
Automating Type Soundness Proofs via DeisionProedures and Guided RedutionsDon Syme and Andrew D. GordonMirosoft Researh, Cambridge, U.K.Abstrat. Operational models of fragments of the Java Virtual Ma-hine and the .NET Common Language Runtime have been the fous ofonsiderable study in reent years, and of partiular interest have beenspei�ations and mahine-heked proofs of type soundness. In this pa-per we aim to inrease the level of automation used when heking typesoundness for these formalizations. We present a semi-automated teh-nique for reduing a range of type soundness problems to a form thatan be automatially heked using a deidable �rst-order theory. Deid-ing problems within this fragment is exponential in theory but is ofteneÆient in pratie, and the time required for proof heking an be on-trolled by further hints from the user. We have applied this tehnique totwo ase studies, both of whih are type soundness properties for sub-sets of the .NET CLR. These ase studies have in turn aided us in ourinformal analysis of that system.1 IntrodutionFormalizations of virtual mahines suh as the Java Virtual Mahine (JVM) orthe .NET Common Language Runtime (CLR) have been the fous of onsiderablestudy in reent years [4, 11, 13, 14℄. Of partiular interest have been spei�ationsand proofs of type soundness for these systems, frequently involving mahine-heked proofs using interative theorem provers [15{17℄. While the automationavailable in interative theorem provers has inreased, both the kind of automa-tion applied (e.g. rewriting) and the manner of its appliation (e.g. tatis) tendto be substantially ad ho. The proof sripts needed to hek these propertiesare often many thousands of lines long.In this paper we aim to inrease the level of automation applied to this prob-lem, fousing on one partiluar automated deision proedure and one partiularform of user guidane. We isolate out the user's guidane into a omponent alleda guided redution, whih indiates how to extrat the relevant fats that makethe proof go through for partiular ases. Applying the redution is an auto-mated proess that transforms the type soundness problem into a form thatan be automatially heked using ase-splitting and validity heking within aombination of deidable �rst-order theories. The partiular deision proedureused in this paper is the algorithm used by the Stanford Validity Cheker (SVC)[1℄, whih has been suessfully applied to large hardware veri�ation proofs. We

have applied this tehnique to models of subsets of the CLR, whih has in turnaided our informal analysis of that system.This paper is strutured as follows. In the remainder of this setion we on-sider the bakground to this work, inluding a number of studies of the JVM. Inx2 we desribe Spark, a model of a fragment of the IL of the CLR, whih is usedfor explanatory purposes in this paper. In x3 we desribe guided redutions, ournew tehnique for semi-automatially onverting high-level statements of typesoundness into a form suitable for analysis by an automated deision proedure.In x4 we apply this ombination of tehniques to two ase studies, and in x5 wedisuss interesting potential avenues for future work.1.1 Bakground: Type Soundness for Virtual MahinesIn this setion we onsider the typial struture of a type soundness spei�ationfor a virtual mahine. A good supply of examples exists against whih to omparethis struture, e.g. [10{12, 15℄, and we have examined these examples to hekthat they fall within the general struture desribed here.A strutured operational semantis (SOS) used in a type soundness prooftypially has the following omponents: (a) a formal desription of programs;(b) a formal desription of typeheking; () a formal desription of exeution;and (d) a type soundness property. The property typially spei�es (i) ertainerrors do not our during exeution and (ii) the mahine always makes progress.Formal desriptions of systems as omplex as the JVM or the CLR vary sub-stantially aording to the spei�ation methodology used, the exat logi inwhih the system is formalized, and individual hoies about how to model op-erations in the logi. However, the omponents above are always reognisable.The primary points of departure between di�erent desriptions of the same sys-tem are the use of big-step v. small-step models of exeution; the representationof error onditions; the atomiity of exeution steps, and the degree of realismof the model of exeution, e.g. whether it models features suh as optimizations.We now give example forms of the terms and prediates for the di�erentomponents of a speifation. We stress that the exat form of the funtions andprediates di�er in detail between systems, but the essene of the tehniquesused do not.Programs: a type Prog or programs p where Prog is de�ned via struturaltypes suh as lists, �nite maps, reords, integers, strings, produts and sums;Cheking: a prediate p : �p, indiating that the program p has the given type�p. This is usually de�ned ompositionally in terms of a number of prediatesp ` item : �item indiating that various sub-omponents item of p are well-typed given the ontext of the whole program.Exeution: a type State of states s, an initial state s0, a set of terminal states,and a relation p ` s; s0 indiating that if the mahine is in state s runningprogram p then it may take a step to state s0.Given the relations and funtions above, type soundness an be de�ned as in-habitation of the transition relation:

