
QuickStroke: An Incremental On-line Chinese Handwriting Recognition System

Nada P. Mati´c John C. Platt� Tony Wangy

Synaptics, Inc.
2381 Bering Drive

San Jose, CA 95131, USA

Abstract

This paper presents QuickStroke: a system for the in-
cremental recognition of handwritten Chinese characters.
Only a few strokes of an ideogram need to be entered in
order for a character to be successfully recognized. Incre-
mental recognition is a new approach for on-line recogni-
tion of ideographic characters. It allows a user to enter
characters a factor of 2 times faster than systems that re-
quire entry of full characters. Incremental recognition is
performed by a two-stage system which utilizes 68 neural
networks with more than 5 million free parameters. To en-
able incremental recognition, we use specialized time-delay
neural networks (TDNNs) that are trained to recognize par-
tial characters. To boost the recognition accuracy of com-
plete characters, we also use standard fully-connected neu-
ral networks. Quickstroke is 97.3% accurate for the incre-
mental writer-independent recognition of 4400 simplified
GB Chinese ideograms.

1 Introduction

As computer technology improves and becomes more
widespread, writers of ideographic characters need more
friendly human-machine interfaces. The keyboard is not a
friendly interface for entering the characters of ideographic
languages like Chinese, whose alphabet consists of a very
large number of symbols — there are 4400 simplified GB
Chinese ideograms. In order to enter Chinese characters
using a keyboard, one has to memorize and execute com-
plex key sequences or, alternatively, enter equivalent sym-
bols for phonetic representation. An ideal input device for
ideographic text would use on-line handwritten input. Com-
mon touch-sensitive input devices like TouchPads, tablets,
or PDAs are all capable of capturing such on-line handwrit-
ing data in the form of pen or finger trajectories.

�Current address: Microsoft Research, 1 Microsoft Way, Redmond,
WA 98052, USA

yCurrent address: Nortel Networks, 4555 Great American Parkway,
Santa Clara, CA 95054, USA

This paper describesQuickStroke, a writer-independent
on-line Chinese character recognition system for printed
and partially cursive characters. This system is designed to
provide an ideographic input method that is both intuitive
and very fast. QuickStroke recognizes handwritten charac-
ters with very high accuracy and is robust to stroke number
and stroke order variation in these characters.

Numerous methods have been previously proposed for
on-line Chinese character recognition [1]. In most cases,
previous work did not lead to practical high-accuracy sys-
tems either because experiments were performed on a re-
duced number of classes, or because limitations on writing
order were imposed to obtain an acceptable level of accu-
racy for the writer-independent task.

Figure 1. The user interface for QuickStroke.
Quickstroke displays its hypothesis list sorted by
probability. The user can select out of the hypothe-
sis list, or add more strokes to the same character
if no candidate is correct.

QuickStroke improves on previous work by perform-
ing incremental recognition. Incremental recognition al-
lows a character to be accurately recognized after only a
few strokes of the input ideogram have been drawn (see
Fig. 1). Incremental recognition increases character entry

speed twofold by reducing the number of required strokes
on average by a factor of 2.

QuickStroke builds upon previous work in neural net-
works for on-line handwriting recognition. Examples of
such neural networks for Latin text include time-delay
neural networks (TDNNs) [2], convolutional neural net-
works [3], or standard multi-layer perceptrons [4].

D1

D1

post-
processing

TDNN

IMAGE

D33

pre-
processing

TouchPad

IMAGE

TDNN

IMAGE

pre-classifier detail classifier

NEURAL NETWORKS

D33

Figure 2. Our system consists of 68 neural net-
works that are divided into pre-classifier and 33
detail classifiers. Each classifier consists of a pair
of neural networks. There are more than 5 million
free parameters in all of the neural networks.

In order to obtain high accuracy for a classification task
that has 4400 classes, we use a two-stage architecture that
first identifies a subset of classes that are possible, and then
recognizes an individual class out of that subset [5] (see
Fig. 2). QuickStroke is unique because it uses only the first
three strokes as a basis for the first stage of classifiaction.
This allows it to perform incremental recognition on a large
number of classes.

Furthermore, in order to have high accuracy for both par-
tial and full characters, each classifier consists of an ensem-
ble of two neural networks, each with a different input rep-
resentation and architecture that is tuned for either partial or
complete characters. These different input representations
make errors more orthogonal, hence the overall error rate is
reduced [6].

