
IEEE INFOCOM 2002 1

Locality in Search Engine Queries and Its
Implications for Caching

Yinglian Xie and David O’Hallaron
Department of Computer Science, Carnegie Mellon University

Email:fylxie, drohg@cs.cmu.edu

Abstract—Caching is a popular technique for reducing both server load
and user response time in distributed systems. In this paper, we consider the
question of whether caching might be effective for search engines as well.
We study two real search engine traces by examining query locality and its
implications for caching. Our trace analysis results show that: (1) Queries
have significant locality, with query frequency following aZipf distribution.
Very popular queries are shared among different users and can be cached
at servers or proxies, while 16% to 22% of the queries are fromthe same
users and should be cached at the user side. Multiple-word queries are
shared less and should be cached mainly at the user side. (2) If caching is
to be done at the user side, short-term caching for hours willbe enough to
cover query temporal locality, while server/proxycachingshould use longer
periods, such as days. (3) Most users have small lexicons when submitting
queries. Frequent users who submit many search requests tend to reuse
a small subset of words to form queries. Thus, with proxy or user side
caching, prefetching based on user lexicon looks promising.

I. I NTRODUCTIONCACHING is an important technique to reduce server work-
load and user response time. For example, clients can send

requests to proxies, which then respond using locally cached
data. By caching frequently accessed objects in the proxy cache,
the transmission delays of these objects are minimized because
they are served from nearby caches instead of remote servers. In
addition, by absorbing a portion of the workload, proxy caches
can increase the capacity of both servers and networks, thereby
enabling them to service a potentially larger clientele.

We are interested in the question of whether caching might be
effective for search engines as well. Because serving a search
request requires a significant amount of computation as wellas
I/O and network bandwidth, caching search results could im-
prove performance in three ways. First, repeated query results
are fetched without redundant processing to minimize the ac-
cess latency. Second, because of the reduction in server work-
load, scarce computing cycles in the server are saved, allowing
these cycles to be applied to more advanced algorithms and po-
tentially better results. Finally, by disseminating user requests
among proxy caches, we can distribute part of the computational
tasks and customize search results based on user contextualin-
formation.

Although Web caching has been widely studied, few re-
searchers have tackled the problem of caching search enginere-
sults. While it is already known that search engine queries have
significant locality, several important questions are still open:� Where should we cache search engine results? Should we
cache them at the server’s machine, at the user’s machine, or
in intermediate proxies? To determine which type of caching
would result in the best hit rates, we need to look at the degree
of query popularity at each level and whether queries will be
shared among different users.

� How long should we keep a query in cache before it becomes
stale?� What might other benefits accrue from caching? Since both
proxy and client side caching are distributed ways of serving
search requests, can we prefetch or re-rank query results based
on individual user requirements?

With respect to the above questions, we study two real search
engine traces. We investigate their implications for caching
search engine results. Our analysis yielded the following key
results:� Queries have significant locality. About 30% to 40% of
queries are repeated queries that have been submitted before.
Query repetition frequency follows a Zipf distribution. The pop-
ular queries with high repetition frequencies are shared among
different users and can be cached at servers or proxies. Queries
are also frequently repeated by the same users. About 16% to
22% of all queries are repeated queries from the same users,
which should be cached at the user side. Multiple-word queries
are less likely to be shared by different users. Thus they canalso
be cached mainly at the user side.� The majority of the repeated queries are referenced again
within short time intervals. But there remains a significantpor-
tion of queries that are repeated within relatively longer time in-
tervals. They are largely shared by different users. So if caching
is to be done at the user side, short-term caching for hours will
be enough to cover query temporal locality, while server/proxy
caching should be based on longer periods, on the order of days.� Most users have small lexicons when submitting queries. Fre-
quent users who submit many search requests tend to reuse a
small subset of words to form queries. Thus, with proxy or user
side caching, prefetching based on user lexicons is promising.
Proxy or user side caching also provide us with opportunities
to improve query results based on individual user preferences,
which is an important future research direction.

In the rest of the paper, we first discuss related works in Sec-
tion I-A. We then describe the traces we analyzed and summa-
rize the general statistics of the data in Section II. In Section
III, we focus on repeated queries and discuss query localityin
both traces. Section IV presents our findings about user lexicon
analysis and its implications. Finally, we review analysisresults
and discuss possible future research directions.

A. Related Work

Due to the exponential growth of the Web, there has been
much research on the impact of Web caching and how to max-
imize its performance benefits. Most Web browsers support
caching documents in the client’s memory or local disk to re-

IEEE INFOCOM 2002 2

duce the response time of the client. Deploying proxies between
clients and servers yields a number of performance benefits.It
reduces server load, network bandwidth usage as well as userac-
cess latency [1], [2], [3], [4]. Prefetching documents to proxies
or clients has been studied for further performance improvement
by utilizing user access patterns [5], [6].

There are previous studies on search engine traces. Jasenet al
analyzed the Excite search engine trace to determine how users
search the Web and what they search for [7]. Silversteinet al
analyzed the Altavista search engine trace [8], studying the in-
teraction of terms within queries and presenting results ofa cor-
relation analysis of the log entries. Although these studies have
not focused on caching search engine results, all of them sug-
gest queries have significant locality, which particularlymoti-
vates our work.

Query result caching has already been investigated as a way
to reduce the cost of query execution in distributed database sys-
tems by caching the results of “similar” queries [9], [10]. Re-
cently, Markatos has studied the query locality based on theEx-
cite trace and shown that20% � 30% of the queries are repeated
ones [11], [12]. He suggests a server-side query result cache and
has mainly focused on leveraging different cache replacement
algorithms. Our work builds on this by systematically studying
query locality and deriving the implications for caching search
engine results.

