IEEE INFOCOM 2002

Locality in Search Engine Queries and Its
Implications for Caching

Yinglian Xie and David O’Hallaron
Department of Computer Science, Carnegie Mellon University
Email:{ylxie, droh@cs.cmu.edu

Abstract—Caching is a popular technique for reducing both server loa
and user response time in distributed systems. In this papewe consider the
question of whether caching might be effective for search ejines as well.
We study two real search engine traces by examining query ladity and its
implications for caching. Our trace analysis results showhat: (1) Queries
have significant locality, with query frequency following aZipf distribution.
Very popular queries are shared among different users and aabe cached
at servers or proxies, while 16% to 22% of the queries are fronthe same
users and should be cached at the user side. Multiple-word eies are
shared less and should be cached mainly at the user side. (Z)chching is
to be done at the user side, short-term caching for hours wilbe enough to
cover query temporal locality, while server/proxy cachingshould use longer
periods, such as days. (3) Most users have small lexicons whgubmitting
queries. Frequent users who submit many search requests tdrto reuse
a small subset of words to form queries. Thus, with proxy or uer side
caching, prefetching based on user lexicon looks promising

I. INTRODUCTION

« How long should we keep a query in cache before it becomes
stale?

« What might other benefits accrue from caching? Since both
proxy and client side caching are distributed ways of servin
search requests, can we prefetch or re-rank query resusigslba
on individual user requirements?

With respect to the above questions, we study two real search
engine traces. We investigate their implications for caghi
search engine results. Our analysis yielded the followieyg k
results:

+ Queries have significant locality. About 30% to 40% of
gueries are repeated queries that have been submittecebefor
Query repetition frequency follows a Zipf distribution. 8 hop-

ular queries with high repetition frequencies are sharedram
different users and can be cached at servers or proxiesiguer

ACHING is an important technique to reduce server worl@'® also frequently repeated by the same users. About 16% to
C load and user response time. For example, clients can sé4d¢ of all queries are repeated queries from the same users,
requests to proxies, which then respond using locally achchwhich should be cached at the user side. Multiple-word gseri
data. By caching frequently accessed objects in the prootyesa are less likely to be shared by different users. Thus theyatsm
the transmission delays of these objects are minimizedusecaP® cached mainly at the user side.
they are served from nearby caches instead of remote setwers The majority of the repeated queries are referenced again
addition, by absorbing a portion of the workload, proxy @ch Within short time intervals. But there remains a signifiqaot-
can increase the capacity of both servers and networkepertion of queries that are repeated within relatively longeetin-

enabling them to service a potentially larger clientele.

tervals. They are largely shared by different users. Sccificey

We are interested in the question of whether caching might i5ei© Pe done at the user side, short-term caching for hors wi
effective for search engines as well. Because serving atsed?® enough to cover query temporal locality, while servexpr
request requires a significant amount of computation asagel|c2ching should be based on longer periods, on the order ef day
/0 and network bandwidth, caching search results could ih-Most users have smal_l lexicons when submitting queries. Fre
prove performance in three ways. First, repeated querjtses@uent users who submit many sez_irch requests tend to reuse a
are fetched without redundant processing to minimize the &mnall subset of words to form queries. Thus, with proxy oruse
cess latency. Second, because of the reduction in servér w&de caching, prefetching based on user lexicons is proguisi
load, scarce computing cycles in the server are saved,iatl;owproxy or user side caching also provide us with opportusitie

these cycles to be applied to more advanced algorithms and E)O

improve query results based on individual user prefeagnc

tentially better results. Finally, by disseminating useguests Which is an important future research direction.

In the rest of the paper, we first discuss related works in Sec-

among proxy caches, we can distribute part of the compunaitio

tasks and customize search results based on user contiextudion I-A. We then describe the traces we analyzed and summa-

formation. rize the general statistics of the data in Section Il. In iBect
Although Web caching has been widely studied, few réll, we focus on repeated queries and discuss query locality

searchers have tackled the problem of caching search eregin@©th traces. Section IV presents our findings about userdexi

sults. While it is already known that search engine quersagh @nalysis and its implications. Finally, we review analysisults

significant locality, several important questions ard eplen: ~ and discuss possible future research directions.

+ Where should we cache search engine results? Should we

cache them at the server's machine, gt the user’s machinefx\(l)rRelated Work

in intermediate proxies? To determine which type of caching Due to the exponential growth of the Web, there has been

would result in the best hit rates, we need to look at the degmauch research on the impact of Web caching and how to max-

of query popularity at each level and whether queries will baize its performance benefits. Most Web browsers support

shared among different users. caching documents in the client’'s memory or local disk to re-

IEEE INFOCOM 2002 2

duce the response time of the client. Deploying proxies betw in early January, 2001. The trace captures the behaviorlyf ea

clients and servers yields a number of performance benéfitsadopters who may not be representative of a steady state user

reduces server load, network bandwidth usage as well asasegroup. The Excite trace was collected on December 20, 1999.

cess latency [1], [2], [3], [4]. Prefetching documents toxpes Although the Vivisimo trace and the Excite trace were caédc

or clients has been studied for further performance imprare independently at different times, over different tempgeti-

by utilizing user access patterns [5], [6]. ods, and with different user populations, their statistieaults
There are previous studies on search engine traces. aslenare similar. Thus they are both representative.