Proposition 1. If p : � and p ` s0 ;� s then either s is terminal or thereexists an s0 suh that p ` s; s0.Propositions like this are typially proved via an invariant that spei�es goodstates, i.e. a type StateType reording expeted shapes S of state strutures aris-ing at runtime (stak frames, heap entries et.), and a prediate p ` s �: Sindiating when a state onforms to a state type. Then the statement beomes:Proposition 2. If p : � and p ` s �: S then either s is terminal or there existsan s0 suh that p ` s; s0 and furthermore p ` s0 �: S.Whether the proof of suh a property is e�etively automatable obviouslydepends on the nature of the relations :,; and �:. We stress that previous workon mahine-heking suh propositions has applied essentially ad ho automationtehniques. While this paper does not attempt to ahieve omplete automationof the proofs of suh properties, it o�ers a �rst step in that diretion.Related Work Wright and Felleisen's 1994 work presented a systemati syn-tati approah to a range of type soundness proofs for soure languages [18℄,and we have used many aspets of their methodology in this paper.No prior work has attempted to systematially apply deision proeduresor other partiular automated tehniques to type soundness proofs. However,there has been onsiderable work on using interative theorem proving for thesekinds of proofs [9, 11, 16, 17℄. Syme's work on Java used a more restritive proofstyle and applied deision proedures to prove resulting obligations [15℄. Therehave been other e�orts to formalize aspets of virtual mahine desriptions butwithout mehanized proof heking [12, 4℄, as well as a set of extensive AbstratState Mahine (ASM) desriptions of the JVM [13℄. The work presented in thispaper has also been inspired by Norrish's treatment of C [10℄ and the generalbakground of HOL theorem proving [5℄.2 SparkWe now give a onrete example of a type soundness spei�ation that servesto motivate our tehniques to substantially automate type soundness proofs. Alarger ase study is disussed in x4.2. Our example is motivated by the instrutionset of the CLR [8℄ and is alled Spark.We desribe exeution and veri�ation of Spark programs by programmingfuntions in the Caml dialet of ML [7℄. Our ode avoids all the imperative fea-tures of ML and use no reursion. Hene, we an diretly interpret our ML datastrutures and proedures as mathematial sets and total funtions, respetively.We import our ode into the DECLARE theorem prover [15℄, interpreting theML de�nitions as phrases of higher order logi.A program in the Spark byteode language onsists of a single method imple-mentation, itself onsisting of an array of instrutions, paired with a signature.We use ML type de�nitions to desribe indexes for partiular program addresses,

arguments, and loal variables, and to de�ne numeri onstants and the instru-tion set. Here the types int and float are the primitive type of integers andIEEE oating point numbers.The Spark intermediate language:type addr = int byteode addresstype arg_idx = int argument indextype lo_idx = int loal variable indextype onst = onstant| Const_I of int integer| Const_F of float IEEE f.p. numbertype instr = instrution| I_ret exit the method| I_ldarg of arg_idx load an argument| I_starg of arg_idx store into an argument| I_ld of onst load an integer or oat| I_ldlo of lo_idx load a loal| I_stlo of lo_idx store into a loal| I_br of addr unonditional branh| I_ble of addr onditional branh| I_pop pop an element o� the stak| I_add addition| I_mul multipliationThe metadata aompanying a method implementation is a signature, whihdesribes the number and types of its arguments, the type of its result, and thenumber and types of its loal variables.Item types, method signatures, methods:type itemT item type= I signed integer| F IEEE f.p. numbertype msig = method signaturefargsT: itemT list; argument typesretT: itemT; return typeslosT: itemT listg loal variable typestype meth = methodfmsig: msig; method signatureinstrs: instr listg method implementation2.1 The Spark Exeution and Veri�ation SemantisOur desription of the exeution of individual instrutions is a 30 line ML fun-tion step that ats as a funtional desription of a deterministi transition rela-tion. Its type involves the types item and state as follows:

Items, states, steps:type 'a option = None | Some of 'atype item item= Int of int integer| Float of float IEEE f.p. numbertype state = exeution statefargs: item list; items in argumentslos: item list; items in loal variablesstak: item list; items on the stakp: addrg program ounterval step: meth -> state -> state option type of step funtionFor spae reasons we omit the full de�nition of step in this paper.We represent veri�ation heks by a relation that relies on being given asummary of information that would typially be inferred during the exeutionof a series of veri�ation heks. Push and Nipkow have shown how to formal-ize the link between a veri�ation algorithm and a relational view of the heksmade during veri�ation [11℄. We follow their approah of de�ning the veri�a-tion heks at partiular instrutions so that they ould be shared between analgorithmi and relational spei�ation.A preondition on an address is simply a list of types representing the shapeof the stak prior to exeution of that address. The ML type stakT representsa preondition. Preonditions for all or some of the addresses in a method arerepresented by ML values of type methT, a list indexed by addresses.Stak and method typings:type stakT = itemT list types of items on staktype addrT = addr � stakT address with its typetype methT = stakT list stak type for eah addrOur main subroutine is a funtion dests that simulates an instrution andomputes its destinations. It depends on a subroutine effet to simulate thee�et of running an instrution on a preondition.effet: msig � instr � stakT -> stakT optiondests: meth � addr � stakT -> addrT list optionThe de�nition of these funtions takes 30 lines of ML ode. We omit thesede�nitions for spae reasons, though it is important to note that they do ontainmany details and heks whih do not need to be mentioned by our later proofsripts.The remainder of the heks are de�ned in relational form (we ontinue to useprogram-like syntax for onsisteny). The relation hastype(m; �m) is the primarytyping prediate and means that the method m is well-typed with respet to thestak type �m. For the relation to hold, eah of the instrutions of the methodmust be well-typed with respet to the preonditions �m.121 In our atual formulation the preondition on the �rst instrution is the empty stak.2 In the de�nition, read : 'a list -> int -> 'a option indexes into a list.

