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Abstract In this paper we consider the problem of designing a mecha-
nism for double auctions where bidders each bid to buy or sell one unit
of a single commodity. We assume that each bidder's utility value for the
item is private to them and we focus on truthful mechanisms, ones were
the bidders' optimal strategy is to bid their true utility. The pro�t of
the auctioneer is the di�erence between the total payments from buyers
and total to the sellers. We aim to maximize this pro�t. We extend the
competitive analysis framework of basic auctions [9] and give an upper
bound on the pro�t of any truthful double auction. We then reduce the
competitive double auction problem to basic auctions by showing that
any competitive basic auction can be converted into a competitive dou-
ble auction with a competitive ratio of twice that of the basic auction.
In addition, we show that better competitive ratios can be obtained by
directly adapting basic auction techniques to the double auction prob-
lem. This result provides insight into the design of pro�t maximizing
mechanisms in general.

1 Introduction

Dynamic pricing mechanisms, and speci�cally auctions with multiple buyers and
sellers, are becoming increasing popular in electronic commerce. We consider
double auctions in which there is one commodity in the market with multiple
buyers and sellers each submitting a single bid to either buy or sell one unit
of the commodity (E.g. [7]). The numerous applications of double auctions in
electronic commerce, including stock exchanges, business-to-business commerce,
bandwidth allocation, etc. have led to a great deal of interest in fast and e�ective
algorithms [16,18].

For double auctions, the auctioneer, acting as a broker, is faced with the task
of matching up a subset of the buyers with a subset of the sellers of the same
size. The auctioneer decides on a price to be paid to each seller and received from
each buyer in exchange for the transfer of one item from each of the selected
sellers to each of the selected buyers. The pro�t of the auctioneer is the di�erence
between the prices paid by the buyers and the prices paid to the sellers.

We assume that each bidder has a private utility value for the item. For the
buyers this utility value is the most that they are willing to buy the item for,



and for the sellers it is the least they are willing to sell for. We focus on double
auction mechanisms that are truthful: the best strategy of a sel�sh bidder that
is attempting to maximize their own gain is to bid their true utility value.

The traditional economics approach to the study of pro�t maximizing auc-
tions is to construct the optimal Bayesian auction given the prior distribution
from which the bidders' utility values are drawn (e.g., [3,15]). In contrast, follow-
ing [10,6,9], we attempt to design mechanisms that maximize pro�t under any
market conditions. As in competitive analysis of online algorithms, we gauge
a truthful double auction mechanism's performance on a particular bid set by
comparing it against the pro�t that would be achieved by an \optimal" auction,
Mopt, on the same bidders.

If, for every bid set, a particular truthful double auction mechanism M
achieves a pro�t that is close to that of the optimalMopt, we say that the auction
mechanismM is competitive againstMopt, or simply competitive. For example,
we might be interested in constructing double auctions that are competitive with
the optimal single-price omniscient mechanism, F . This is the mechanism which,
based on perfect knowledge of buyer and seller utilities, selects a single price bopt
for the buyers and a single price sopt for the sellers. It then �nds the largest k
such that the highest k buyers each bid at least bopt and the lowest k sellers
each bid at most sopt. It then matches these buyers and sellers up, paying all
the sellers sopt and charging each of the buyers bopt. The pro�t of the auctioneer
is thus k(bopt � sopt).

1.1 Results

This paper makes the following contributions:

{ We extend the framework for competitive analysis of basic auctions to double
auctions. This framework is motivated by a number of results bounding
truthful mechanism In particular, we show that no monotone1 double auction
(even a multi-priced mechanism) can achieve a higher pro�t than twice the
optimal single-priced mechanism F discussed above.

{ We present a reduction from double auctions to basic auctions by showing
how to construct a competitive double auction from any competitive basic
auction while losing only a factor of two in competitive ratio.

{ We show how the basic auction from [8] can be adapted to the double auc-
tion problem yielding better competitive ratio than one get by applying the
aforementioned reduction. We also discuss the possibility of making similar
adaptations for other pro�t maximizing mechanism design problems.

1.2 Related Work

We study pro�t maximizing single round double auctions when the utility value
of each bidder is private and must be truthfully elicited. When the utilities are

1 See Section 2.2 for the de�nition of monotone.



public values this problem becomes trivial. The following variants of the problem
have been previously studied.