analyzed the Excite search engine trace to determine haw use In both traces, each entry contains the following fields ef in

search the Web and what they search for [7]. Silversteial terest:

analyzed the Altavista search engine trace [8], studyiegrih « an anonymous IDidentifying the user IP address. For pri-

teraction of terms within queries and presenting results@ir- vacy reasons, we do not have actual user IP addresses. Each IP

relation analysis of the log entries. Although these swili@ve address in the original trace is replaced by a unique anongmo

not focused on caching search engine results, all of them sug.

gest queries have significant locality, which particularipti- « a timestamp specifying when the user request is received.

vates our work. The timestamp is recorded as the wall clock time with a 1 sgcon
Query result caching has already been investigated as a wegblution.

to reduce the cost of query execution in distributed databgs- « a query string submitted by the user. If any advanced query

tems by caching the results of “similar” queries [9], [10]e-R operations are selected, they will also be specified in thisgs

cently, Markatos has studied the query locality based oikiie « a number indicating whether the request is for next page re-

cite trace and shown thad% ~ 30% of the queries are repeatedsults or a new user query.

ones [11], [12]. He suggests a server-side query resulecaict

has mainly focused on leveraging different cache replanem€. Statistical Summaries of the Traces

algorithms. Our work builds on this by systematically sty afier extracting a query string from each trace entry, wesra
query locality and deriving the implications for cachings® ¢, the string to a uniform format for easy processing. We re
engine results. move stopwords from the query because most search engines
discard them anyway. We convert all query terms to lower
case. Thus the query is case insensitive, which is alsodlpic
The two traces we analyzed are from the Vivisimo search efdr search engines. However, the removal of the stopwords an
gine [13] and the Excite search engine [14]. In this sectiofhe upper-to-lower case conversion actually has littlegiotpn
we briefly take a look at the two search engines and review thgjyr analysis results. It affects our statistics by about b a
trace data. the effect could be ignored. In the rest of the paper, we use
“query” to denote all the words as a whole entered by the user
in a query submission, and “words” or “terms” to denote the in
Vivisimo is a clustering meta-search engine that orgartizes dividual words contained in a user query. Because we cannot
combined outputs of multiple search engines. Upon receptidistinguish users who used multiple IP addresses or userss wh
of each user query, Vivisimo combines the results from othshared IP addresses in the trace, we uniformly use “user+o d
search engines and organizes these documents into meaniage the IP address where the query came from.
ful groups. The groupings are generated dynamically based o Fig. 1 summarizes the statistics about the traces. ThedExcit
extracts from the documents, such as titles, URLs, and sh@sce lasts for 8 hours in a single day. The Vivisimo trace was
descriptions. By default, Vivisimo refers to one or mulépl collected more recently over a period of 35 days. Thus, the tw
major search engines, including (ca. Feb. 2001) Yahoo, Ataces provide us with both long-term and short-term viaws t
tavista, Lycos, Excite, and returns 200 combined resultsgus user queries since they stand for different time scalesergkev
logic operation 'ALL. Vivisimo also supports advanced s#a facts are obvious from this summary for both traces.
options where users can specify which search engines tg,quer Users do not issue many next-page requests. Fewer than two
the number of results to be returned, and which logic op&matipages on average are examined for each query.
to be performed on the query, including ANY, PHRASE angd. Users do repeat queries a lot. In the Vivisimo trace, over
BOOLEAN. 32% of the queries are repeated ones that have been submitted
Excite is a basic search engine that automatically producssiore by either the same user or a different user. In thet&xci
search results by listing relevant web sites and informaijgon trace, more thad2% of the queries are repeated queries.
reception of each user query. Capitalization of the quediss 3. The majority of users do not use advanced query options:
regarded. The default logic operation to be performed i’AL 97% of the queries from the Vivisimo trace ar@8% of the
It also supports other logic operations like 'AND’, 'OR’, MD queries from the Excite trace use the default logic opematio
NOT'. More advanced searching features of Excite includewi offered by the corresponding search engines.
card matching, 'PHRASE’ searching and relevance feedbacka. Users on average do not submit many queries. The average
numbers of queries submitted by a user 48 and3.69 re-
spectively.
The Vivisimo query trace was collected from January 1%, About70% of the queries consist of more than one word, al-
2001 to February 17, 2001, soon after the Vivisimo launchédough the average query length is fewer than three termshwh

Il. THE SEARCH ENGINE QUERY TRACES

A. The Vivisimo and the Excite Search Engines

B. The Query Trace Descriptions

IEEE INFOCOM 2002 3

Trace Vivisimo trace Excite trace
Start-time 14/Jan/2001:04:02 20/Dec/1999:09:0(
Stop-time 17/Feb/2001:00:00 20/Dec/1999:16:54
Number of bytes 657,623,865 118,318,788
Number of HTTP requests 2,588,827 not known
Number of user queries (including next page requests) 205,342 2,477,283
Number of user queries (excluding next page requgsts) 110,881 1,920,997
Number of distinct user queries 75,343 1,099,682
Number of multiple word queries 77,181 1,429,618
Number of queries using default logic operation(ALL) 107,880 1,792,174
Number of users 20,220 520,883
Average queries submitted per user 5.48 3.69
Average number of terms in a query 2.22 2.63

Fig. 1. Trace statistical summary. The number of HTTP retgueemnnot be inferred from the Excite trace since the tragedi contain information about HTTP
requests from users.