II. THE SEARCH ENGINE QUERY TRACES

The two traces we analyzed are from the Vivisimo search en-
gine [13] and the Excite search engine [14]. In this section,
we briefly take a look at the two search engines and review their
trace data.

A. The Vivisimo and the Excite Search Engines

Vivisimo is a clustering meta-search engine that organizesthe
combined outputs of multiple search engines. Upon reception
of each user query, Vivisimo combines the results from other
search engines and organizes these documents into meaning-
ful groups. The groupings are generated dynamically based on
extracts from the documents, such as titles, URLs, and short
descriptions. By default, Vivisimo refers to one or multiple
major search engines, including (ca. Feb. 2001) Yahoo, Al-
tavista, Lycos, Excite, and returns 200 combined results using
logic operation ’ALL’. Vivisimo also supports advanced search
options where users can specify which search engines to query,
the number of results to be returned, and which logic operation
to be performed on the query, including ANY, PHRASE and
BOOLEAN.

Excite is a basic search engine that automatically produces
search results by listing relevant web sites and information upon
reception of each user query. Capitalization of the query isdis-
regarded. The default logic operation to be performed is ’ALL’.
It also supports other logic operations like ’AND’, ’OR’, ’AND
NOT’. More advanced searching features of Excite include wide
card matching, ’PHRASE’ searching and relevance feedbacks.

B. The Query Trace Descriptions

The Vivisimo query trace was collected from January 14,
2001 to February 17, 2001, soon after the Vivisimo launched

in early January, 2001. The trace captures the behavior of early
adopters who may not be representative of a steady state user
group. The Excite trace was collected on December 20, 1999.
Although the Vivisimo trace and the Excite trace were collected
independently at different times, over different temporalperi-
ods, and with different user populations, their statistical results
are similar. Thus they are both representative.

In both traces, each entry contains the following fields of in-
terest:� an anonymous ID identifying the user IP address. For pri-
vacy reasons, we do not have actual user IP addresses. Each IP
address in the original trace is replaced by a unique anonymous
ID.� a timestamp specifying when the user request is received.
The timestamp is recorded as the wall clock time with a 1 second
resolution.� a query string submitted by the user. If any advanced query
operations are selected, they will also be specified in this string.� a number indicating whether the request is for next page re-
sults or a new user query.

C. Statistical Summaries of the Traces

After extracting a query string from each trace entry, we trans-
form the string to a uniform format for easy processing. We re-
move stopwords from the query because most search engines
discard them anyway. We convert all query terms to lower
case. Thus the query is case insensitive, which is also typical
for search engines. However, the removal of the stopwords and
the upper-to-lower case conversion actually has little impact on
our analysis results. It affects our statistics by about 1% and
the effect could be ignored. In the rest of the paper, we use
“query” to denote all the words as a whole entered by the user
in a query submission, and “words” or “terms” to denote the in-
dividual words contained in a user query. Because we cannot
distinguish users who used multiple IP addresses or users who
shared IP addresses in the trace, we uniformly use “user” to de-
note the IP address where the query came from.

Fig. 1 summarizes the statistics about the traces. The Excite
trace lasts for 8 hours in a single day. The Vivisimo trace was
collected more recently over a period of 35 days. Thus, the two
traces provide us with both long-term and short-term views to
user queries since they stand for different time scales. Several
facts are obvious from this summary for both traces.
1. Users do not issue many next-page requests. Fewer than two
pages on average are examined for each query.
2. Users do repeat queries a lot. In the Vivisimo trace, over
32% of the queries are repeated ones that have been submitted
before by either the same user or a different user. In the Excite
trace, more than42% of the queries are repeated queries.
3. The majority of users do not use advanced query options:
97% of the queries from the Vivisimo trace and93% of the
queries from the Excite trace use the default logic operations
offered by the corresponding search engines.
4. Users on average do not submit many queries. The average
numbers of queries submitted by a user are5.48 and3.69, re-
spectively.
5. About70% of the queries consist of more than one word, al-
though the average query length is fewer than three terms, which

IEEE INFOCOM 2002 3

Trace Vivisimo trace Excite trace
Start-time 14/Jan/2001:04:02 20/Dec/1999:09:00
Stop-time 17/Feb/2001:00:00 20/Dec/1999:16:59
Number of bytes 657,623,865 118,318,788
Number of HTTP requests 2,588,827 not known
Number of user queries (including next page requests) 205,342 2,477,283
Number of user queries (excluding next page requests) 110,881 1,920,997
Number of distinct user queries 75,343 1,099,682
Number of multiple word queries 77,181 1,429,618
Number of queries using default logic operation(ALL) 107,880 1,792,174
Number of users 20,220 520,883
Average queries submitted per user 5.48 3.69
Average number of terms in a query 2.22 2.63

Fig. 1. Trace statistical summary. The number of HTTP requests cannot be inferred from the Excite trace since the trace did not contain information about HTTP
requests from users.

 1 2 3 4 5 6 7 8 9 10 >10
0

5

10

15

20

25

30

35

40

Number of words in a query

(%
)

P
er

ce
nt

ag
e

of
 th

e
qu

er
ie

s

(a) The Vivisimo Trace

 1 2 3 4 5 6 7 8 9 10 >10
0

5

10

15

20

25

30

35

Number of words in a query

(%
)

P
er

ce
nt

ag
e

of
 th

e
qu

er
ie

s

(b) The Excite Trace

Fig. 2. User query distribution according to the number of words in each query

is short. Fig. 2 shows the query length distributions of the two
traces. We can observe that most of the queries are fewer than
five terms long.