When the goal is not to maximize pro�t of the auctioneer, but to �nd an
outcome that is maximizes the common welfare, i.e., the sum of the pro�ts of
each of the bidders, subject to the constraint that the auctioneer's pro�t is non-
negative, McA�ee [13] gives a truthful mechanism that approaches optimal as
the number of sold items in the optimal solution grows. Note that the Vickrey-
Clarke-Groves [4,11,17] mechanism, the only mechanism that always gives the
outcome that maximizes the common welfare, always gives a non-positive pro�t
to the auctioneer (assuming voluntary participation2).

Our results are closely related to the basic auctions for a single item available
in unlimited supply, e.g., for digital goods [10,9]. As such, the approach we take
in this paper closely parallels that in [9]. Furthermore, as we explain later, the
basic auction is a special case of the double auction where all sellers have utility
zero.

An \online" version of the double auction, where bids arrive and expire at dif-
ferent times, was considered by Blum, Sandholm, and Zinkevich [2] (also known
as a continuous double auction [18]). Their mechanism must make decisions
without knowing what bids will arrive in the future. They consider the goals of
optimizing the pro�t of the auctioneer and of maximizing the number of items
sold. Their solution assumes that bidders are compelled to bid their true utility
value despite the fact that the algorithms they develop are not truthful, i.e., the
utility values of the bidders are public. An interesting open question left by our
work is the problem of a pro�t maximizing online double auction for the private
value model. For private values, an online variant of the basic auction problem
was considered by Bar-Yossef et al. [1] in a competitive framework for pro�t
maximization.

Of course, auctions, be they traditional or combinatorial, have received a
great deal of attention (see e.g., the surveys [5,12]).

2 Preliminaries

Throughout the paper we will be using the notation b(i) to represent the ith
largest buyer bid and s(i) for the ith smallest seller bid.

De�nition 1. A single-round sealed-bid double-auction mechanism is one where:

{ Given the two bid vectors b = (b1; : : : ; bn) and s = (s1; : : : ; sn), the mecha-
nism computes a pair of allocation vectors, x and y 2 f0; 1gn, and payment
vectors p and q 2 IRn, subject to the constraints that:

� The number of winning buyers is equal to the number of winning sellers,
i.e.,

P
i xi =

P
i yi.

3

2 De�ned in Section 2.
3 We assume that the auctioneer neither has any items for sale nor is willing to pur-
chase any. For this reason, we can also assume that the number of buyer bids equals



� 0 � pi � bi (resp. si � qi) for all winning buyers (resp. sellers) and that
pi = 0 (resp. qi = 0) for all losing buyers (resp. sellers). These are the
standard assumptions of no positive transfers and voluntary participa-
tion. See, e.g., [14].

{ If xi = 1 buyer i wins (i.e., receives the item) and pays price pi, otherwise
we say that buyer i loses. If yi = 1 seller i wins (i.e., sells the item) and gets
paid qi, otherwise we say that seller i loses.

{ The pro�t of the mechanism is M(b; s) =
P

i pi �
P

i qi.

Note that the basic auction problem of [10] can be viewed as a special case of
the double auction problem with all sell bids equal to zero.

We say the mechanism is randomized if the procedure used to compute the
allocations and prices is randomized. Otherwise, the mechanism is deterministic.
Note that if the mechanism is randomized, the pro�t of the mechanism, the
output prices, and the allocation are random variables.

We use the following private value model for the bidders:

{ Each bidder has a private utility value for the item. We denote the utility
value for buyer i by ui and the utility value for seller i by vi.

{ Each bidder bids so as to maximize their pro�t: For buyers (resp. sellers)
this means they bid bi (resp. si) to maximize pro�t given by uixi� pi (resp.
qi � viyi).

{ Bidders bid with full knowledge of the auctioneer's strategy. However, the
bidding occurs in advance (i.e., without knowledge) of any coin tossing done
by a randomized auctions.

{ Bidders do not collude.

Finally, we formally de�ne the notion of truthfulness.

De�nition 2. We say that a deterministic double auction is truthful if, for each
bidder i and any choice of bid values for all other bidders, bidder i's pro�t is
maximized by bidding their utility value, i.e., by setting bi = ui for buyers and
by setting si = vi for sellers.

