
Performance Analysis in Loosely-Coupled Distributed Systems

Rebecca Isaacs, Paul Barham

risaacs@microsoft.com, pbar@microsoft.com

1 Introduction

A great deal of work is currently underway to develop infrastructure for supporting a loosely-
coupled computational model over the Internet. This is based on the standardization of
Web Services interfaces and protocols to allow application-to-application communication and
interoperability using XML messaging[1]. An example of an existing Web Service is the
Google search API for programmatic access to Google's search service[2]. Another is the
Microsoft Passport which maintains an online identity for users that can be accessed by
other applications for purposes of authentication[3]. With the introduction of comprehensive
interoperability standards, it is expected that Web Services will become more and more com-
mon. Consequently deployment aspects which remain signi�cant challenges for the service
provider need to be addressed, including, among others, performance, con�guration, man-
agement, security and dependability. This paper considers some of the performance-related
issues which must be tackled in order that the potential for Web Services to provide a truly
global distributed system be achieved.

The e�ective operation of a Web Service requires more than just interoperability between a
user (the party invoking the service) and a service. The service provider needs some means of
determining that performance is reaching desired levels in order to provision the right amount
of computation or network resource or to make Quality of Service (QoS) guarantees. The
service user may want to determine whether their request received adequate performance, or,
if something has gone wrong, determine at what stage this occurred. Web Services are made
up of federated trust domains which involve an arbitrary number of mutually untrusting
participants. The provision of debugging and diagnosis tools is particularly challenging in
this environment, and there is a compelling case for standardized debugging and performance
pro�ling APIs.

There are two problems in de�ning a standardized performance API for Web Services. Firstly,
system performance is typically regarded as a characteristic of the individual items of equip-
ment, with various performance counters used to indicate the current state and hence the
service received by the service invocations currently in progress. This top-down approach to
performance monitoring is ideal for the manager of those resources. However it is not neces-
sarily desirable for the user, for whom the `unit of interest' is the end-to-end performance of
an individual transaction across possibly many systems and trust domains.

Secondly, observations which are averaged over many requests may not give suÆcient infor-
mation to determine the behaviour of a service invocation in the required detail, for example,



to get a breakdown of time spent in each constituent action. For these reasons, a standard-
ized performance query API for Web Services should support the gathering of per-request
performance details.

2 The Magpie Approach

A key requirement for a Web Services pro�ling infrastructure is the ability to account the
resources consumed by a particular transaction throughout its lifetime. This approach is
analogous to that of Pro�leMe, which pro�les processor hardware performance by attributing
events to speci�c instructions[4]. We have developed a performance monitoring tool for Mi-
crosoft Windows called Magpie which applies this approach to a typical e-commerce system,
and then automatically characterises the workload of the whole system. Magpie works by
tagging incoming requests with a unique identi�er and associating resource usage throughout
the system with that identi�er until the request leaves the system. It subsequently applies
machine learning techniques to the information gathered in order to construct a probabilistic
model which captures the typical behaviour of each type of transaction. In this way, Magpie
ties high-level events, such as the arrival of an HTTP request in the web server, or the pro-
cessing of an SQL request at the database, with very low-level resource usage information,
such as context switches, disk IO and network packets sent and received.

The Magpie system is entirely `black box', requiring no application-speci�c instrumentation
at all. This is for two main reasons. First, since Windows is a proprietary system we could
not assume source code access. Second, by adopting a black box approach we have a set of
re-usable components which can be used to instrument other system infrastructures. A useful
side-e�ect of this externalisation of the pro�ling infrastructure is that it gives us the hooks
to provide an API supporting transaction-oriented performance monitoring.

The implementation of Magpie involves a number of standard techniques which are stitched
together to propagate the unique transaction identi�ers to all components of the distributed
system, in particular, some library calls are instrumented using the Detours system for bi-
nary interception[5], and synchronisation between threads servicing a transaction is captured.
Figure 1 shows part of a visualisation of the resource consumption recorded by Magpie for a
single web request. Although to date we have only applied the technique to an isolated 3-tier
client-server system, in the near future we are planning to pro�le a peer-to-peer messaging
framework, and, as discussed in this paper, we believe that the approach is a good �t for
wide-area distributed systems such as Web Services.