Overall, these results are consistent with those reported in [7]
and [8] and thus are not surprising.

III. Q UERY LOCALITY AND ITS IMPLICATIONS

As mentioned in Section II-C, 32% to 42% of the queries in
the trace are repeated queries, which suggests caching as a way
to reduce server workload and network traffic. In this section,
we focus on the study of repeated queries, and discuss how the

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

Query ID(10 based log)

N
um

be
r

of
 ti

m
es

 r
ep

ea
te

d(
10

 b
as

ed
 lo

g)

(a) The Vivisimo Trace

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

Query ID(10 based log)

N
um

be
r

of
 ti

m
es

 r
ep

ea
te

d(
10

 b
as

ed
 lo

g)

(b) The Excite Trace

Fig. 3. Distribution of the query repetition frequency (logarithmic scales on
both axes). The query IDs are sorted by the number of times being repeated.

locality in these queries motivates different kinds of caching.

A. Query Repetition Distribution

Among the 35,538 queries that are repeated ones in the
Vivisimo trace, there are16,162distinct queries. This means on
average, each repeated query was submitted3.20 times. Sim-
ilarly, each repeated query in the Excite trace was submitted
4.49 times, with235,607distinct queries among821,315re-
peated ones. Interestingly, we found that the query repetition
frequencies can be characterized by Zipf distributions. Fig. 3
plots the distributions of the repeated query frequencies for the

IEEE INFOCOM 2002 4

traces. Each data point represents one repeated query, withthe X
axis showing queries sorted by the repetition frequency: the first
query is the most popular one, the second query is the second-
most repeated query, and so on until we reach the query number
16,162 and 235,607 which were only repeated a single time.

We are interested in whether the repeated queries were from
the same users or shared by different users. Out of the32.05%
of the repeated queries in the Vivisimo trace,70.58%are from
the same users. In the Excite trace, we have42.75% of the
repeated queries, of which37.35% are repeated by the same
users. Therefore, about22% and 16% of all queries are re-
peated queries from the same users in the Vivisimo trace and the
Excite trace, respectively.

We then counted the number of distinct queries that were re-
peated by more than one user. There are5,675such queries
from the Vivisimo trace and135,020such queries from the Ex-
cite trace. The distributions of these queries, however, are non-
uniform according to the frequency of the repetitions. We define
the “shareness” of a query as the number of distinct users who
submitted the query over some time period. Thus, shareness is
a measure of a query’s popularity across multiple users. Fig. 4
shows the shareness of the queries based on their repetitionfre-
quencies. We find that queries repeated at least 10 times are
more likely to be shared by multiple users than queries repeated
fewer than 10 times. In the Vivisimo trace, among the404
queries that were repeated at least 10 times,78.96%were shared
by different users. For the queries that were repeated fewerthan
10 times, only33.99%were shared. The same trend holds for
the Excite trace. Among the12,071queries repeated at least 10
times, as many as99.08% are shared, while only55.05% are
shared over the queries repeated fewer than 10 times.

Given the Zipf distribution followed by the query repetition
frequency, there are a small number of queries that were re-
peated very frequently. They were both shared by different users
and repeated by the same users. There also exist a large num-
ber of queries that were repeated only a few times, which were
mostly from the same users.

These results suggest that we should cache query results in
different ways. For the small number of queries that were very
popular, we could cache them at search engine servers to exploit
the high degree of shareness among different users. We could
also cache them at the user side, which would reduce the server
processing overheads due to their high repetition frequencies.
For the other type of queries that are only repeated by the same
users, caching them at servers is not very effective, considering
the limited server resources and the diverse requirements from
the large number of users. Instead, we could consider caching
these queries at the user side according to the unique require-
ment of each individual user.

B. Query Locality Based on Individual User

The query shareness distribution indicates that query locality
exists with respect to the same users as well as among different
users. More specifically, most of the queries at the long tailwere
repeated by the same users. Therefore, we further explore query
locality based on each individual user.

There are20,220users recorded in the Vivisimo trace, of
whom6,628repeated queries at least once. Each user on aver-

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

User ID

(%
)P

er
ce

nt
ag

e
of

 th
e

re
pe

at
ed

 q
ue

rie
s

(a) The Vivisimo Trace

0 2 4 6 8 10 12 14

x 10
4

0

0.2

0.4

0.6

0.8

1

User ID

(%
)P

er
ce

nt
ag

e
of

 th
e

re
pe

at
ed

 q
ue

rie
s

(b) The Excite Trace

Fig. 5. The percentage of the repeated queries over the number of queries
submitted by each user (Only those users who repeated queries are plotted
here).

age repeated5.36queries. In the Excite trace, there are520,883
users who submitted queries. Among them,136,626users re-
peated queries, with each user repeating6.01 queries on aver-
age. Fig. 5 plots the percentage of the repeated queries overthe
total number of queries submitted by each user. For example,if
a user submitted 10 queries in total, and out of the 10 queries, 5
were repeated ones that had been submitted before, then the user
has 50% of the repeated queries. From both traces, we observe
that80% to 90% of the users who repeated queries had at least
20% of the repeated queries. Around half of these users had at
least50% of the repeated queries.