2 Description of the System

The first stage of QuickStroke (called thepre-classifier)
performs coarse classification by placing the character into
one of 33 possible character subsets. The second stage is
then responsible for final classification. The second stage
consists of 33 separatedetail classifiers: D1-D33.

Every classifier in the system (e.g. pre-classifier and all
detail classifiers) is implemented as a combination of two
neural networks.

The first neural network in each pair is a two-layer, time-
delay neural network (TDNN)[2] which exploits the se-

quential, time-varying nature of the recognition problem
(e.g. stroke order). In our system, the TDNN is designed
and trained in order to optimize the recognition of a par-
tial character. The second network is a two-layer feed-
forward perceptron, trained with back-propagation [7] and
optimized to recognize complete characters. Each compo-
nent classifier provides probability estimates for each indi-
vidual class in the form of an output vector of confidences.
QuickStroke integrates the information from two compo-
nent classifiers by simply averaging individual probabili-
ties. It picks the class with the maximum probability as
the final answer of a particular classifier.

2.1 Coarse Classification

The pre-classifier performs coarse classification: it lim-
its the number of character candidates from the original set
of classes to a much smaller group. Coarse classification
speeds up recognition and concencentrates the neural net-
work resources to disambiguate more confusable charac-
ters.

In QuickStroke, we partition the 4400 GB classes into 33
groups. These groups are generated by a bootstrapping pro-
cedure. The pre-classifier uses only the first three strokes
from each character. We choose an initial set of classes
for each group based on the similarity of these first three
strokes. We then train a first prototype of the pre-classifier
on this limited set of classes and use bootstrapping (similar
to [8]) to label all available training data into groups. A fi-
nal pre-classifier is trained using input-output pairs from all
the available training data. The output of the pre-classifier
is a vector of 33 probabilities, one per pre-classifier class.

To accommodate for the natural variability in writing, we
allow the 33 groups to overlap: each character class can be
assigned to one or more groups. For example, the first three
strokes of a particular character can be written using differ-
ent stroke order by different writers, which in turn leads to
one variant of a class belonging to one group and another
variant belonging to an alternate group. We assign these
multiple groups by presenting 40 training samples from dif-
ferent writers to the pre-classifier and assigning a class to
each group output by the pre-classifier if that output occurs
more than a once in the 40 samples.

2.2 Detail Classification

Each pre-classifier class represents a group of characters
that consists of a subset of the Chinese alphabet. Each de-
tail classifier was trained to distinguish between classes in
a particular group. The number of classesn that each de-
tail classifier was trained on ranges from 29 to 567. A pair
of neural networks performs a detail classification for each
one of these 33 groups. The output of the detail classifier is
a vector ofn probabilities, one per detail classifier.

2

To improve the accuracy of the system, we evaluate two
detail classifiers corresponding to the two top pre-classifier
answers. We combine two probability vectors into one and
sort it into a hypothesis list.

Finally as a simple post-processing step, the incremental
recognizer modifies the hypothesis list. Characters that have
fewer strokes than the user entered are deleted from the list.
Characters that are subsets of other characters are promoted
towards the front of the list.

If the correct character appears on the hypothesis list, the
user can select it as a final answer of the system, otherwise
additional strokes can be provided to QuickStroke for the
new recognition attempt. Notice that the group identity will
not change after the first three strokes, therefore there is no
need to call the pre-classifier after additional stokes have
been entered.

3 Pre-processing

After simple noise removal, we scale a group of strokes
that can represent either a partial character or a complete
character so that they lay in the box[0; 1] � [0; 1]. Each
group of strokes is scaled so that the maximum of its height
or width becomes 1. This makes our recognizer indepen-
dent of size variation. Afterward, scaling input strokes are
re-sampled so that sample points are spaced evenly along
the arc length of each stroke [2].

1

0

bin center

0 0 0.3 0.7 0

example input

example output

Figure 3. Continuous parameters are encoded by
evaluating several triangular basis functions, each
centered on a bin center. The output of the encod-
ing is a vector of values.