Typing prediates:let destOK (methT, (daddr, daddrT)) $math (read methT daddr) with| None -> false| Some daddrT' -> daddrT = daddrT'let addr_hastype (addr,m,mT) $math (read m addr) with| None -> true| Some(stakT) ->math (dests (m,addr,stakT)) with| Some(dests) -> 8d 2 dests. destOK (mT,d)| _ -> falselet hastype (m,mT) $8addr. addr_hastype (addr,m,mT)2.2 Type Soundness for Spark and the Conformane RelationsIn this setion, we de�ne what it means for an exeution state to onform toa method typing, m� . The relation stateOK(s;m�) is the primary onformaneprediate and means that the exeution state s onforms to the preonditionsm� . For the relation to hold, the arguments and loals must onform to thesignature of the method, and there must be a preondition stakT assigned tothe urrent program ounter by m� suh that s:stak onforms to stakT .Conformant items, stak, loals, arguments and states:let valOK(v,vT) $math v,vT with| Int _, I -> true| Float _, F -> true| _,_ -> falselet stakOK(stak,stakT) $(length(stak) = length(stakT)) ^8j < length(stak). valOK(nth stak j,nth stakT j)Likewise for argsOK and losOK.let stateOK(s,sT) $argsOK(s.args,sT.argsT) ^losOK(s.los,sT.losT) ^math read methT s.p with| Some(stakT) -> stakOK (s.stak,stakT)| _ -> falseThe key type soundness propositions an now be stated:Proposition 3. If hastype(m; �m) and stateOK(s;m�) then there exists ands0 suh that step(s) = Some(s0) and stateOK(s0;m�).We now want to substantially automate the proof of this and similar, moreomplex propositions by using a deision proedure ombined with user guidane.

3 Controlling Deision Proedures via Guided RedutionsReent e�orts have shown that it is feasible to mahine-hek type soundnessproperties for non-trivial models of exeution and veri�ation, ertainly inludingpropositions suh as Proposition 3. However, the tehniques urrently requiresubstantial amounts of human guidane.We reiterate that it is an open question as to whether pratial fully au-tomated tehniques exist for heking lasses of type soundness properties, ofwhih Proposition 3 is but one simple example. It is important to rememberthat the exeution and veri�ation heks an be almost arbitrarily more om-plex than the example shown in the previous setion, all the way up to doingproofs about realisti implementations of fully featured virtual mahines. Thusthese properties are likely to remain a hallenging and fertile area for applyingautomated tehniques for some time to ome. However in this paper we do notaim for full automation but rather seek to redue and limit the amount of humanintervention required in the proof e�ort.For pragmati reasons we are interested in using deision proedures to per-form our automated reasoning, as it is neessary to produe simple ounterex-amples for failed proof e�orts. We will apply the tehnique implemented by theSVC [1℄ (equally appliable would be its suessor, CVC [2℄). This proedureheks the validity of quanti�er-free formula �rst-order logi with respet totheories for arithmeti, produts, arrays (maps), sums and onditionals. Goodounterexamples an be generated when proofs fail. SVC does not make use ofaxioms for �nite disrimination or indution over datatypes, and the axioms ituses for indexed data strutures apply equally to lists aessed using indexingfuntions, partial funtions, total funtions and �nite maps. SVC has been su-essfully used for proofs about abstrated desriptions of miroproessors. It isan open question if other deision proedures (e.g. [6℄) an be applied to the kindof proofs desribed in this paper.Variations on the \transform and give to a deision proedure" theme areused on an ad ho basis in theorem proving and the ombination of automatitransformations with deision proedures ours often in omputing. Howeverour transformations are not automati: i.e. they are non-trivial and representinsight on the part of the user. So in order to demonstrate that we have notresorted to full-blown interative theorem proving we need a haraterization ofthe input spei�ed by the user.In this paper we rigorously separate proof heking into three steps:1. The user spei�es a transformation that redues the problem to one withina reognised, deidable logi;2. The system automatially applies the transformation;3. The resulting formula is passed to a deision proedure, whih returns OKor a ounterexample.When proof is divided in this away we all it guided proof heking, and weall our partiular tehnique guided redution. In ontrast, we all tehniqueswhere the user interatively applies further proof methods to residue problems