40

N
[

N

=
3]

[N

o
2]

(%) Percentage of the queries

Number of times repeated(10 based log)

o

1 2 3 4 5 6 7 8 9 10>10 0 1 2 3 4 5
Number of words in a query Query ID(10 based log)
(a) The Vivisimo Trace (a) The Vivisimo Trace

w
(&2}

N

N oW
a o

w
w o

PN
a o
= N
[S

[
o
[

(%) Percentage of the queries

Number of times repeated(10 based log)

5 0.5t
0 0
1 2 3 4 5 6 7 8 9 10>10 0 1 2 3 4
Number of words in a query Query ID(10 based log)
(b) The Excite Trace (b) The Excite Trace

Fig. 2. User query distribution according to the number ofdgdn each query Fig. 3. Distribution of the query repetition frequency @ghmic scales on
both axes). The query IDs are sorted by the number of timeglvepeated.

is short. Fig. 2 shows the query length distributions of thie t locality in these queries motivates different kinds of ¢agh
traces. We can observe that most of the queries are fewer than

five terms long. A. Query Repetition Distribution
Overall, these results are cons_istent with those repantéd)i Among the 35,538 queries that are repeated ones in the
and [8] and thus are not surprising. Vivisimo trace, there ar&6,162distinct queries. This means on

average, each repeated query was submBt2@times. Sim-
ilarly, each repeated query in the Excite trace was subdhitte
As mentioned in Section II-C, 32% to 42% of the queries i4.49 times, with235,607distinct queries amon§21,315re-
the trace are repeated queries, which suggests cachingas apeated ones. Interestingly, we found that the query répetit
to reduce server workload and network traffic. In this sextiofrequencies can be characterized by Zipf distributiongy. Bi
we focus on the study of repeated queries, and discuss howytlas the distributions of the repeated query frequen@estie

I11. QUERY LOCALITY AND ITS IMPLICATIONS

IEEE INFOCOM 2002 4

=
o
=]

traces. Each data pointrepresents one repeated queryheixh

axis showing queries sorted by the repetition frequencyfitht
query is the most popular one, the second query is the second-
most repeated query, and so on until we reach the query number
16,162 and 235,607 which were only repeated a single time.

We are interested in whether the repeated queries were from
the same users or shared by different users. Out o321@85%
of the repeated queries in the Vivisimo tra¢é,58% are from
the same users. In the Excite trace, we hd2e/5% of the
repeated queries, of whicBi7.35% are repeated by the same 1000 2000 3000 4000 5000 60007000
users. Therefore, abo@2% and 16% of all queries are re- User ID
peated queries from the same users in the Vivisimo tracetand t (a) The Vivisimo Trace
Excite trace, respectively.

We then counted the number of distinct queries that were re-
peated by more than one user. There &y@75such queries
from the Vivisimo trace and35,020such queries from the Ex-
cite trace. The distributions of these queries, howevernan-
uniform according to the frequency of the repetitions. Winge
the “shareness” of a query as the number of distinct users who
submitted the query over some time period. Thus, sharesess i
a measure of a query’s popularity across multiple users. 4~ig
shows the shareness of the queries based on their repétéion
guencies. We find that queries repeated at least 10 times are
more likely to be shared by multiple users than queries tepea _
fewer than 10 times. In the Vivisimo trace, among #@% (b) The Excite Trace
queries that were repeated at least 10 tii8H6%were shared Fig. 5. The percentage of the repeated queries over the muofitieieries
by different users. For the queries that were repeated feénaer submitted by each user (Only those users who repeated guegelotted
10 times, only33.99% were shared. The same trend holds for "€)-
the Excite trace. Among thE2,071queries repeated at least 10
times, as many a39.08% are shared, while onl$5.05% are
shared over the queries repeated fewer than 10 times. age repeatel.36queries. In the Excite trace, there &20,883

Given the Zipf distribution followed by the query repetitio users who submitted queries. Among thei86,626users re-
frequency, there are a small number of queries that were pmated queries, with each user repea@@®l queries on aver-
peated very frequently. They were both shared by differseta1 age. Fig. 5 plots the percentage of the repeated querieshmver
and repeated by the same users. There also exist a large niot@ number of queries submitted by each user. For exariple,
ber of queries that were repeated only a few times, which wereiser submitted 10 queries in total, and out of the 10 quédsies
mostly from the same users. were repeated ones that had been submitted before, thesethe u

These results suggest that we should cache query resultbas 50% of the repeated queries. From both traces, we observe
different ways. For the small number of queries that werg vethat80% to 90% of the users who repeated queries had at least
popular, we could cache them at search engine servers tiex@0% of the repeated queries. Around half of these users had at
the high degree of shareness among different users. We cdakbt50% of the repeated queries.
also cache them at the user side, which would reduce therservd-rom these results, we can see that not only a lot of users re-
processing overheads due to their high repetition fregasenc peated queries, but each user also repeated queries arloé Si
For the other type of queries that are only repeated by the sah®% to 22% of all queries were repeated by the same users and
users, caching them at servers is not very effective, cenisigl that search engine servers can cache only limited dataingach
the limited server resources and the diverse requirements f these queries and query results based on individual user re-
the large number of users. Instead, we could consider cgchijuirements in a more distributed way is important. It reduce
these queries at the user side according to the unique eequirser query submission overheads and access latencied as wel

®
o

(2]
=
A

N
o

N
=]

o

(%)Percentage of the repeated queries

o

[N

o
©

o
o
I

°
S
I

I
S
[

(%)Percentage of the repeated queries

10 12 14

2 4 6 8
User ID x10*

L

ment of each individual user. server load. By caching queries at the user side, we alsathave
_ o opportunity to improve query results based on individuarus
B. Query Locality Based on Individual User context, which cannot be achieved by caching queries at-a cen

The query shareness distribution indicates that quenyitgca tralized server.