De�nition 3. We say that a randomized auction is truthful if it can be described
as a probability distribution over deterministic truthful auctions.

As bidding ui (resp. vi) is a dominant strategy for buyer i (resp. seller i) in
a truthful auction, in the remainder of this paper, we assume that bi = ui and
si = vi unless mentioned otherwise.

the number of seller bids. If there are any extra buyers or sellers, the auctioneer can
earn the same amount of pro�t by ignoring the extra low bidding buyers or high
bidding sellers.



2.1 Bid Independence

We describe a useful characterization of truthful mechanisms using the notion
of bid independence. Let b�i denote the vector of bids b with bi removed,
i.e., b�i = (b1; : : : ; bi�1; ?; bi+1; : : : ; bn). We call such a vector masked. Simi-
larly, let s�i denote the masked vector of bids s with si removed, i.e., s�i =
(s1; : : : ; si�1; ?; si+1; : : : ; sn). Given bid vectors b and s, the bid-independent
mechanism de�ned by the randomized functions f and g is de�ned as follows:

For each buyer i, if f(b�i; s) � bi, buyer i wins at the price pi = f(b�i; s).
Otherwise, buyer i loses and makes no payment. Similarly for each seller i, if
si � g(b; s�i), seller i wins and receives a payment of qi = g(b; s�i). Otherwise,
seller i loses and receives no compensation.4

The following theorem, which is a straightforward generalization of the equiv-
alent result for basic auctions in [9], relates bid independence to truthfulness.

Theorem 1. A double auction is truthful if and only if it is bid-independent.

2.2 Monotonicity

We de�ne the notion of monotone double auctions to characterize \reasonable"
truthful mechanisms. Using standard terminology, we say that random variable
X dominates random variable Y if for all x

Pr [X � x] � Pr [Y � x] :

De�nition 4. A double auction mechanism is monotone if it is de�ned by a
pair of bid-independent functions f and g (each taking as input a buy vector and
a sell vector, where one of the two vectors is masked) such that for any buy and
sell vectors b and s, we have:

{ For any pair of buyers i and j such that bi � bj the random variable f(b�i; s)
dominates the random variable f(b�j ; s).

{ For any pair of sellers i and j such that si � sj the random variable g(b; s�i)
dominates the random variable g(b; s�j).

To get a feel for this de�nition, observe that when bi � bj the bids visible in
the masked vector b�j are the same as those visible in the masked vector b�i
except for the fact that the smaller bid bi is visible in b�j whereas the larger
bid bj is visible in b�i. Intuitively, monotonicity means that if buyer bids are
increased while keeping the seller bid vector constant, then the threshold prices
output by the bid-independent function f increase. Similarly for the sellers.

4 In fact, bid-independence allows the inequalities, f(b
�i; s) � bi and si � g(b; s

�i)
to be either strict or non-strict at the discretion of the functions f and g.



2.3 Single Price Omniscient Mechanism

A key question is how to evaluate the performance of mechanisms with respect
to the goal of pro�t maximization. Consider the following de�nitoin:

De�nition 5. The optimal single price omniscient mechanism, F , is the mech-
anism that uses the optimal single buy price and single sell price. It achieves the
optimal single price pro�t of

F(b; s) = max
i

i(b(i) � s(i)):

A theorem we prove later shows that no reasonable (possibly multi-priced) truth-
ful mechanism can achieve pro�t above 2F(b; s). This motivates using F as a
performance metric. Unfortunately, it is impossible to be competitive with F .
This is shown in [9] for basic auctions, a special case of the double auction,
when the F sells to only the highest bidder. Hence, we compare the performance
of truthful mechanisms with the pro�t of the optimal single price omniscient
mechanism that transfers at least two items from sellers to buyers.

De�nition 6. The optimal �xed price mechanism that transfers at least two
items, F (2), has pro�t

F (2)(b; s) = max
i�2

i(b(i) � s(i)):

2.4 Competitive Mechanisms

We now formalize the notion of a competitive mechanism:

De�nition 7. We say that a truthful double auctionM is �-competitive against
F (2) if, for all bid vectors b and s the expected pro�t of M satis�es

E[M(b; s)] � F (2)(b; s)=�:

We say that M is competitive if M is �-competitive for some constant �.