interative proof heking. Tehniques where no human interation is requiredare just alled deision proedures.3.1 Motivating Guided RedutionsUnfortunately, not all type soundness problems may be solved immediately bythe appliation of an SVC-like deision proedure. Consider the following:A Problem Not Immediately Provable by SVClet valOK(v,vT) $ some large expressionlet stakOK(stak,stakT) $(length(stak) = length(stakT)) ^8j < length(stak). valOK(el(j,stak),el(j,stakT))stak0T <> [℄ ^stak1T = hd(stak0T)::hd(stak0T)::(tl(stak0T)) ^stak0 <> [℄ ^stak1 = hd(stak0)::hd(stak0)::(tl(stak0)) ^stakOK(stak0,stak0T) (A)! stakOK(stak1,stak1T) (B)This is based on the ase for the dup (dupliate) instrution when proving Propo-sition 1 from x2.2.Suh a problem is not immediately solvable via the SVC tehnique for tworeasons. First, the operators length, nth and 8 lie in theories not understood bythe deision proedure, so the proedure regards them as uninterpreted. Look-ing at this another way, the way stakOK has been de�ned as a universal �rstorder prediate has lead us into reasoning about both �rst-order and equationaltheories simultaneously. If we were using a �rst-order theorem prover, we ouldthrow in axioms about these operations and perform a proof searh. However itis well known that ombining suh problems is diÆult, and while progress hasbeen made reently to determine forms of suh problems that are tratable [3℄, itis not yet lear if the tehniques will sale up to very large veri�ation problemswhile providing the high-quality ounterexample feedbak that is required.Seond, the problem statement may inlude large, irrelevant de�nitions suhas that for valOK. A heuristi-based ase-splitting deision proedure suh as SVCan be easily misled by the presene of suh terms. Better heuristis an help,but ultimately these de�nitions are only needed for some branhes of a proofand their presene on other branhes greatly hinders both the automation andthe interpretation of ounterexamples.The prediate stakOK ould be de�ned reursively, e.g. from left-to-rightalong the list. However the automated routine must then determine how manytimes to unwind that reursion. In addition, the number of unwindings dependsupon the branh of the problem, and on some branhes may be indexed by aparameter, for example when n arguments are onsumed at a all instrution ina virtual mahine. Furthermore, our tehniques must ope with random aessstrutures suh as �nite maps, whih do not �t niely into a reursive framework.

3.2 Our Proof GuidaneWe now desribe our tehnique to let the user avoid the problems assoiatedwith unontrolled unwinding of large de�nitions and �rst-order quanti�ers.A proof sript is made up of three parts:{ The spei�ation of a set of problemati prediates and funtions.{ The spei�ation of how and where to apply the fundamental rules assoiatedwith problemati prediates. This is alled a guided redution.{ The spei�ation of any additional heuristi information neessary for theeÆieny of the deision proedure, for example ase-split orderings.This onstitutes the full input spei�ed by the user. The well-formedness ofthe guided redution an be heked automatially. The proess of applying theredution involves: (a) expanding all de�nitions of all terms representing appli-ations of rules; (b) expanding the de�nitions of all non-problemati prediatesand funtions; and () replaing pattern mathing by the equivalent test/getform. The problem is then submitted to the deision proedure.The problemati prediates and funtions spei�ed in the �rst part of theproof sript are typially: those whose de�nition is reursive; those whose de�-nition involves operators suh as 8 that lie outside the theory supported by thetarget deision proedure; those whose unontrolled expansion reates an una-eptable blow-out in proof heking times; and those whih are used in rules forother problemati prediates. The non-problemati prediates and funtions aretypially those whih have a lone equational axiom of the form p(x1; : : : ; xn) =Q[x1; : : : ; xn℄ where Q ontains no problemati prediates.In our problem domain, problem spei�ations are \omplex but shallow",and the majority of prediates are not problemati. Those in the example fromx3.1 are valOK and stakOK. There are no problemati funtions.We assume that a set of rules is available for problemati prediates. Oftena rule is simply the de�nitions of a prediate, but it may also be a useful lemma,often one that follows immediately from its de�nition|see [15℄ for how suhresults an be derived automatially from de�nitional forms suh as equationsinvolving quanti�ers or least-�xed-point operators. We onsider the followingforms of rules for a problemati prediate p:De�nitional. A rule of the form p(�x)$ Q[�x℄.Weakening. A rule of the form p(�x)! Q[�x℄.Strengthening. A rule of the form Q[�x℄! p(�x).Indexed (Weakening). A rule of the form 8�y: p(�x)! Q[�x; �y℄.Indexed (Strengthening). A rule of the form 8�y: Q[�x; �y℄! p(�x).Multiple suh rules an exist for eah problemati prediate and funtion. Forexample, here are two rules for stakOK, derived from the de�nition in x3.1.stakOKHead |- stakOK(stak,stakT) $math (stak,stakT) with| [℄,[℄ -> true