From these results, we can see that not only a lot of users re-
peated queries, but each user also repeated queries a lot. Since
16% to 22% of all queries were repeated by the same users and
that search engine servers can cache only limited data, caching
these queries and query results based on individual user re-
quirements in a more distributed way is important. It reduces
user query submission overheads and access latencies as well as
server load. By caching queries at the user side, we also havethe
opportunity to improve query results based on individual user
context, which cannot be achieved by caching queries at a cen-
tralized server.

C. Temporal Query Locality

In this section, we quantify the notion of temporal query lo-
cality, that is, the tendency of users to repeat queries within a
short time interval. Fig. 6 shows the number of queries repeated
within different time intervals. Overall, queries were repeated

IEEE INFOCOM 2002 5

Type of queries Queries repeated� 10 times Queries repeated< 10 times
shared not shared shared not shared

Number of appearances 319 85 5356 10402
Percentage 78.96% 21.04% 33.99% 66.01%

Fig. 4 (a) Shareness of the queries from the Vivisimo trace

Type of queries Queries repeated� 10 times Queries repeated< 10 times
shared not shared shared not shared

Number of appearances 11,960 111 123,060 100,476
Percentage 99.08% 0.92% 55.05% 45.95%

Fig. 4 (b) Shareness of the queries from the Excite trace

Fig. 4. Shareness of the queries based on their repetition frequencies. A query was shared if it was submitted by more thanone user in the exact same form.
Otherwise, a query was only submitted by a single user and wasnot shared

within short periods of time. In the Vivisimo trace, about65%
of the queries were repeated withinan hour. Since the Excite
trace lasts for only 8 hours, as many as83% of the queries were
repeated withinan hour.

In the Vivisimo trace, these queries were mostly from the
same users. More specifically,45.5% of the queries were re-
peated by the same users within5 minutes, which is very short.
There are also many queries that were repeated over relatively
longer time intervals; they are largely shared by differentusers.
Out of the21.98%of the queries that were repeated over a day,
only 5.09% came from the same users. The Excite trace gen-
erally has a smaller percentage of the queries repeated by the
same users. But we still observe the same pattern: the shorter
the time interval, the more likely a query will be repeated bythe
same user.

These statistics suggest that if caching query results is tobe
done at servers or proxies, then we should consider longer pe-
riods of caching in order to exploit the maximum shareness
among different users. Usually, caching query results for along
time is more likely to result in stale data. Since this is to beper-
formed by the server, the stale data can be removed whenever
the server updates the results. If caching is to be performedat
the user side, then a short period of caching would be enough
to cover most of the temporal query locality, which is also less
likely to result in stale data.

D. Multiple-Word Query Locality

Multiple-wordqueries are important because they account for
about70% of the queries. Multiple-word queries also have sig-
nificant locality, which will be discussed in this section.

Fig. 7 summarizes the statistics about multiple-word queries.
The Excite trace has a larger portion of multiple-word queries
than the Vivisimo trace, but both traces have as many as62%
of the multiple-word queries over the repeated ones. We ob-
serve that multiple-word queries are repeated less frequently
compared with single-word queries. In the Vivisimo trace, each
repeated multiple-word query was submitted3.00 times on av-
erage, compared with3.63 times for single-word cases. In the
Excite trace, each repeated multiple-word query was submitted
3.77times, compared with7.12times for single-word cases.

We also observe that multiple-word query locality mostly ex-
ists among the same users, that is, multiple-word queries have

 < 1 min 1−5 mins 5−10 mins 10−30mins 30−60mins 1h − 1day > 1 day
0

5

10

15

20

25

time intervals
(%

)P
er

ce
nt

ag
e

of
 r

ep
ea

te
d

qu
er

ie
s number of queries repeated overall

number of queries repeated by the same users

(a) The Vivisimo Trace

 < 1 min 1−5 mins 5−10 mins 10−30mins 30−60mins 1h − 8h
0

5

10

15

20

25

30

time intervals

(%
)P

er
ce

nt
ag

e
of

 r
ep

ea
te

d
qu

er
ie

s number of queries repeated overall
number of queries repeated by the same users

(b) The Excite Trace

Fig. 6. Repeated query distribution within different time intervals

less degree of shareness. Fig. 8 shows the comparison between
multiple-word queries and single-word queries with respect to
their degrees of shareness. From both traces, we can see that
multiple-word queries are less likely to be shared by different
users. Each shared multiple-word query also tends to be shared
by fewer users. This is easily explained because the chances
for different users to submit the same multiple-word queries are
much smaller than those for single-word queries.

From the above results, we can see that multiple-word query
locality is significant. Caching multiple-word queries is more
promising because it takes more time to compute multiple-word
query results. Since multiple-word queries have less degree of
shareness, we could cache them mainly at the user side.

IEEE INFOCOM 2002 6

Number of appearance Percentage
Vivisimo Excite Vivisimo Excite

Multiple word queries 77,181 1,429,618 69.61% 74.42%
(over the number of the queries)

Unique multiple word queries 55,193 924,546 73.26% 84.07%
(over the number of the unique queries)

Multiple word queries that were 21,995 505,249 61.89% 61.52%
repeated (over the number of the repeated queries)
Unique multiple word queries that 11,020 182,335 68.18% 77.39%
were repeated (over the number of unique repeated queries)
Unique multiple word queries that 3,181 101,098 5.76% 11%
were submitted by more than one user (over the number of unique multiple word queries)

Fig. 7. Multiple-word query summary

Type of queries Shared multiple-word queriesShared single-word queries
Vivisimo Excite Vivisimo Excite

Percentage 5.76% 10.93% 12.28% 19.37%
Number of users 2.53 3.95 3.24 7.38

Fig. 8. The comparison between multiple-word queries and single-word queries with respect to the degrees of the shareness in both traces. ’Percentage’ means the
portion of shared multiple-word or single-word queries over the total number of multiple-word or single-word queries.’Number of users’ means the average
number of users sharing each such query.

