaand M. Jones. Robust real-time face detection. In
ICCVO01, page I1: 747, 2001.

L. Wiskott, J. M. Fellous, N. Kriiger, and C. v. d. Mal sburg.
Face recognition by elastic bunch graph matching. |IEEE
Trans. Patt. Anal. and Mach. Intel., 19:775-779, 1997.

K. Yow and R. Cipolla. Feature based human face dection.
Image and Vision Computing, 15:713-735, 1997.
Q. Zhang and A. Benveniste. Wavelet networks.
Trans. Neural Networks, 3:889-898, 1992.

IEEE