| (h::t),(hT::tT) -> valOK(h,hT) ^ stakOK(t,tT)| _,_ -> falsestakOKHeadW |- stakOK(stak,stakT) ^stak <> [℄ ^stakT <> [℄! valOK(hd stak,hd stakT) ^stakOK(tl stak,tl stakT)After a trivial rearrangement of quanti�ers, stakOKHead is a de�nitional ruleand stakOKHeadW is weakening rule. We rely on rules being in one of the aboveforms: this paper does not onsider indution priniples for indutive relationsor reursive term strutures, for example.3.3 The Algebra of Guided RedutionsThe seond part of a proof sript is a spei�ation of how and where to applythe fundamental rules assoiated with problemati prediates, alled a guidedredution. Consider the following informal spei�ation of a guided redutionfor the problem spei�ed in x3.1 above: \If the instrution is dup, apply thestakOKHead rule one to the input stak (as haraterized by fat (A)) and twieto the output stak (as haraterized by fat (B))."Informally, applying this redution to the problem in x3.1 means replaing thespei�ed fats and goals with the right of rule stakOKHead and leaving remaininginstanes of stakOK and valOK uninterpreted. The problem is then immediatelysolvable by a deision proedure suh as SVC. In this example we have e�e-tively used guided redutions for ontrolled rewriting of stakOKHead. Note thatunontrolled rewriting using rule stakOKHead would not terminate.The above example indiates that guided redutions should be ombinatorsthat an be used together in meaningful ways, for example haining, disjuntionand onditionals, where the onditionals are based on abstrated riteria (a bi-nary instrution) rather than primitive syntati riteria (e.g. a list of spei�instrutions).Formally, a guided redution r for a prediate p is a spei�ation of a re-plaement prediate for p using one of the following forms:Identity. The prediate p itself.A Rule Operator. An operator orresponding to one of the rules for p suppliedwith appropriate guided redutions as arguments, as spei�ed below.A Monotone Combinator. Guided redutions an be ombined using om-binators monotone or anti-monotone in eah of their arguments: examplesare given in below.Guided redutions are ategorized as weakening and/or strengthening. An in-formation preserving rule is one that is both weakening and strengthening. Thefundamental property required of a guided redution is that a weakening redu-tion r for p must satisfy 8�x:p(�x) ! r(�x), and a strengthening redution mustsatisfy 8�x:r(�x) ! p(�x). This is easily demonstrated for eah of the forms wedesribe below.

Identity Redutions Eah problemati prediate an itself be used as a guidedredution indiating that no redution should be performed. These are informa-tion preserving. For example, the guided redution stakOK is an informationpreserving guided redution.Rule Redutions Eah de�nitional rule r of the form p(�x)$ P [�x; q1; : : : ; qm℄for problemati prediates p; q1; : : : ; qm gives rise to an operator R parameter-ized by prediate variables V1; : : : ; Vn, one for eah ourrene of a problematiprediate in P (i.e. we have n � m). R(Q1; : : : ; Qn)(�x) holds if and only ifP [�x; V1; : : : ; Vn℄. Here the replaement of Q1; : : : ; Qn replaes the n individualourrenes of q1; : : : ; qm in P .For example, the rule stakOKHead gives rise to the following operator:3stakOKHead V1 V2 (stak,stakT) ::=math (stak,stakT) with[℄,[℄ -> true| (h::t),(hT::tT) -> V1(h,hT) ^ V2(t,tT)| _,_ -> falseA position within a nesting of �rst order onnetives is de�ned as positive, neg-ative or neutral in the usual way, i.e. aording to the markup sheme: + ^ +;+_+; � ! +; 0$ 0; :�; 8+; 9+. For example, the variables V1 and V2 ourin positive positions on the right side of the de�nition of stakOKHead.A guided redution of the formR(A1; : : : ; An) is weakening (likewise strength-ening) if eah Ai is: weakening (likewise strengthening) when the orrespond-ing position in P is positive; and strengthening (likewise weakening) when theorresponding position in P is negative; and information-preserving when theorresponding position in P is neutral.For example, the guided redution stakOKHead(p1; p2) is weakening if bothp1 and p2 are weakening, and strengthening if both p1 and p2 are strengthening.In other words, eah rule de�nes an operator that is monotone, anti-monotoneor neutral in eah of its prediate arguments aording to the way the prediatesorresponding to the arguments are used in the body of that rule.Weakening (likewise strengthening) indexed rules of the form 8�y:p(�x) !Q[�x; �y℄ for a problemati prediate p give rise to an operator for building weak-ening (likewise strengthening) guided redutions. For example, the following in-dexed rule justi�es random aess into a list:argsOKPoint |- 8 i. argsOK(args,argsT) !math (read args i, read argsT i) with| None,None -> true| Some v, Some vT -> valOK(v,vT)| _,_ -> falseFor Spark this rule follows from the de�nition of argument onformane in x2.2.This gives the following operator for building weakening guided redutions:3 Here we use urried syntax for the extra higher-order arguments.