exists with respect to the same users as well as among ditfe
users. More specifically, most of the queries at the longveik
repeated by the same users. Therefore, we further explerg qu In this section, we quantify the notion of temporal query lo-
locality based on each individual user. cality, that is, the tendency of users to repeat queriesinvih
There are20,220users recorded in the Vivisimo trace, okhort time interval. Fig. 6 shows the number of queries reguka
whom 6,628repeated queries at least once. Each user on awgithin different time intervals. Overall, queries were eaped

rceh Temporal Query Locality

IEEE INFOCOM 2002

Type of queries Queries repeated 10 times| Queries repeated 10 times
shared not shared shared not shared

Number of appearances 319 85 5356 10402

Percentage 78.96% 21.04% 33.99% 66.01%

Fig. 4 (a) Shareness of the queries from the Vivisimo trace

Type of queries Queries repeated 10 times| Queries repeated 10 times
shared not sharefl shared not shared

Number of appearances 11,960 111| 123,060 100,476

Percentage 99.08% 0.92% 55.05% 45.95%

Fig. 4 (b) Shareness of the queries from the Excite trace

Fig. 4. Shareness of the queries based on their repetiguéncies. A query was shared if it was submitted by more din@nuser in the exact same form.
Otherwise, a query was only submitted by a single user andhatashared

3

within short periods of time. In the Vivisimo trace, ab@5%
of the queries were repeated witldn hour. Since the Excite
trace lasts for only 8 hours, as many&8% of the queries were
repeated withiran hour.

In the Vivisimo trace, these queries were mostly from the
same users. More specificall§5.5% of the queries were re-
peated by the same users witBiminutes which is very short.
There are also many queries that were repeated over réjative
longer time intervals; they are largely shared by diffetesgrs.

Out of the21.98% of the queries that were repeated over a day,
only 5.09% came from the same users. The Excite trace gen-
erally has a smaller percentage of the queries repeatedeby th
same users. But we still observe the same pattern: the shorte
the time interval, the more likely a query will be repeated!ogy
same user.

These statistics suggest that if caching query results lig to
done at servers or proxies, then we should consider longer pe
riods of caching in order to exploit the maximum shareness
among different users. Usually, caching query results fong
time is more likely to result in stale data. Since this is tgpke
formed by the server, the stale data can be removed whenever
the server updates the results. If caching is to be perfothed
the user side, then a short period of caching would be enough
to cover most of the temporal query locality, which is alsssle
likely to result in stale data.

8

&

S

(%)Percentage of repeated queries

<Imin 1-5mins 5-10mins 10-30mins 30-60mins 1h - lday

time intervals

>1day

(a) The Vivisimo Trace

—
=

number of queries re
number of queries re

epeated overall
epeated by the same users

3

8

&

3

(%)Percentage of repeated queries

°

5-10mins 10-30mins

time intervals

(b) The Excite Trace

30-60mins

1h-8h

<imin 1-5mins

Fig. 6. Repeated query distribution within different tirneirvals

D. Multiple-Word Query Locality

Multiple-word queries are important because they accaunt f
about70% of the queries. Multiple-word queries also have sig-
nificant locality, which will be discussed in this section. less degree of shareness. Fig. 8 shows the comparison Ipetwee
Fig. 7 summarizes the statistics about multiple-word gageri multiple-word queries and single-word queries with respec
The Excite trace has a larger portion of multiple-word geri their degrees of shareness. From both traces, we can see that
than the Vivisimo trace, but both traces have as man§244 multiple-word queries are less likely to be shared by défier
of the multiple-word queries over the repeated ones. We disers. Each shared multiple-word query also tends to bedhar
serve that multiple-word queries are repeated less fratyuerby fewer users. This is easily explained because the chances
compared with single-word queries. In the Vivisimo tracaghe for different users to submit the same multiple-word queaie
repeated multiple-word query was submit@00times on av- much smaller than those for single-word queries.
erage, compared witB.63times for single-word cases. In the From the above results, we can see that multiple-word query
Excite trace, each repeated multiple-word query was siibdhitlocality is significant. Caching multiple-word queries i®rm
3.77times, compared witfi.12times for single-word cases. promising because it takes more time to compute multipledwo
We also observe that multiple-word query locality mostly exquery results. Since multiple-word queries have less gegfe
ists among the same users, that is, multiple-word queries hahareness, we could cache them mainly at the user side.

IEEE INFOCOM 2002 6

Number of appearance Percentage
Vivisimo Excite | Vivisimo Excite
Multiple word queries 77,181 1,429,618 69.61% 74.42%
(over the number of the queries)
Unique multiple word queries 55,193 924,544 73.26% 84.07%
(over the number of the unique queries)
Multiple word queries that were 21,995 505,249 61.89% 61.52%
repeated (over the number of the repeated queries)
Unique multiple word queries that 11,020 182,335 68.18% 77.39%
were repeated (over the number of unique repeated queries)
Unique multiple word queries that 3,181 101,098 5.76% 11%
were submitted by more than one uger (over the number of unique multiple word querigs)

Fig. 7. Multiple-word query summary

Type of queries Shared multiple-word queries Shared single-word querigs
Vivisimo Excite | Vivisimo Excite

Percentage 5.76% 10.93%| 12.28% 19.37%

Number of users 2.53 3.95 3.24 7.38

Fig. 8. The comparison between multiple-word queries amglsiword queries with respect to the degrees of the shaséndoth traces. 'Percentage’ means the
portion of shared multiple-word or single-word queries e total number of multiple-word or single-word queriddumber of users’ means the average
number of users sharing each such query.