3 Predicting Performance

The original motivation for developing Magpie was the needs of a performance modelling
toolkit called Indy[6]. A performance modeller using Indy must know the `cost' of each type
of operation in order to generate realistic workload models for input into the performance
simulator. Such data is typically obtained using techniques similar to benchmarking, where
a metric is speci�ed by which the performance of one system can be compared with that of
another. For example, the TPC Web Commerce Benchmark (TPC-W) records the number



WEB.f4c

WEB.6dc

Disk

Net RX

Net TX

48.48224443s

Net TX

Net RX

Disk

SQL.a34

48.48224443s

-G
et

Q
ue

ue
dC

om
p

!H
ttp

R
ec

ei
ve

H
t

In
dy

Pr
of

R
eq

+G
et

Q
ue

ue
dC

om
p

+G
et

Q
ue

ue
dC

om
p

H
tt

pM
od

B
eg

in

+s
en

d

-s
en

d

+W
SA

Re
cv

-W
SA

R
ec

v

SQ
L:

St
ar

tP
ro

f

HTTP 
Request 
packet from 
client

IIS worker thread 
picks up request 
from http.sys

IndyProf label

HttpModule label
Sync WinSock 
send to DB

TDS request 
packet sent 
and received

SQL thread 
unblocks

SQL 
profiler 
trace 
label

WEB.f4c

WEB.6dc

Disk

Net RX

Net TX

48.48224443s

Net TX

Net RX

Disk

SQL.a34

48.48224443s

-G
et

Q
ue

ue
dC

om
p

!H
ttp

R
ec

ei
ve

H
t

In
dy

Pr
of

R
eq

+G
et

Q
ue

ue
dC

om
p

+G
et

Q
ue

ue
dC

om
p

H
tt

pM
od

B
eg

in

+s
en

d

-s
en

d

+W
SA

Re
cv

-W
SA

R
ec

v

SQ
L:

St
ar

tP
ro

f

HTTP 
Request 
packet from 
client

IIS worker thread 
picks up request 
from http.sys

IndyProf label

HttpModule label
Sync WinSock 
send to DB

TDS request 
packet sent 
and received

SQL thread 
unblocks

SQL 
profiler 
trace 
label

Part of the visualisation of Transaction ccc00663:/duwamish7/categories.asp?ID=843

Figure 1: Part of the annotated visualisation of the resource consumed by a single HTTP
request to an e-commerce site. The top axes show the web server, the bottom the database
server. Threads which execute on behalf of this transaction are shown in the paler colour
when blocked, and a darker colour when running. Packets sent and received are shown on
the `Net TX' and `Net RX' lines respectively.

of web interactions processed per second by a simulated online bookstore (within the strictly
speci�ed parameters of the benchmark)[7]. Benchmarking stresses the system using some
predetermined set of operations, and hence obtains the average values of performance counters
for the resources of interest. To give a concrete example of applying the benchmarking
approach, the workload of a particular request, say `AddToCart', is determined by running
AddToCart repeatedly and monitoring the demands on CPU, disk and network.

Benchmarking techniques are an attractive mechanism for measuring resource usage, as they
are straightforward to perform, and experience of gathering workload statistics for Indy has
shown this approach to give reasonable results. When the benchmarked system is subse-
quently simulated inside Indy its throughput generally comes within 5% of that observed on
the real system while carrying out the benchmarking. However this approach is not ideal be-
cause it not only takes human e�ort, but also inevitably involves some averaging since is not
possible to account resource usage at each component in the system to the single transaction
which is responsible for that usage. In addition, the use of benchmarking to obtain usage
statistics for performance modelling is critically 
awed in two ways:

� In order to attribute the observed resource usage to a particular operation, that opera-
tion must be run in isolation, with the result that the pattern of resource usage can be
skewed. It is very diÆcult to accurately model the behaviour of concurrently shared re-
sources without implementing the actual system as shared resources can have a marked
impact on performance. For example poor caching performance can signi�cantly a�ect
the system throughput, and chances are a single transaction run over and over again



Structure observed by Magpie

IIS

SQL

20%

100%

80%IIS

SQL

Typically assumed structure

Figure 2:

will get a much better cache hit ratio than is ever realistic.