argsOKPointW i V (args,argsT) ::=math (read args i, read argsT i) with| None,None -> true| Some v, Some vT -> V(v,vT)| _,_ -> falseIn other words, this operator lets us pik out an index i at whih to reveal the fatthat valOK holds, and furthermore to reveal additional information about thatvalue by giving an appropriate argument for V . Thus the operators give a om-pat notation for supplying important instantiations and haining inferenes. Ine�et we are taking advantage of the fat that in \omplex but shallow" problemdomains speifying a few ritial inferenes an open the way for automation todo very useful amounts of work.One again onditions apply for the argument given to prediate variablessuh as V . In partiular, if they are used in a positive (likewise negative) po-sition on the right of the de�nition then they must be given a weakening (likewisestrengthening) guided redution. For example, the guided redution argsOKPointW3 argsOK is a weakening redution, beause argsOK is information preserving.Combining Redutions It is now easy to write operators to ombine guidedredutions:(p1 OR p2) ::= �x. p1(x) _ p2(x)(p1 AND p2) ::= �x. p1(x) ^ p2(x)The operator OR is typially applied to guided redutions used to transform goals,and e�etively desribes multiple ways of proving the same goal. The operatorAND is applied to guided redutions used to transform fats, and e�etively de-sribes how to derive multiple piees of information from the same fat. Guidedredutions built using these operators are weakening/strengthening if both ar-guments weakening/strengthening.The following redutions disard fats/goals and are weakening/strengthening:DoNotUse ::= �x. trueDoNotProve ::= �x. falseThe if/then/else operator lets the user hoose an appropriate redution basedon a ondition. It is strengthening if both p1 and p2 are strengthening, likewiseweakening. The => operators let us onditionally extrat extra information froma fat or goal for use on branhes of a proof where the guard holds:(if g then p1 else p2) ::= �x. (if g then p1(x) else p2(x))(g => p1) && p2 ::= (if g then p1 else DoNotUse) AND p2(g => p1) || p2 ::= (if g then p1 else DoNotProve) OR p23.4 Guided Redutions as Term Replaement and an ExampleWhen authoring a guided redution the user diretly replaes uses of problematiprediates by appliations of these operators. The orretness of this proess an

be determined syntatially, by heking that the weakening (likewise strength-ening) guided redutions are only applied to fats (likewise goals).Guided redutions ould be authored in other forms, e.g. as tatis in a theo-rem prover suh as HOL or Isabelle. However, there are important pratial ben-e�ts to representing guided redutions by prediate-replaement: (a) the termsare type-heked in ombination with the term de�ning the problem itself, whihaptures many errors early on; (b) the terms may involve proof onstants fromthe problem spei�ation; and () the terms our diretly in position rather thanas a later, disassoiated operation, reduing the fragility of the guided-redutionvis-a-vis reorderings and restruturings of the problem statement.Finally, bak to our example. The guided redution in x3.3 an be formalizedby replaing the prediate stakOK in formulae (1) and (2) in x3.1 by(i = I_dup) => (stakOKHead valOK stakOK) && stakOK(i = I_dup) => (stakOKHead valOK (stakOKHead valOK stakOK)) || stakOKrespetively. This replaement is justi�ed beause the guided redutions are re-spetively weakening and strengthening, whih an be automatially heked.The appliation of the guided redution simply involves expanding all de�ni-tions of operators and non-problemati prediates and funtions and applyingthe deision proedure, whih then heks the validity of the resulting formula.4 Case Studies4.1 Case Study 1: SparkWe now onsider the use of our tehniques to prove Proposition 3. The overallproof sript required to prove the �rst part of Proposition 3 is:4Proof sript for Spark Soundness (1)Proposition:hastype(1) (m,methT) ^stateOK(2) (s0,methT)--> step (m,s0) <> NoneProblemati prediates: stateOK, stakOK, hastype, losOK, argsOKReplae (1) by: hastypePointW p0Replae (2) by:stateOKRule((is_stlo i) => stakOKHead1 stakOK &&(is_starg i) => stakOKHead1 stakOK &&(is_binop i) => stakOKHead2 stakOK &&(is_ret i) => stakOKHead2 stakOK &&(is_ble i) => stakOKHead1 stakOK &&(is_pop i) => stakOKHead1 stakOK &&stakOK)((is_stlo i or is_ldlo i) => losOKPointW lo0 &&4 This is a tidied-up version of the atual proof sript, whih is a little more arane.