E. Users with Shared IP Addresses words in the queries from the Vivisimo trace, there 51895

Some users use il up senvices sueh a5 AOL o ccess IFCLNGI, 1 e B taee e Sm0 T
Internet. For those users, their IP addresses are dyndyratal 9 U q '

located by DHCP servers. Unfortunately, there is no comm(t)lﬁat some users in the Excite trace submitted a large nuniber o
: . . 2 . gueries. For example, one user submitted 130,220 queries du
way to identify these kinds of users. This impacts our anglys

in two ways. First, because different users can share the san? the 8 hours. These users are likely to be meta-searchesigi

IP address at different times, their queries seem like toayec |n'_stead of normal users. Thus we ignore _the 60 users who S.Ub
: : mitted more than 100 queries in the Excite trace and examine
from the same user, leading to an overestimate of the query |0 - :) . .
remaining users on their lexicon sizes. Compared with th

cality from the same users. Second, because the same unseré A

: : . o . overall lexicon size, the user lexicon sizes are much smlhe
use different IP addresses at different times, it is als®ipts : .
largest user lexicons in the two traces have @8gwords and

for us to underestimate the query locality from the samesuse . : . .
Since AOL clients will have keyword “AOL” in their user-agen 02words, respectively. We also find that the user lexicon size
?Ioes not follow a Zipf distribution. Fig. 9 plots the disuiions

fields, which were recorded in the Vivisimo trace, we are ab th lexi 6. Th hs h h tail .
to identify AOL users who might have shared IP addresses € user lexicon size.. The grapns have heavy tails, mganin
the majority of the users have small lexicons.

the Vivisimo trace. We found that among the 110,881 queries

received, there are on3,949queries submitted by49 AOL We also looked at the relationship between the number of
' ' %geries submitted by each user and the corresponding fexico

clients. And only three of them are frequent users who su . .
mitted more than 70 queries. Therefore, we believe ourllsasqﬁlze' For both traces, the more queries submitted by a ingsr, t

about the Vivisimo trace are not biased by these users. arger the user’s lexicon. Fig. 10 shows the relationshigvben
the number of queries submitted by a user and the correspgndi

user lexicon size based on the Vivisimo trace. The userdexic
sizes are in proportionto the number of queries submittatiéy

In this section, we analyze the user query lexicons. We alggers. But there are a few exceptions, where the users satimit
propose possible ways to prefetch query results for eadh ing |ot of queries out of small lexicons. The Excite trace shows
vidual user, by recognizing their most frequently used 2rm the same pattern and is thus not plotted here.

IV. USER LEXICON ANALYSIS AND ITS IMPLICATIONS

A. Distribution of the User Lexicon Size B. Analysis of Frequent Users and Their Lexicons

We noticed that the word frequency in the trace cannot beThough some users have large lexicons, they do not use all
characterized by a Zipf distribution, which was also natige of the words uniformly. We are interested in how many words
[7]. The graph falls steeply at the beginning and has an unuswe most frequently used in the queries for each user. For the
ally long tail. users in the Vivisimo trace who submitted only a few queries

Instead of looking at the overall lexicons used in the traceyer the 35 days, calculating their frequently used wordwis
we group all the words used by each user individually, and exeaningful. Similarly, we do not look at the users in the Exci
amine the user lexicon size distribution. Among 849,541 trace either because the trace lasts for too short a permdeS

IEEE INFOCOM 2002 7

35 Number of fre-users 157
5 3 Number of queries submitted by fre-users 25,722
o n n n
Sosl Number of fre-users with fre-lexicon size 1 153
8 Number of fre-users with fre-lexicon size 20 128
o 2
= Fig. 11. Fre-users statistics in the Vivisimo trace. Frerssare defined as
S8 those users who submitted at least 70 queries over the 35Tayse users
5 visited Vivisimo frequently and submitted at least 2 quemgach day on
g o average. Fre-lexicon is defined as the set of terms that we=é Iy the
8os corresponding user for at least five times.

% 1 2 3 4 5
User ID(sorted by lexicon size)(10 based log) 300
. e . —— Fre-lexicon size
(a) The Vivisimo Trace Number of queries generated from fre=lexicon
250 1

2.5 a0l
>
22] 150 Qoeries vt of § ama e lecen
el
Q1.5r 1 100}
S
] 500
5 |
5 i ‘ ‘ ‘ : ;
L 0 20 40 60 80 100 120 140 160
§0.5— 1 User ID(sorted by fre—lexicon size)

- (a) Queries and Fre-lexicons

00 1 2 3 4 5 6
User ID(sorted by lexicon size)(10 based log) 100 : :
—— Queries generated from fre—lexicon L

(b) The EXClte Trace 90 Quereies generated from fre—lexicon with <= 4 terms

Fig. 9. Distribution of the user lexicon sizes with loganitic scales on both
axes. The X axis denotes the user IDs sorted by the lexices.siWhen
plotting the Excite trace, we remove those users who sugdittore than
100 queries over the 8-hour period. Those users are vely likde meta-
search engines or robots instead of normal users.