3 Upper Bound on the Pro�t of Truthful Mechanisms

In this section, we show that the pro�t for all monotone double auction mecha-
nisms the is bounded by 2F(b; s). Goldberg et al. showed that for basic auctions
this result holds without the factor of two:

Theorem 2. For input bids b, no truthful monotone basic auction has expected
pro�t more than F(b) [9].

We conjecture that this bound holds for double auctions as well, though what
we prove below is a factor of two worse.



Lemma 1. For any value v and buy and sell bids b and s, de�ne b0 and s0 as
b0i = bi�v and s0i = v�si for 1 � i � n. Then for any monotone double auction,
M:

E[M(b; s)] � F(b0) +F(s0):

Proof. Let x, y, p, and q be the outcome and prices when M is run on b and
s. Let X = fi : xi = 1g and Y = fi : yi = 1g. Note jX j = jY j. Thus,

M(b; s) =
X
i

pi �
X
i

qi =
X
i2X

pi �
X
i2Y

qi

=
X
i2X

(pi � v) +
X
i2Y

(v � qi):

Let Av;s be the basic auction that on b
0 simulatesM(b; s) to compute prices

pi for each bidder b0i and then o�ers them pi � v. It is easy to see that this is
truthful, monotone (since M is), and gives revenue

Av;s(b
0) =

X
i2X

(pi � v):

Using the bound on the revenue of any monotone basic auction (Theorem 2) we
get:

E

"X
i2X

(pi � v)

#
= E[Av;s(b

0)] � F(b0):

Combining this with the analogous argument for s0 we have:

E[M(b; s)] = E

"X
i2X

(pi � v)

#
+E

"X
i2Y

(v � qi)

#
� F(b0) +F(s0):

ut

Theorem 3. For any bid vectors b and s, any truthful monotone double auc-
tion, M, has expected pro�t at least 2F(b; s).

Proof. Find the largest ` such that b(`) � s(`) and choose v 2 [s(`); b(`)]. Now we
let b0 and s0 be b0i = bi � v and s0i = v � si for 1 � i � n as in Lemma 1 giving
E[M(b; s)] � F(b0) +F(s0) for our choice of v.

Note that F(b; s) = maxi i(b(i) � s(i)). Let k be the number of winners in
F(b; s). Note that by our choice of v, we have b(k) � v and s(k) � v. This gives:

F(b0) = max
i

i(b(i) � v) � max
i

i(b(i) � s(i)) = F(b; s); and

F(s0) = max
i

i(v � s(i)) � max
i

i(b(i) � s(i)) = F(b; s):

Thus, E[M(b; s)] � F(b0) +F(s0) � 2F(b; s). ut



4 Reducing Competitive Double Auctions to Competitive

Basic Auctions

In this section we describe a general technique for converting any �-competitive
basic auction into a 2�-competitive double auction. Let A be a basic auction that
is �-competitive against F (2)(b). We assume for the discussion here that b(n) �
s(n) though it is not diÆcult remove this assumption. We construct a double

auction mechanism MA that is 2�-competitive against F (2)(b; s) as follows:

1. If n = 2 run the Vickery auction, output its outcome, and halt.
2. Let b0 and s0 be n-dimensional vectors with components by b0i = bi � s(n)

and si = b(n) � si. Let b
00 (resp. s00) be b0 with the smallest (resp. largest)

bid deleted.
3. With probability 1=2 run A(b00). If i wins A at price p00i , buyer i wins MA

at price pi = max(b(n); p
00
i + s(n)). Let k be the number of winners in A(b00).

To determine the outcome for the sellers, run the k-Vickrey auction on s.
4. Otherwise (with probability 1=2) run A(s00). If i wins A at price q00i , seller i

winsMA at price qi = min(s(n); b(n)� q00i ). As in Step 2, we run a k-Vickrey
auction on the buyers to determine the outcome, where k is the number of
winners in A(s00).

Theorem 4. MA is truthful.

We omit the proof.

Theorem 5. If A is �-competitive, MA is 2�-competitive against F (2)(b; s).