losOK)((is_starg i or is_ldarg i) => argsOKPointW arg0 &&argsOK)Where p0 ::= s0.pi ::= math (read m.instrs p0) with Some(i) -> ilo0 ::= (math i with I_stlo x -> x | I_ldlo x -> x)arg0 ::= (math i with I_starg x -> x | I_ldarg x -> x)The rules for the problemati prediates hastypePointW, stakOKHead1, stakOKHead2,argsOKPointW and losOKPointW are derived immediately from the de�nitionsgiven in x2. The rule stateOKRule is also derived from the de�nition of stateOKin x2.2 and omposes guided redutions for the input stak, loals and arguments.In pratie we prove the full soundness property in one step using a similarsript, the proposition being:hastype(m,methT) ^ stateOK(s0,methT)! math step(s0) with| None -> false| Some(s1) -> state_ok(s1,methT)The really promising thing about these proof sripts is just how muh has notbeen mentioned. In partiular, if we examine the de�nitions in x2, no mentionhas been made of funtions suh as step, dests or effet. The deision proedureis fed a very large term with all the de�nitions of these funtions expanded. Theproess of ase-splitting through all the instrutions and all the failure/suessases impliit in the exeution and veri�ation semantis happens automatially.After applying this redution, the resulting formula is passed to the deisionproedure and a ounterexample, if any, is returned. The the expanded problemsent to the deision proedure would run for hundreds of pages (many sub-terms are shared within the problem). Our implementation of the SVC deisionproedure takes 14.4s to prove the �rst part of the soundness proof (using a 750MHz Pentium III), with 5217 ase-splits and 1377 unique terms onstruted.We have found that proof times an be dramatially redued by simple andnatural ase-split orderings. For example, if we speify that the �rst split shouldbe on the kind of instrution, the time redues to 0.25s with 109 ase-splits.Produing Counterexamples. Consider what happens if we omit a hekfrom our veri�ation rules, in partiular if we omit the hek that the type ofthe item on the stak for the instrution stargmathes the type expeted for theargument slot. Type soundness no longer holds, and a 30 line ounterexample isprinted, ontaining, among other things:is_starg i0is_F (nth m.mref.argsT (starg_get0 i0))is_Int (hd s0.stak)This suggests that the veri�er is unsound when the instrution is a starg, aoating point number is expeted, but the �rst value on the stak is an integer

value|the bug has been deteted! Counterexample prediates like these analso be solved to give a sample input (with some unknowns) that exposes theerror. The ounterexample ould be made onrete by searhing for arbitraryterms whih satisfy any remaining non-strutural onstraints, but we have notimplemented this.4.2 Case Study 2: Investigating BILOur seond ase study onsists of verifying the type soundness of a small-stepterm rewriting system orresponding to the BIL fragment desribed in [4℄. Thefragment inluded a subtyping relation with appropriate rules. Some aspets ofthis proof are beyond the sope of this paper, in partiular the use of guidedredutions in the presene of indutively de�ned relations over reursive termstrutures. Apart from this the ore tehnique used was as desribed in x3.The BIL instrutions for whih we have veri�ed the orresponding soundnessproperty inlude loading a onstant; sequening; onditionals; loops; virtual allinstrutions; loading/storing arguments; boxing inline values to objets; alloat-ing new objets; reating new inline objets; loading the address of an argument;loading the address of a �eld in an objet; loading/storing via a pointer.The omponents of the spei�ation are: (a) a term model of programs on-sisting of 20 lines of ML datatype de�nitions; (b) a pseudo-funtional small-stepexeution semantis omprising 180 lines of ML ode, inluding some uninter-preted operations (e.g. a funtion that resolves virtual all dispath is assumed);() a funtional type heker omprising 90 lines of ML ode and some uninter-preted operations; and (d) a spei�ation of onformane akin to that in [15℄.The proof assumes the following lemmas, whih we have proved by inspe-tion: (a) weakening/strengthening rules about the problemati prediates; (b) 11lemmas about reursive operations suh as \write into a nested loation withina strut (inline value) given a path into that value"; () one lemma about theexistene of a heap typing that reords the types of all alloations that will ourduring exeution; and (d) a lemma onneting the typeheking proess to theterm-onformane prediate, of the kind stated and proved in Chapter 7 of [15℄.The overall guided redution was spei�ed in tabular form, with 41 rows(eah orresponding to one rewrite ation in the exeution semantis), and 7olumns (speifying guided redutions for the input heap, stak frames, inputterm, exeution step, output heap, output stak frames and output term). Thetable was sparse, with 60% of entries indiating that no speial reasoning wasneeded for that item on that branh of the proof. This left around 120 entrieseah a ouple of identi�ers long. In ontrast the proof performed in [15℄ tookaround 2000 lines of proof sript, despite using onsiderable automation.We exeuted the proof for eah the instrution independently, and eah in-strution took under 10s to verify. We found mistakes in both our veri�er andour model of exeution during this proess.