Features are then extracted for every reparameterized
point of the stroke: the horizontal and vertical position of
the point and direction of the stroke at the point. The sys-
tem uses these local features to generate Directional Fea-
ture Maps (DFMs). A DFM takes this local information
and produces a three-dimensional tensor that contains joint
directional and spatial information (similar to [9, 3]). We
perform an interpolated encoding of each of the continuous
variables x, y, and direction (see Fig. 3), and then take the

tensor outer product of the resulting encoded vectors. This
encoding makes the training of neural networks easier and
allows the first layer of each network to compute piecewise
linear functions of the original input variables.

We use a different number of basis functions per input for
the different neural networks. For the TDNN, we use five
membership functions for x and y encoding, and eight for
direction which results in a 200-dimensional input vector.

In addition to the DFM, we use Geometrical Features
(GFs) that represent the relationship between two consec-
utive strokes. GFs capture the spatial difference between
the endpoints of the previous stroke and the endpoints of
the current stroke. A total of four continuous quantities
are computed and then interpolated and encoded into a sin-
gle 64-dimensional vector. Again the GF for each pair of
strokes is supplied to the corresponding copy of the first
layer of the TDNN.

Two feature sets are computed for standard multi-layer
networks. For the pre-classifier, a single DFM is generated
for the input consisting of the first three strokes. Similarly,
a single DFM is calculated for all detail classifiers, where
the input to the DFM consists of all the strokes of the par-
tial or complete character. The multi-layer networks use
an 8� 8� 8 DFM, which provides more spatial resolution
than the DFMs for the TDNNs. The second feature set for
the standard networks consists of information about the lo-
cation of endpoints of the strokes that are also interpolated
and encoded, leading to a 25-dimensional vector. The in-
put dimensionality of these standard multi-layer networks
is thus 537.

Because these standard neural networks receives spatial
and no temporal information from all of the strokes, we re-
fer to them as the “ image” neural networks.

4 Neural Network Architectures
In the current implementation, the pre-classifier and all

33 of the detail classifiers each consist of a TDNN with a
novel architecture and an “ image” neural network.

For the TDNN of the pre-classifier, the first (hidden)
layer is replicated three times. Each copy of the first layer
receives a DFM and a GF from one of the three input
strokes. This is in contrast to prior uses of TDNNs [2],
where each copy of the first layer receives input from a
small time-slice of handwriting. There are 80 neurons in
each copy of the hidden layer, which extract higher-level
features from each stroke. The output (classification) layer
is fully connected to all units in the hidden layer. The output
layer has 33 outputs, one for each group.

The TDNN of the detail classifier is quite similar to the
pre-classifier TDNN, except that each detail TDNN has 25
copies of the first layer (corresponding to the first 25 strokes
of the character), rather than three copies as in the pre-
classifier TDNN. Each hidden layer consists of 20 neurons.

3

Stroke 1 Stroke 2 All strokes

DFM 1 DFM 2 DFMGF1

0

...

...

...

... ...

GF

+

final
output

TDNN
hidden

TDNN
output

image
hidden

image
output

...

Figure 4. Architecture for a Single Classifier

The “ image” neural network of the pre-classifier is
a standard multi-layer perceptron, with sigmoidal non-
linearities trained with back-propagation [7]. The network
has two layers of trainable weights, with 33 output neurons
and 350 hidden neurons.

The “ image” neural network for each detail classifier has
200 hidden units, and n output units. The 200 hidden units
are fully connected to the 537-dimensional input feature
vector, representing the “ image” of the complete character.

4.1 Neural Network Training

All the networks in the system are trained to recognize
partial or complete input characters that belong to a set of
4400 GB Chinese characters. This represents an extended
set of the Standard Level 1 GB character set. Our training
set consists of samples from 60 writers. Additional samples
from a disjoint set of 20 writers were used for validation
purposes.

The weights are adjusted during a supervised training
session, using back-propagation [7] which performs gradi-
ent descent in weight space with a cross-entropy loss func-
tion. By minimizing this error, neural network learning al-
gorithms implicitly maximize margins, which explains their
good generalization performance despite large capacity (as
in the case of our image networks). In the case of TDNNs,
the training algorithm must adjust the weights of the con-
volutional kernels. This is implemented by “weight shar-
ing” [10]. In our present system, the capacity control is han-
dled by “early stopping” , detected by cross-validation. We
performed cross-validation by computing the performance
of the system on a small set of validation patterns.