(%)Percentage of the queries

400

— User lexicon size
350 Number of queries submitted by the user L L
0 5 0 150

0 10
Fre-User ID

(b) Percentage of the queries generated from fre-lexicons

300

250

Fig. 12. (a) The number of queries generated from fre-lexdcand the cor-
responding fre-lexicon sizes. The fre-user IDs are sortethb lexicon
sizes. (b) The percentage of the queries generated by thexioon for
each fre-user. The fre-user IDs are sorted by the percentage

The user with a small lexicon size
but submitted many queries

~

100

501

1500 2000

500 1000
User ID (sorted by lexicon size) count for less tharl% of the users, they submitte?b,722
Fig. 10. User lexicon sizes and the number of the queries shbynitted in q_ue”es in total, which account f(_23.20_%, a S|gn|f|cant por-
the Vivisimo trace. The solid line plots the sorted userdexisizes. The tion over the total number of queries. Since these userscare n
dashed'gne plotlz t:\ez ggnmsbiasis?;ithli gtilsf;e: Os(l)lrf:]f;ijttiid ?gfgf;ponﬁei?eg trivial, caching and improving query results based on timeli-
#SSE bu(:rtr?g?)attern ShO\;VI’] heregis general for the cor?ﬁﬁmleemell. vidual requirements looks promising.

We also observe from the figure that most of the fre-users
had small fre-lexicons. Thus we are interested in how many
gueries were generated purely by the words from fre-lexdcon

only focus on those frequent users in the Vivisimo trace. #e c|f the users tend to re-use a small number of words very of-
a user dre-userif the user submitted at least 70 queries. Thgn to form queries, then we can predict queries and prefetch
fre-users thus submitted at least 2 queries each day ongaverguery results by simply enumerating all the word combirreio
We also define &e-lexiconfor each fre-user. The fre-lexiconsfig. 12 (a) plots the number of queries generated from fre-
consist of the words that were used at least five times by micons_ There are a small number of fre-users with rmiv
corresponding users. larger fre-lexicons, from which they submitted a lot of gaer

Fig. 11 shows the statistical summary about the fre-usersSo prefetching based on fre-lexicons for these users wifi he
the Vivisimo trace. There ar&57fre-users, among whomb53 reduce the number of queries to be submitted dramatically. B
fre-users have non-empty fre-lexicons. Although fre-siser- we need a large cache size to store all the possible word com-

IEEE INFOCOM 2002 8

binations due to the relatively large fre-lexicon size. fEhare nificant overhead of placing dedicated proxies among ther-nt
also quite a few users who generated a lot of queries froml snragt.
fre-lexicons. For example, the user specified in the figure ga User side caching has the best performance improvement in
erated106queries from a8 word fre-lexicon. For these users,case of a cache hit because the redundant user requeststwill n
prefetching according to fre-lexicons would be most effect be sent out at all. Compared with the limited system resauate
Since the majority of queries have fewer than five terms, it §rvers, the sum of each individual user resource is almést i
interesting to see how many queries with fewer than five termige. So user side caching achieves the best scalabilitaue
were generated from fre-lexicons. Fig. 12 (b) shows both tHge overhead of caching can be amortized to a large number of
percentage of the queries from fre-lexicons and the pemgent users, the overhead at each user side is small. More implgytan
of the queries from fre-lexicons with fewer than five termheT with user side caching, it is now possible to prefetch or onpr
addition of the extra constraints imposed on the numbenrofd¢e query results based on individual user requirements. Hexyev
does not affect the results for most of the fre-users. Thems shareness can be exploited with user side caching. Thus if
fore, we could just enumerate the word combinations using foeries are mostly shared instead of being repeated by e sa
more than four terms, which would greatly reduce the numbesers, we would have low hit rate in such case.

of queries to be prefetched. The above discussion indicates that the degree of shareness

is important to decide where we should cache query resuits. |
one extreme case where users never repeat their own queries,

In this section, we review the statistical results derivethf we reach the maximum degree of shareness. In such case, we
both traces and discuss their implications on future rebedir should cache query results at servers or proxies because use
rections. We focus on three aspects: caching search ergineside caching would result in zero hit rate. In another exeeem
sults, prefetching search engine results, and improvirggyqu case where users never share queries, caching query rasults
result rankings. the user side would be most helpful.

Our trace analysis results show that, among all queries, re-
peated queries account for 32% to 42%, while repeated guerie

With 30% ~ 40% of repeated queries, caching search engifi@m the same users account for 16% to 22%. The significant
results is a non-trivial problem. Cache placement is ondef tportion of the queries repeated by the same users and the non-
key aspects of the effectiveness of caching. Query resaiftbe trivial difference between the above two percentages stgge
cached on the servers, the proxies, and the clients. FanabtiPoth server/proxy caching and user side caching. For theegue
performance, we should make decisions based on the folpwii¢peated only by the same users, we can cache them at the user
aspects: side for efficiency, while the rest of the repeated querieshz

1. Scalability. A cache scheme should scale well with the iré@ched at either servers or proxies. Since we do not know the
creasing size and the density of the Internet. actual IP addresses of the users in both traces, we cantiogfur

2. Performance improvementhis includes the amount of re-distinguish the queries that can be shared by nearby usérs an
duction in server workload, user access latency, and nktwdpus can be cached at proxies. _But it is clear from the traces
traffic. that the percentage of such queries would be between 16% and
3. Hit rate and sharenessThe higher the hit rate, the more42%. Therefore, we leave proxy caching as a future work for
efficient the caching. We would also like cached query resuf€arch engmes_themselves to determine whether and where to
to be shared among different users of common interests. Place such proxies.