Proof. If n = 2,MA runs Vickrey and is 2-competitive. For the rest of the proof
assume n � 3. Let k � 2 be the number of items sold by F (2)(b; s). Thus,

F (2)(b; s) = k(b(k) � s(n)) + k(b(n) � s(k))� k(b(n) � s(n)):

But by de�nition F (2)(b0) � k(b(k) � s(n)) and likewise for s0, therefore

F (2)(b; s) � F (2)(b0) +F (2)(s0)� k(b(n) � s(n)): (1)

Note that for the buyers (and similarly for sellers):

F (2)(b0) � F (2)(b00) + b(n) � s(n): (2)

Because k � 2, from Equations (1) and (2) we have

F (2)(b; s) � F (2)(b00) +F (2)(s00):

Note that becaus A is �-competitive, the expected revenue from Step 3 and
Step 4 are F (2)(b00)=2� and F (2)(s00)=2� respectively. Thus,

E[MA(b; s)] �
1
2� (F

(2)(b00) +F (2)(s00)) � 1
2�F

(2)(b; s):

ut



Plugging in the 4-competitive Sampling Cost Sharing auction [6], we get a
double auction with a competitive ratio of 8. Plugging in the 3.39-competitive
Consensus Revenue Estimate auction [8] we get a competitive ratio of 6:78. We
can do better if we customize mechanisms for the double auction problem.

5 The Revenue Extraction and Estimation Technique

5.1 Revenue Extraction

For the basic auction problem, the cost sharing mechanism of Moulin and Shenker [14]
is the basis for auctions with good competitive ratios [6,8]. The cost sharing
mechanism is de�ned as follows:

CostShareC : Given bids b, �nd the largest k such that the highest k
bidders can equally share the cost C. Charge each one of those C=k.

This mechanism is truthful and if C � F(b) then CostShareC has revenue C,
otherwise it has no revenue.

The SCS (Sampling Cost Sharing) auction for the basic problem is de�ned
as follows. First partition the bidders into two sets, b0 and b00, and compute the
optimal �xed price revenues from each set, F(b0) and F(b00). Then cost share
the optimal revenue for one set on the bids among the other set and vice versa
(i.e., run CostShareF(b0)(b

00) and CostShareF(b)(b
0)). It is easy to see that pro�t

of the auctioneer is the minimum of the two optimal revenues. The key to the
analysis is showing that the expected value of the smaller optimal revenue is at
least 1=4 of the optimal revenue for b.

We could attempt to follow the same mechanism framework for the double
auction problem if we had an equivalent of CostShareC for double auctions.
Unfortunately, there is no exact cost sharing analog.

Lemma 2. For any value C, there is no truthful mechanism for the double
auction problem that always achieves a pro�t of at least C when C is possible,
i.e., F(b; s) � C.

Proof. Suppose for a contradiction that such a mechanism MC did exist. Con-
sider the single buyer, single seller case with b1 = s1 +C. Theorem 1 and MC 's
truthfulness implies that the price for b1 is given by a bid-independent function
f(s1). Since the C = F(b; s) is possible and MC is assumed to achieve at least
C if it is possible, f(s1) must be s1 + C. Symmetrically, g(b1) must be b1 � C.
Thus, for s1 and b1 satisfying b1 = s1 + C the pro�t of MC is C as it should
be. Now consider inputs b01 = s01 +2C. Given f and g as above, the buy price is
p01 = b01�C and the sell price is q01 = s01+C = b01�C, thus the pro�t is 0 giving
a contradiction. ut

Further, the cost sharing problem has requirements that are unnecessary for
our application to pro�t maximizing auctions. We isolate our desired properties
in the revenue extraction problem.



De�nition 8. Given a target revenue R, we want a truthful mechanism to
achieve (or approximate) revenue R if the optimal pro�t is at least R.

In the case of double auctions, the optimal pro�t above is F(b; s). Note that
unlike the cost sharing problem we do not require anything of our mechanism if R
is not achievable. Furthermore, we are interested in both exact and approximate
solutions.

An exact revenue extractor does not exist for the double auction problem so
we de�ne the following approximate revenue extractor that gives revenue k�1

k
R,

where k is the number of winners in F (2)(b; s). It is a natural hybrid of the
k-item Vickrey [17] auction, which sells the k items to the highest k bidders at
the (k+1)-st highest price, and the Moulin and Shenker cost sharing mechanism
above.

RevenueExtractR: Given bids b and s, �nd the largest k such that
k(b(k) � s(k)) � R, i.e., the k extremal buyers and sellers can gener-
ate the revenue of R. Sell to the highest k � 1 buyers at price b(k) and
buy from the lowest k�1 sellers at price s(k). All other bidders including
b(k) and s(k) are rejected.