In order to train a fully incremental recognizer, we place
partial characters as well as complete characters with the
same target label into the training set. This extended train-
ing set requires more training time, but resulted in im-
proved recognition of partial characters, while retaining
good recognition for complete characters.

4400 GB classes Top1 Top2 Top3
partial character accuracy 97.3% 98.25% 98.47%

Table 1. Incremental recognition rate for the 4400
most commonly used GB Chinese characters

5 Experiments and Results

The output of each detail classifier is a vector of proba-
bilities of length n, where n is a number of classes in the
particular group. There is one output for each class in the
detail classifier group. The probability vectors for each type
of classifier (e.g. “ image” and “TDNN”) are averaged to-
gether in order to obtain a single probability vector per de-
tail classifier.

We have tested the performance of QuickStroke on a test
set that consists of twenty writers distinct from the writ-
ers used for training and validation. Each test character was
tested in the ” incremental” mode. For test characters having
3 or more strokes, partial characters consisting of 3 . . .m
strokes are evaluated and candidate lists generated. If at
any point in this process the partial character is recognized
as the top candidate the corresponding character is consid-
ered recognized. m is a minimum of 25 strokes and number
of strokes in the particular test character. Table 1 shows the
performance on the test set for the 4400 most commonly
used GB Chinese characters. We have also tested the per-
formance of Quick Stroke on complete characters: the top
1 accuracy is 96.3%.

These experiments prove that QuickStroke has excellent
accuracy for both partial and complete characters.

Quickstroke provides both excellent accuracy and in-
creased writing speed. Our testing results indicate that, on
average, only half of the total number of input strokes need
to be entered in order for the system to recognize the char-
acter (i.e., 6 strokes out of an average of 12). Thus, users of
Quickstroke can enter characters much faster than alterna-
tive input methods.

6 Conclusions

In this paper, we present QuickStroke, a writer-
independent, commercially-successful ideographic charac-
ter input method that is both fast and very accurate. Quick-
Stroke is trained to perform incremental recognition of Chi-
nese characters which considerably speeds up text input.
By combining both TDNNs and “ image” neural networks,
Quickstroke is robust to variation in both the stroke order
and the stroke number of characters, while still retaining
the capability of recognizing partial characters.

4

7 Acknowledgments

We wish to thank Suli Fay and Monte Wang for their
suggestions and help during the design and development of
the QuickStroke system.

References

[1] S. W. Lee. Special issue: Oriental character recogni-
tion. Pattern Recognition, 30(1253-1254):1031–1044,
1997.

[2] I. Guyon, J. Bromley, N. Matić, M. Schenkel, and
H. Weissman. Penacée: A neural network system
for recognizing on-line handwriting. In D. Van Hem-
men and et al., editors, Models of Neural Networks.
Springer-Verlag, 1995.

[3] Y. Bengio, Y. Le Cun, and D. Henderson. Globally
trained handwritten word recognizer using spatial rep-
resentation, convolutional neural networks and hidden
markov models. In NIPS-6, San Mateo CA, 1994.
Morgan Kaufmann.

[4] R. Lyon and L. Yaeger. On-line hand-printing recog-
nition with neural networks. In 5th Intl. Conf. Micro-
electronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, 1996.

[5] Y. Mori and K. Joe. A large-scale neural network
which recognizes handwritten kanji characters. In
D. Touretsky, editor, NIPS, volume 2, pages 415–422.
Morgan Kaufmann, 1990.

[6] L. K. Hansen and P. Salamon. Neural network ensem-
bles. IEEE Trans. Neural Networks, 12(10):993–1001,
1990.

[7] C. M. Bishop. Neural Networks for Pattern Recogni-
tion. Clarendon Press, Oxford, England, 1995.

[8] N. Matic, I. Guyon, J. Denker, and Vapnik V. Com-
puter aided cleaning of large databases for character
recognition. In 11th IAPR International Conference
on Pattern Recognition, volume II, pages 330–333.
IEEE Computer Society Press, 1992.

[9] J. Tskumo and H. Tanaka. On-line hand-printing
recognition with neural networks. In 9th ICPR, 1988.

[10] Y. Le Cun. Generalization and network design
strategies. In R. Pfeifer, Z. Schreter, F. Fogelman,
and L. Steels, editors, Connectionism in Perspective,
Zurich, Switzerland, 1989. Elsevier.

5