E. Users with Shared IP Addresses

Some users use dial up services such as AOL to access the
Internet. For those users, their IP addresses are dynamically al-
located by DHCP servers. Unfortunately, there is no common
way to identify these kinds of users. This impacts our analysis
in two ways. First, because different users can share the same
IP address at different times, their queries seem like they come
from the same user, leading to an overestimate of the query lo-
cality from the same users. Second, because the same users can
use different IP addresses at different times, it is also possible
for us to underestimate the query locality from the same users.
Since AOL clients will have keyword “AOL” in their user-agent
fields, which were recorded in the Vivisimo trace, we are able
to identify AOL users who might have shared IP addresses in
the Vivisimo trace. We found that among the 110,881 queries
received, there are only2,949queries submitted by749 AOL
clients. And only three of them are frequent users who sub-
mitted more than 70 queries. Therefore, we believe our results
about the Vivisimo trace are not biased by these users.

IV. U SER LEXICON ANALYSIS AND ITS IMPLICATIONS

In this section, we analyze the user query lexicons. We also
propose possible ways to prefetch query results for each indi-
vidual user, by recognizing their most frequently used terms.

A. Distribution of the User Lexicon Size

We noticed that the word frequency in the trace cannot be
characterized by a Zipf distribution, which was also noticed in
[7]. The graph falls steeply at the beginning and has an unusu-
ally long tail.

Instead of looking at the overall lexicons used in the trace,
we group all the words used by each user individually, and ex-
amine the user lexicon size distribution. Among the249,541

words in the queries from the Vivisimo trace, there are51,895
distinct words. In the Excite trace, there are350,879distinct
words among the5,095,189words from the queries. We notice
that some users in the Excite trace submitted a large number of
queries. For example, one user submitted 130,220 queries dur-
ing the 8 hours. These users are likely to be meta-search engines
instead of normal users. Thus we ignore the 60 users who sub-
mitted more than 100 queries in the Excite trace and examine
the remaining users on their lexicon sizes. Compared with the
overall lexicon size, the user lexicon sizes are much smaller. The
largest user lexicons in the two traces have only885words and
202words, respectively. We also find that the user lexicon size
does not follow a Zipf distribution. Fig. 9 plots the distributions
of the user lexicon size. The graphs have heavy tails, meaning
the majority of the users have small lexicons.

We also looked at the relationship between the number of
queries submitted by each user and the corresponding lexicon
size. For both traces, the more queries submitted by a user, the
larger the user’s lexicon. Fig. 10 shows the relationship between
the number of queries submitted by a user and the corresponding
user lexicon size based on the Vivisimo trace. The user lexicon
sizes are in proportion to the number of queries submitted bythe
users. But there are a few exceptions, where the users submitted
a lot of queries out of small lexicons. The Excite trace shows
the same pattern and is thus not plotted here.

B. Analysis of Frequent Users and Their Lexicons

Though some users have large lexicons, they do not use all
of the words uniformly. We are interested in how many words
are most frequently used in the queries for each user. For the
users in the Vivisimo trace who submitted only a few queries
over the 35 days, calculating their frequently used words isnot
meaningful. Similarly, we do not look at the users in the Excite
trace either because the trace lasts for too short a period. So we

IEEE INFOCOM 2002 7

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

User ID(sorted by lexicon size)(10 based log)

Le
xi

co
n

S
iz

e(
10

 b
as

ed
 lo

g)

(a) The Vivisimo Trace

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

User ID(sorted by lexicon size)(10 based log)

Le
xi

co
n

S
iz

e(
10

 b
as

ed
 lo

g)

(b) The Excite Trace

Fig. 9. Distribution of the user lexicon sizes with logarithmic scales on both
axes. The X axis denotes the user IDs sorted by the lexicon sizes. When
plotting the Excite trace, we remove those users who submitted more than
100 queries over the 8-hour period. Those users are very likely to be meta-
search engines or robots instead of normal users.

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

400

User ID (sorted by lexicon size)

User lexicon size
Number of queries submitted by the user

The user with a small lexicon size
but submitted many queries

Fig. 10. User lexicon sizes and the number of the queries theysubmitted in
the Vivisimo trace. The solid line plots the sorted user lexicon sizes. The
dashed line plots the numbers of the queries submitted by thecorresponding
users. For scale reasons, this figure is a zoomed in part from acomplete
figure, but the pattern shown here is general for the completefigure as well.

only focus on those frequent users in the Vivisimo trace. We call
a user afre-user if the user submitted at least 70 queries. The
fre-users thus submitted at least 2 queries each day on average.
We also define afre-lexiconfor each fre-user. The fre-lexicons
consist of the words that were used at least five times by the
corresponding users.

Fig. 11 shows the statistical summary about the fre-users in
the Vivisimo trace. There are157fre-users, among whom,153
fre-users have non-empty fre-lexicons. Although fre-users ac-

Number of fre-users 157
Number of queries submitted by fre-users 25,722
Number of fre-users with fre-lexicon size� 1 153
Number of fre-users with fre-lexicon size� 20 128

Fig. 11. Fre-users statistics in the Vivisimo trace. Fre-users are defined as
those users who submitted at least 70 queries over the 35 days. Those users
visited Vivisimo frequently and submitted at least 2 queries each day on
average. Fre-lexicon is defined as the set of terms that were used by the
corresponding user for at least five times.