� The use of long-term averages to determine typical resource utilisation hides low level
behaviour which may be signi�cant, for example, network latency.

The latter point is fairly subtle, but can have signi�cant consequences for performance mod-
elling. When constructing a representative workload, the performance modeller measures the
long term amount of resource, such as CPU cycles or disk access, consumed on the servers in
the system. They must also make a guess at the structure of each type of transaction, that
is the communication patterns and the degree of parallelism between separate components.
Typically the structure is assumed to be a simple model as depicted in left-hand image of
Figure 2. This represents a reasonable approximation of the structure of a request to a web
server which makes a database access. The assumption is that the web server processes the
request, does an RPC to the SQL server and when the results come back they are rendered as
HTML and sent back to the client. However in reality, communication patterns are often more
complicated with overlapping, out-of-order request processing, pipelining of data returned in
a response, and so on. The right-hand diagram of Figure 2 shows the structure which we ac-
tually observe on the e-commerce system using Magpie. Performance simulations using these
two di�erent structures for identical resource usage give throughput and utilisation results
which vary by up to a factor of two[8]. This misunderstanding of the behaviour of a trans-
action makes performance pro�ling and debugging even more inaccurate and diÆcult. The
Magpie infrastructure is intended to improve the accuracy of workload models by extracting
a �ne-grained characterisation of each transaction type under realistic load conditions.

We anticipate that similarly complex transaction models will occur in the context of Web
Services. In addition, experience in the past with GUI programming has shown that event-
based concurrency is extremely challenging for programmers to get right. RPC in the wide
area is a disaster waiting to happen both in terms of performance and in terms of ensuring
correct behaviour. Support for the Magpie data-driven approach to performance pro�ling in
the wide area through a standardized performance API is essential to address these problems.

4 Conclusion

There is a compelling case for applying the Magpie technique to the loosely-coupled dis-
tributed system which comprises the Web Services environment. As argued above, experience
with a tightly-coupled distributed system has shown that high-level system counters are in-
suÆcient for understanding the performance of individual transactions, yet from the point of
view of the Web Services user, a transaction-oriented view of performance is essential. In ad-



dition to performance insights, we believe modelling at this level can help with system design.
Future research is considering how a performance API for Web Services might be de�ned,
notwithstanding other important concerns such as security, timeliness and consistency.

References

[1] World Wide Web Consortium. Web Services. http://www.w3c.org/2002/ws/, 2002.

[2] Google. Google Web APIs. http://www.google.com/apis/, 2002.

[3] Microsoft. Microsoft .NET Passport. http://www.passport.com/, 2002.

[4] Je�rey Dean, James E. Hicks, Carl A. Waldspurger, William E. Weihl, and George Chrysos. Pro�leMe:
Hardware support for instruction-level pro�ling on out-of-order processors. In Proceedings of Micro-30,
December 1997.

[5] Galen Hunt and Doug Brubacher. Detours: Binary interception of Win32 functions. In Proceedings of the
3rd USENIX Windows NT Symposium, July 1999.

[6] Jonathan C. Hardwick, Efstathios Papaefsthathiou, and David Guimbellot. Modeling the performance of
e-commerce sites. In Computer Measurement Group 2001 Conference, December 2001.

[7] Transaction Processing Performance Council. TPC Benchmark W (Web Commerce) Speci�cation. Avail-
able from http://www.tpc.org/tpcw/.

[8] Rebecca Isaacs, Paul Barham, and Richard Mortier. Magpie: Data-driven performance analysis for dis-
tributed systems. Submitted for publication, September 2002.