4. Overhead.The overheads include the system resources de-Since multiple-word queries have less degree of shareness,
voted for caching and the extra network traffic induced. we suggest caching multiple-word queries mainly at the user
5. Opportunity for other benefitsBy disseminating user re- side. Therefore, by caching only popular single-word ceeri
qguests among caches, what other benefits can we achieve witkervers/proxies, we can achieve larger hit rates andlgrea

V. RESEARCHIMPLICATIONS

A. Caching Search Engine Results

the existence of caching? reduce the required system space.
Fig. 13 compares the pros and cons of different cache placeAnother important question about caching is how long we
ment schemes in the general case: should cache query results. Temporal query locality ind&£a

« Server caching has only limited system resource available,that most of the queries are repeated within short timevatsr

it does not scale well with the increasing size of the Interné&o in general, caching query results for short periods shoul
In addition, though we can avoid redundant computation, weork well. More detailed analysis in Section 1lI-C showsttha
cannot reduce the number of requests received by servees. e shorter time interval, the more likely for a query to be re
reduction in user access latency is also very limited. Hewnevpeated by the same users. Thus, for user side caching, gachin
server caching has small overhead. Moreover, it allows @se m query results for hours will be enough to cover the querylibca
imum query shareness among different users and the hit rexésting on the same users. This also helps to remove or @pdat
would be high by caching popular queries. stale query results in time. There also exist a non-trivaatipn

+ Proxy caching is effective to reduce both server workloatl anf queries repeated over relatively longer time intervalsese
network traffic. In the case of caching query results, this agueries are mainly shared among different users. So if ngchi
sumes that the users nearby a proxy would share queries. Hmato be done at servers or proxies, we can consider longar-te
ever, one of the main disadvantages of proxy caching is the staching such as a couple of days.

IEEE INFOCOM 2002 9

Level of caching Server caching Proxy caching| User side caching
Scalability worst medium best
Performance improvement worst medium best
Hit rate and shareness best medium worst
Overhead small large small
Opportunity for other benefity least medium most

Fig. 13. Comparisons between different cache placemeatses.

The temporal query locality and the content dynamics short, we can skip queries longer than four terms to reduee th
query results directly impact the mechanisms for maint@ni prefetching overhead while achieving approximately thaesa
cache consistency. Usually, search engines update queryperformance improvement. For example, a 10-word fre-texic
sults on the order of days or even weeks. Therefore, for usereds to prefetch 385 queries using the above naive algurith
side caching, where caching query results for hours wouldhich will cost less than 20 minutes network download time
cover most of the query locality on the same users, we can using a 56Kbps modem and about 8M disk for storage. These
the following two mechanisms to maintain cache consistenoyverheads are trivial considering that a normal PC todaglés i
First, we can associate each query in the cache witime-to- about 70% of the time on average and the normal disk size is
live(TTL)field and set the TTL to a relative short interval. Sedens of gigabytes. With user interests changing graduiéy,
ond, we can use aifrmodified-sincéheader field in each usercorresponding fre-lexicons should also be updated to megeh
request, like the HTTP protocol. The query result freshisass interests. New queries will be formed and new query restuilts w
be guaranteed with the second mechanism. But we have langeed to be prefetched to achieve the best cache hit ratemsin m
overhead at both user side and server side since the user sah®s, when user interests stay relatively stable, theriyapd
needs one more interaction with the server for each request. the words from a fre-lexicon will remain the same. There will

For server side and proxy caching, we should use differdrg fewer new query results to fetch each time the prefetching
mechanisms to maintain cache consistency. With server sig@erformed. Thus the prefetching overhead at the useriside
caching, we can easily ensure cache consistency by removsnegll.
or updating stale query results whenever new query residts a The above prefetching algorithm can potentially benefit
computed. For proxy caching, since queries shared by differ servers as well. Since prefetched query results might nosee
users tend to be repeated over longer time intervals, thelsimby the users, redundant query requests will be sent to server
TTL based approach would incur more overhead. The reasoisre network bandwidth and other system resources will be
that TTL is usually set to a relatively short interval to pgpat/ consumed compared with the case without prefetching. How-
caches from serving stale data, and thus data may be reloaelest, if we perform the prefetching algorithm regularly whe
unnecessarily. Therefore, more advanced invalidatiotopods the user machines are idle and the servers are not busy, fnost o
should be used to update stale query results while keeping these requests will be processed at non-peak times by server
overhead low. For example, we can use a proxy polling tecBe we will not have any additional burden on servers at peak
nigue where proxies periodically check back with the servémes. Instead, the server peak time workload can even be re-
to determine if cached objects are still valid. We can al$o lduced since many of the queries have already been satisfied by
servers notify proxies when query results are updated. Batber prefetching. Thus scarce server CPU and networking re-
mechanisms are already in use for web caching on the Interngburces at peak times can be saved to serve more clientslgr app

to more advanced algorithms.
B. Prefetching Search Engine Results Prefetching can also be performed at proxies. In such cases,
server’s global knowledge about user query patterns catibe u
lized to decide what to prefetch and when to prefetch. Since
oxies allow query shareness among different users, Brglo
ow to achieve the maximum hit rate in such case would also be
an interesting problem for future research.

Our user lexicon analysis in Section IV suggests that prhfet
ing query results based on user fre-lexicons is promisi
Prefetching has always been an important method to redece
access latency. In the case of prefetching search enginksies
it can be performed at both user side or proxies.