It is easy to see that RevenueExtractR has the claimed properties.

One can convert the Sampling Cost Sharing auction for the basic problem
into a double auction by using RevenueExtractR instead of CostShareC . The
resulting auction is simple to describe, but its analysis is complicated by the fact
that RevenueExtractR may have no revenue if there is only one item exchanged
in the optimal solution. We omit its analysis because the Consensus Revenue
Estimate double auction that we present next gives a better competitive ratio.
None the less, the sampling cost sharing approach with revenue extraction is
interesting because it appears quite general and may work in other contexts.

5.2 Consensus Revenue Estimate

Another application of the RevenueExtractR leads to the main result of this
section: an extension of the Consensus Revenue Estimate (CORE) basic auction
to the double auction problem. The resulting CORE double auction is 3:75-
competitive against F (2)(b; s). (The basic CORE auction is 3:39 competitive.)

Next we describe the CORE double auction. The only di�erences between
CORE for basic auctions [8] and CORE for double auctions are the use of
RevenueExtractR instead of CostShareC and the recomputation of the optimal
choice of constants p and c to take into account the fact that RevenueExtractR
is an approximation.

First we describe the consensus estimate problem. For values r and �, function
g is a �-consensus estimate of r if

{ g is a consensus: for any w such that r=� � w � r, we have g(w) = g(r).
{ g(r) is a nontrivial lower bound on r, i.e., 0 < g(r) � r.



We de�ne the payo�, , of a function g on r as

(r) =

(
g(r) if g is a �-consensus estimate of r

0 otherwise.

De�nition 9. The consensus estimate problem for � is to �nd a probability
distribution, G, over functions such that for all r the expected payo�, E[(r)], is
big relative to r.

The solution of [8] chooses G as the following probability distribution that
depends on a parameter c > �. Let

gu(r) = r rounded down to nearest ci+u for integer i.

and take G as the the distribution of functions gU for U uniform [0; 1].

Theorem 6. [8] For G as de�ned above, for all r, E[(r)] = r
ln c(

1
�
� 1

c
):

It is easy to see that if k, the number of winners in F (2)(b; s), is at least three
then F (2)(b�i; s) and F

(2)(b; s�i) are in the interval [k�1
k
F (2)(b; s);F (2)(b; s)].

Our CORE double auction picks g from G as above and runs the bid-independent
auction de�ned by function f (the bid-independent function for sellers is analo-
gous):

f(b�i; s) = extractg(F(2)(b�i;s))(b�i; s)

where extractR is the bid-independent function de�ning the RevenueExtractR
mechanism (Theorem 1 implies that extractR exists).

Combining k�1
k
-approximate revenue extraction with the expected payo� of

consensus estimate for � = k
k�1 gives the expected revenue of

F (2)(b; s)

ln c

�
1�

1

k
�

1

c

�
: (3)

Thus, we are competitive for k � 3.
In order to be competitive in general we must also consider the case where

the number of winners in F (2) is k = 2 (recall that k � 2 by de�nition). In this
case the 1-item Vickrey double auction is 2-competitive. To get an auction that
is competitive for all k � 2, we run Vickrey with probability p and the consensus
revenue estimate auction otherwise. We optimize the choice of p and c to give
the CORE double auction.

Theorem 7. The CORE double auction is 3:75-competitive against F (2).

Proof. We consider the case k = 2 and k � 3 separately.
k = 2: Our expected pro�t is pF (2)=2.
k � 3: From Vickrey we get pF (2)=k and from and the consensus revenue es-

timate we get (1�p) times the quantity in Equation (3) for a combined expected
pro�t of:

F (2)(b; s)

�
p

k
+

1� p

ln c

�
1�

1

k
�

1

c

��
:



Our choice of p and c optimizes and balances the two cases. Numerical anal-
ysis gives c = 2:62 and p = 0:54 as a near-optimal choice. This choice gives a
competitive ratio of 3:75. ut

Note that the competitive ratio of the CORE basic auction is better than the
competitive ratio of the CORE double auction (3:39 vs. 3:75). This di�erence is
due to the fact that the former uses an exact revenue extractor and the latter
uses an approximation.
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