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

User ID(sorted by fre−lexicon size)

Fre−lexicon size
Number of queries generated from fre−lexicon

The user who generated a lot of
queries out of a small fre−lexicon

(a) Queries and Fre-lexicons

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100

Fre−User ID

(%
)P

er
ce

nt
ag

e
of

 th
e

qu
er

ie
s

Queries generated from fre−lexicon
Quereies generated from fre−lexicon with <= 4 terms

(b) Percentage of the queries generated from fre-lexicons

Fig. 12. (a) The number of queries generated from fre-lexicons and the cor-
responding fre-lexicon sizes. The fre-user IDs are sorted by the lexicon
sizes. (b) The percentage of the queries generated by the fre-lexicon for
each fre-user. The fre-user IDs are sorted by the percentages.

count for less than1% of the users, they submitted25,722
queries in total, which account for23.20%, a significant por-
tion over the total number of queries. Since these users are non-
trivial, caching and improving query results based on theirindi-
vidual requirements looks promising.

We also observe from the figure that most of the fre-users
had small fre-lexicons. Thus we are interested in how many
queries were generated purely by the words from fre-lexicons.
If the users tend to re-use a small number of words very of-
ten to form queries, then we can predict queries and prefetch
query results by simply enumerating all the word combinations.
Fig. 12 (a) plots the number of queries generated from fre-
lexicons. There are a small number of fre-users with relatively
larger fre-lexicons, from which they submitted a lot of queries.
So prefetching based on fre-lexicons for these users will help
reduce the number of queries to be submitted dramatically. But
we need a large cache size to store all the possible word com-

IEEE INFOCOM 2002 8

binations due to the relatively large fre-lexicon size. There are
also quite a few users who generated a lot of queries from small
fre-lexicons. For example, the user specified in the figure gen-
erated106queries from an8 word fre-lexicon. For these users,
prefetching according to fre-lexicons would be most effective.

Since the majority of queries have fewer than five terms, it is
interesting to see how many queries with fewer than five terms
were generated from fre-lexicons. Fig. 12 (b) shows both the
percentage of the queries from fre-lexicons and the percentage
of the queries from fre-lexicons with fewer than five terms. The
addition of the extra constraints imposed on the number of terms
does not affect the results for most of the fre-users. There-
fore, we could just enumerate the word combinations using no
more than four terms, which would greatly reduce the number
of queries to be prefetched.

V. RESEARCH IMPLICATIONS

In this section, we review the statistical results derived from
both traces and discuss their implications on future research di-
rections. We focus on three aspects: caching search engine re-
sults, prefetching search engine results, and improving query
result rankings.

A. Caching Search Engine Results

With 30% � 40% of repeated queries, caching search engine
results is a non-trivial problem. Cache placement is one of the
key aspects of the effectiveness of caching. Query results can be
cached on the servers, the proxies, and the clients. For optimal
performance, we should make decisions based on the following
aspects:
1. Scalability. A cache scheme should scale well with the in-
creasing size and the density of the Internet.
2. Performance improvement.This includes the amount of re-
duction in server workload, user access latency, and network
traffic.
3. Hit rate and shareness.The higher the hit rate, the more
efficient the caching. We would also like cached query results
to be shared among different users of common interests.
4. Overhead.The overheads include the system resources de-
voted for caching and the extra network traffic induced.
5. Opportunity for other benefits.By disseminating user re-
quests among caches, what other benefits can we achieve with
the existence of caching?

Fig. 13 compares the pros and cons of different cache place-
ment schemes in the general case:� Server caching has only limited system resource available,so
it does not scale well with the increasing size of the Internet.
In addition, though we can avoid redundant computation, we
cannot reduce the number of requests received by servers. The
reduction in user access latency is also very limited. However,
server caching has small overhead. Moreover, it allows the max-
imum query shareness among different users and the hit rate
would be high by caching popular queries.� Proxy caching is effective to reduce both server workload and
network traffic. In the case of caching query results, this as-
sumes that the users nearby a proxy would share queries. How-
ever, one of the main disadvantages of proxy caching is the sig-

nificant overhead of placing dedicated proxies among the Inter-
net.� User side caching has the best performance improvement in
case of a cache hit because the redundant user requests will not
be sent out at all. Compared with the limited system resources at
servers, the sum of each individual user resource is almost infi-
nite. So user side caching achieves the best scalability. Because
the overhead of caching can be amortized to a large number of
users, the overhead at each user side is small. More importantly,
with user side caching, it is now possible to prefetch or improve
query results based on individual user requirements. However,
no shareness can be exploited with user side caching. Thus if
queries are mostly shared instead of being repeated by the same
users, we would have low hit rate in such case.

The above discussion indicates that the degree of shareness
is important to decide where we should cache query results. In
one extreme case where users never repeat their own queries,
we reach the maximum degree of shareness. In such case, we
should cache query results at servers or proxies because user
side caching would result in zero hit rate. In another extreme
case where users never share queries, caching query resultsat
the user side would be most helpful.

Our trace analysis results show that, among all queries, re-
peated queries account for 32% to 42%, while repeated queries
from the same users account for 16% to 22%. The significant
portion of the queries repeated by the same users and the non-
trivial difference between the above two percentages suggest
both server/proxy caching and user side caching. For the queries
repeated only by the same users, we can cache them at the user
side for efficiency, while the rest of the repeated queries can be
cached at either servers or proxies. Since we do not know the
actual IP addresses of the users in both traces, we cannot further
distinguish the queries that can be shared by nearby users and
thus can be cached at proxies. But it is clear from the traces
that the percentage of such queries would be between 16% and
42%. Therefore, we leave proxy caching as a future work for
search engines themselves to determine whether and where to
place such proxies.