Caching query results at the user side provides useful-inf
mation about user interest. For this reason, user sidetphérfig
is natural and worth looking at. From the user lexicon anglys Although today’s search engines often return tens of thou-
we observe that the majority of the user lexicon sizes ardl smaands of results for a user query, only a few results are lctua
Frequent users who submit many queries often use a small sidviewed by users. Section II-C shows that each user ongeera
set of words more often than other words. So a straightfawaeviews fewer than two pages of results. Thus, improvingyue
way of prefetching is to enumerate all the word combinatiomssult rankings based on individual user requirements i.emo
from fre-lexicons and prefetch the corresponding queryltes important than ever. The personal nature of “relevancetiireg
into a user level cache. The user query latency can be greatigorporating user context to find desired information. &ese
reduced in case of a cache hit because no interaction with centralized search engines provide services to millionsefs,
mote servers will be involved at all. Since queries are wgualt is impractical to customize results for each user. Sonee sp

o Improving Query Result Rankings

IEEE INFOCOM 2002

cialized search engines do offer search results which #ex-di [3]
ent than standard for some specialized user requirements. B

none of them allows users to define their own requirements;gt
will. With user side/proxy caching, it is now possible toreak

the returned search engine results based on the uniquesjntig]
of individual user. For example, a naive algorithm would de

10

M.S. Raunak, P. Shenoy, P. Goyal, and K. Ramamrithampliations of
Proxy Caching for Provisioning Networks and Servers Pinceedings of
the ACM SIGMETRICS Conference, Santa Clara, &&e 2000.

A. Rousskov and V. Soloviev, “On Performance of Cachingx¥es,” in
Proceedings of the ACM SIGMETRICS Conference, Madison Jwie
1998.

P. Cao, L. Fan, and Q. Jacobson, “Web Prefetching Betwesmn
Bandwidth Clients and Proxies:Potential and Perform&dniceProceed-

increase the ranks of the Web pages visited by the user among ings of the ACM SIGMETRICS Conference, Atlanta, @By 1999.

the next query results. We can also explore other algoridmds (6]

integrate them with caching to customize search engindtsesu
for individual users. (71

VI,]

Caching is an important technique for reducing server work-
load and user access latency. In this paper, we investigiaged|[9]
issue of whether caching might work in the case of search en-
gines, as it does in many other areas. We studied two realsear
engine traces and investigated the following three questi(l) [10]
Where should we cache search engine results? At servexs, pro
ies, or user side? (2) How long should we cache search results
(3) What are the other benefits of caching search engines@sull1]

Our analysis of both the Vivisimo search engine trace and the
Excite search engine trace indicate that: (1) Queries higve 312
nificant locality. Query repetition frequency follows a Zifis-
tribution. The popular queries with high repetition freqoes

CONCLUSIONS

[13]

T. Kroeger, D. Long, and J. Mogul, “Exploring the Bound&éeb Latency
Reduction from Caching and Prefetching,”"Rnoceedings of the USENIX
Symposium on Internet Technologies and SystBesember 1997.

B.J. Jansen, A. Spink, J. Bateman, and T. Saracevic,|IRemformation
retrieval: a study of user queries on the Web,”SIGIR Forum, Vol. 32.
No. 1, 1998, pp. 5-17.

C. Silverstein, M. Henzinger, H. Marais, and M. MoriczArfalysis of a
Very Large AltaVista Query log,” Tech. Rep. 1998-014, DagiSystem
Research Center, October 1998.

S. Adali, K.S. Candan, Y. Papakonstantinou, and V.S.r&8umanian,
“Query Caching and Optimization in Distributed Mediatos8ms,” inH.
V. Jagadish and Inderpal Singh Mumick, editors, Proc. of1886 ACM
SIGMOD Conf. on Managementof Data996, pp. 137-148. ACM Press.
M. Taylor, K. Stoffel, J. Saltz, and J. Hendler, “UsingsBibuted Query
Result Caching to Evaluate Queries for Parallel Data Miditggprithms,”
in Proc. of the Int. Conf. on Parallel and Distributed Techrégland Ap-
plications 1998.

Evangelos P. Markatos, “On Caching Search Engine R&’s5dlech. Rep.
241, Institute of Computer Science, Foundation for Re$eé&rtechnol-
ogy - Hellas (FORTH), 1999.

Evangelos P. Markatos, “On Caching Search Engine QResults,” in
Proceedings of the 5th International Web Caching and Cdribativery
WorkshopMay 2000.

“Vivisimo,” http://www.vivisimo.com.

are shared among different users and can be cached at sefe&ySexcite,” http://mww.excite.com.

or proxies. There are also about 16% to 22% of the queries re-

peated by the same users, which should be cached at the user

side. Multiple-word queries have less degree of sharenads a
should be cached mainly at the user side. (2) The majority of
the repeated queries are referenced again within shortitime
tervals. There is also a significant portion of queries thatre-
peated within relatively longer time intervals. They angé&y
shared by different users. So if caching is to be done at the us
side, short-term caching for hours will be enough to covergu
temporal locality, while server/proxy caching should useger
periods, such as days. (3) Most users have small lexicons whe
submitting queries. Frequent users who submit many search r

guests tend to re-use a small subset of words to form queries.

Thus with proxy or user side caching, prefetching based en us
lexicon is promising. Proxy or user side caching also previd
us with opportunities to improve query results based onvideli
ual user requirements, which is an important directionditurfe
research.

VII. ACKNOWLEDGEMENTS

We gratefully acknowledge the assistance of Raul Valdes-
Perez and the Vivisimo search engine team for providing tis wi
a trace. Thanks also to the Excite team for making their trace
available. Without the generous sharing of the trace data by
Vivisimo and Excite, this work would not be possible. We also
thank Jamie Callan for his helpful comments and suggestions

REFERENCES

A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. Rabch, “Per-
formance of Web Proxy Caching in Heterogenous Environnjeint&ro-
ceedings of the IEEE infocomm’99, New York, Niérch 1999.

C. Maltzahn, K. Richardson, and D. Grunwald, “Perforroanssues of
Enterprise Level Web Proxies,” roceedings of the SIGMETRICS Con-
ference on Measurement and Modeling of Computer Systeme 1997.

(1

[2]