Since multiple-word queries have less degree of shareness,
we suggest caching multiple-word queries mainly at the user
side. Therefore, by caching only popular single-word queries
at servers/proxies, we can achieve larger hit rates and greatly
reduce the required system space.

Another important question about caching is how long we
should cache query results. Temporal query locality indicates
that most of the queries are repeated within short time intervals.
So in general, caching query results for short periods should
work well. More detailed analysis in Section III-C shows that
the shorter time interval, the more likely for a query to be re-
peated by the same users. Thus, for user side caching, caching
query results for hours will be enough to cover the query locality
existing on the same users. This also helps to remove or update
stale query results in time. There also exist a non-trivial portion
of queries repeated over relatively longer time intervals.These
queries are mainly shared among different users. So if caching
is to be done at servers or proxies, we can consider longer-term
caching such as a couple of days.

IEEE INFOCOM 2002 9

Level of caching Server caching Proxy caching User side caching
Scalability worst medium best
Performance improvement worst medium best
Hit rate and shareness best medium worst
Overhead small large small
Opportunity for other benefits least medium most

Fig. 13. Comparisons between different cache placement schemes.

The temporal query locality and the content dynamics of
query results directly impact the mechanisms for maintaining
cache consistency. Usually, search engines update query re-
sults on the order of days or even weeks. Therefore, for user
side caching, where caching query results for hours would
cover most of the query locality on the same users, we can use
the following two mechanisms to maintain cache consistency.
First, we can associate each query in the cache with atime-to-
live(TTL)field and set the TTL to a relative short interval. Sec-
ond, we can use anif-modified-sinceheader field in each user
request, like the HTTP protocol. The query result freshnesscan
be guaranteed with the second mechanism. But we have larger
overhead at both user side and server side since the user side
needs one more interaction with the server for each request.

For server side and proxy caching, we should use different
mechanisms to maintain cache consistency. With server side
caching, we can easily ensure cache consistency by removing
or updating stale query results whenever new query results are
computed. For proxy caching, since queries shared by different
users tend to be repeated over longer time intervals, the simple
TTL based approach would incur more overhead. The reason is
that TTL is usually set to a relatively short interval to prevent
caches from serving stale data, and thus data may be reloaded
unnecessarily. Therefore, more advanced invalidation protocols
should be used to update stale query results while keeping the
overhead low. For example, we can use a proxy polling tech-
nique where proxies periodically check back with the server
to determine if cached objects are still valid. We can also let
servers notify proxies when query results are updated. Both
mechanisms are already in use for web caching on the Internet.

B. Prefetching Search Engine Results

Our user lexicon analysis in Section IV suggests that prefetch-
ing query results based on user fre-lexicons is promising.
Prefetching has always been an important method to reduce user
access latency. In the case of prefetching search engine results,
it can be performed at both user side or proxies.

Caching query results at the user side provides useful infor-
mation about user interest. For this reason, user side prefetching
is natural and worth looking at. From the user lexicon analysis,
we observe that the majority of the user lexicon sizes are small.
Frequent users who submit many queries often use a small sub-
set of words more often than other words. So a straightforward
way of prefetching is to enumerate all the word combinations
from fre-lexicons and prefetch the corresponding query results
into a user level cache. The user query latency can be greatly
reduced in case of a cache hit because no interaction with re-
mote servers will be involved at all. Since queries are usually

short, we can skip queries longer than four terms to reduce the
prefetching overhead while achieving approximately the same
performance improvement. For example, a 10-word fre-lexicon
needs to prefetch 385 queries using the above naive algorithm,
which will cost less than 20 minutes network download time
using a 56Kbps modem and about 8M disk for storage. These
overheads are trivial considering that a normal PC today is idle
about 70% of the time on average and the normal disk size is
tens of gigabytes. With user interests changing gradually,the
corresponding fre-lexicons should also be updated to matchuser
interests. New queries will be formed and new query results will
need to be prefetched to achieve the best cache hit rates. In most
cases, when user interests stay relatively stable, the majority of
the words from a fre-lexicon will remain the same. There will
be fewer new query results to fetch each time the prefetching
is performed. Thus the prefetching overhead at the user sideis
small.

The above prefetching algorithm can potentially benefit
servers as well. Since prefetched query results might not beused
by the users, redundant query requests will be sent to servers.
More network bandwidth and other system resources will be
consumed compared with the case without prefetching. How-
ever, if we perform the prefetching algorithm regularly when
the user machines are idle and the servers are not busy, most of
these requests will be processed at non-peak times by servers.
So we will not have any additional burden on servers at peak
times. Instead, the server peak time workload can even be re-
duced since many of the queries have already been satisfied by
user prefetching. Thus scarce server CPU and networking re-
sources at peak times can be saved to serve more clients or apply
to more advanced algorithms.

Prefetching can also be performed at proxies. In such cases,
server’s global knowledge about user query patterns can be uti-
lized to decide what to prefetch and when to prefetch. Since
proxies allow query shareness among different users, exploring
how to achieve the maximum hit rate in such case would also be
an interesting problem for future research.

C. Improving Query Result Rankings

Although today’s search engines often return tens of thou-
sands of results for a user query, only a few results are actually
reviewed by users. Section II-C shows that each user on average
reviews fewer than two pages of results. Thus, improving query
result rankings based on individual user requirements is more
important than ever. The personal nature of “relevance” requires
incorporating user context to find desired information. Because
centralized search engines provide services to millions ofusers,
it is impractical to customize results for each user. Some spe-

IEEE INFOCOM 2002 10

cialized search engines do offer search results which are differ-
ent than standard for some specialized user requirements. But
none of them allows users to define their own requirements at
will. With user side/proxy caching, it is now possible to re-rank
the returned search engine results based on the unique interest
of individual user. For example, a naive algorithm would be to
increase the ranks of the Web pages visited by the user among
the next query results. We can also explore other algorithmsand
integrate them with caching to customize search engine results
for individual users.

VI. CONCLUSIONS

Caching is an important technique for reducing server work-
load and user access latency. In this paper, we investigatedthe
issue of whether caching might work in the case of search en-
gines, as it does in many other areas. We studied two real search
engine traces and investigated the following three questions: (1)
Where should we cache search engine results? At servers, prox-
ies, or user side? (2) How long should we cache search results?
(3) What are the other benefits of caching search engine results?

Our analysis of both the Vivisimo search engine trace and the
Excite search engine trace indicate that: (1) Queries have sig-
nificant locality. Query repetition frequency follows a Zipf dis-
tribution. The popular queries with high repetition frequencies
are shared among different users and can be cached at servers
or proxies. There are also about 16% to 22% of the queries re-
peated by the same users, which should be cached at the user
side. Multiple-word queries have less degree of shareness and
should be cached mainly at the user side. (2) The majority of
the repeated queries are referenced again within short timein-
tervals. There is also a significant portion of queries that are re-
peated within relatively longer time intervals. They are largely
shared by different users. So if caching is to be done at the user
side, short-term caching for hours will be enough to cover query
temporal locality, while server/proxy caching should userlonger
periods, such as days. (3) Most users have small lexicons when
submitting queries. Frequent users who submit many search re-
quests tend to re-use a small subset of words to form queries.
Thus with proxy or user side caching, prefetching based on user
lexicon is promising. Proxy or user side caching also provide
us with opportunities to improve query results based on individ-
ual user requirements, which is an important direction for future
research.

VII. A CKNOWLEDGEMENTS

We gratefully acknowledge the assistance of Raul Valdes-
Perez and the Vivisimo search engine team for providing us with
a trace. Thanks also to the Excite team for making their trace
available. Without the generous sharing of the trace data by
Vivisimo and Excite, this work would not be possible. We also
thank Jamie Callan for his helpful comments and suggestions.

REFERENCES

[1] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. Rabinovich, “Per-
formance of Web Proxy Caching in Heterogenous Environments,” in Pro-
ceedings of the IEEE infocomm’99, New York, NY, March 1999.

[2] C. Maltzahn, K. Richardson, and D. Grunwald, “Performance Issues of
Enterprise Level Web Proxies,” inProceedings of the SIGMETRICS Con-
ference on Measurement and Modeling of Computer Systems, June 1997.

[3] M.S. Raunak, P. Shenoy, P. Goyal, and K. Ramamritham, “Implications of
Proxy Caching for Provisioning Networks and Servers,” inProceedings of
the ACM SIGMETRICS Conference, Santa Clara, CA, June 2000.

[4] A. Rousskov and V. Soloviev, “On Performance of Caching Proxies,” in
Proceedings of the ACM SIGMETRICS Conference, Madison, WI, June
1998.

[5] P. Cao, L. Fan, and Q. Jacobson, “Web Prefetching BetweenLow-
Bandwidth Clients and Proxies:Potential and Performance,” in Proceed-
ings of the ACM SIGMETRICS Conference, Atlanta, GE, May 1999.

[6] T. Kroeger, D. Long, and J. Mogul, “Exploring the Bounds of Web Latency
Reduction from Caching and Prefetching,” inProceedings of the USENIX
Symposium on Internet Technologies and Systems, December 1997.

[7] B.J. Jansen, A. Spink, J. Bateman, and T. Saracevic, “Real life information
retrieval: a study of user queries on the Web,” inSIGIR Forum, Vol. 32.
No. 1, 1998, pp. 5–17.

[8] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz, “Analysis of a
Very Large AltaVista Query log,” Tech. Rep. 1998-014, Digital System
Research Center, October 1998.

[9] S. Adali, K.S. Candan, Y. Papakonstantinou, and V.S. Subrahmanian,
“Query Caching and Optimization in Distributed Mediator Systems,” inH.
V. Jagadish and Inderpal Singh Mumick, editors, Proc. of the1996 ACM
SIGMOD Conf. on Managementof Data,, 1996, pp. 137–148. ACM Press.

[10] M. Taylor, K. Stoffel, J. Saltz, and J. Hendler, “Using Distributed Query
Result Caching to Evaluate Queries for Parallel Data MiningAlgorithms,”
in Proc. of the Int. Conf. on Parallel and Distributed Techniques and Ap-
plications, 1998.

[11] Evangelos P. Markatos, “On Caching Search Engine Results,” Tech. Rep.
241, Institute of Computer Science, Foundation for Research & Technol-
ogy - Hellas (FORTH), 1999.

[12] Evangelos P. Markatos, “On Caching Search Engine QueryResults,” in
Proceedings of the 5th International Web Caching and Content Delivery
Workshop, May 2000.

[13] “Vivisimo,” http://www.vivisimo.com.
[14] “Excite,” http://www.excite.com.