5 Conlusions and Future DiretionsThis paper has presented a new semi-automated tehnique for mehaniallyheking the type soundness of virtual mahines, and two ase studies apply-ing that tehnique. It is the �rst time SVC-like deision proedures have beenextensively applied to a problem domain that was previously exlusively takledusing interative theorem proving.The manual part of the proof tehnique is based on an algebra of guidedredutions built using ombinators that are automatially derived from de�ni-tions and rules for the prediates and funtions being manipulated. The guidedredutions allow the user to ontrol the unwinding of reursive de�nitions andto give instantiations for ertain ruial �rst-order rules. This gives a ompatbut ontrolled way of speifying the information neessary for di�erent partsof a proof, and the proof hints an be ombined to express �nite proof searhand onditional guidane. The automated part of the proof uses SVC-like va-lidity heking for a quanti�er free theory of arithmeti and strutured terms.Although exponential in theory this has proved eÆient and ontrollable in pra-tie, sometimes by giving hints for ase-split orderings. This mirrors experieneswith using these algorithms for hardware veri�ation [1℄.We have also desribed two ase studies applying these tehniques to frag-ments of the CLR's intermediate language. When ompared to interative theo-rem proving, these ase studies have ertainly bene�ted from the inreased useof automation. We found that the semi-automati proof heking proess wase�etive in helping us understand aspets of the seond, larger ase study. Theresults from the ase-studies indiate that the problem domain is highly au-tomatable and that it is worthwhile to pursue a disiplined ombination of proofguidane and proof automation.With regard to future possible diretions, it is ertain that further automationan be applied in this problem domain, perhaps even ahieving fully automatedheking for important lasses of soundness properties. It is also likely that prop-erties other than type soundness an bene�t from the approah we have taken inthis paper. In addition, applying our present ombination of tehniques to newspei�ations will reveal if they transfer in pratie. For example, applying thetehniques outlined in this paper to the reent extensive ASM desriptions ofthe JVM [13℄ would determine if they sale to larger formal models.The proof guidane tehnique desribed in this paper is novel, espeially theautomati generation of ombinators for a proof algebra from a spei�ation ofbasi axioms for problemati prediates and funtions. We have not desribedhow indutive and other seond-order proof tehniques �t into this framework.It would also be very interesting to apply similar tehniques to other problemdomains. In partiular there is a strong need for disiplined ways of deomposinghardware veri�ation properties into problems that an be independently modelheked. Guided redutions may have a role to play here.

Referenes1. C. Barrett, D. Dill, and J. Levitt. Validity heking for ombinations of theorieswith equality. In M. Srivas and A. Camilleri, editors, Formal Methods In Computer-Aided Design, volume 1166 of Leture Notes in Computer Siene, pages 187{201.Springer-Verlag, November 1996. Palo Alto, California, November 6{8.2. C. Barrett, D. Dill, and A. Stump. A generalization of Shostak's method forombining deision proedures. In Frontiers of Combining Systems (FROCOS),Leture Notes in Arti�ial Intelligene. Springer-Verlag, April 2002.3. A. Degtyarev and A. Voronkov. Equality reasoning in sequent-based aluli. InHandbook of Automated Reasoning, Volume I, pages 611{706. Elsevier Siene andMIT Press, 2001.4. A. Gordon and D. Syme. Typing a multi-language intermediate ode. In 27thAnnual ACM Symposium on Priniples of Programming Languages, January 2001.5. M.J.C. Gordon and T.F. Melham. Introdution to HOL: A theorem-proving envi-ronment for higher-order logi. Cambridge University Press, 1993.6. J.G. Henriksen, J. Jensen, M. J�rgensen, N. Klarlund, B. Paige, T. Rauhe, andA. Sandholm. Mona: Monadi seond-order logi in pratie. In Tools and Algo-rithms for the Constrution and Analysis of Systems, First International Work-shop, TACAS '95, LNCS 1019, 1995.7. Xavier Leroy. The Objetive Caml system, doumentation and user's guide. INRIA,Roquenourt, 1999. Available from http://aml.inria.fr.8. Serge Lidin. Inside Mirosoft .NET IL Assembler. Mirosoft Press, 2002.9. Tobias Nipkow, David von Oheimb, and Cornelia Push. �Java: Embedding aprogramming language in a theorem prover. In F.L. Bauer and R. Steinbr�uggen,editors, Foundations of Seure Computation. Pro. Int. Summer Shool Markto-berdorf 1999, pages 117{144. IOS Press, 2000.10. M. Norrish. C formalised in HOL. PhD thesis, University of Cambridge, 1998.11. C. Push. Proving the soundness of a Java byteode veri�er spei�ation in Is-abelle/HOL. In TACAS'99, Leture Notes in Computer Siene. Springer Verlag,1999.12. Z. Qian. A Formal Spei�ation of Java Virtual Mahine Instrutions for Objets,Methods and Subroutines. In J. Alves-Foss, editor, Formal Syntax and Semantis ofJava, volume 1532 of Leture Notes in Computer Siene, pages 271{312. SpringerVerlag, 1999.13. Robert St�ark, Joahim Shmid, and Egon B�orger. Java and the Java VirtualMahine. Springer Verlag, 2001.14. R. Stata and M. Abadi. A type system for Java byteode subroutines. In Proeed-ings POPL'98, pages 149{160. ACM Press, 1998.15. D. Syme. Delarative Theorem Proving for Operational Semantis. PhD thesis,University of Cambridge, 1998.16. M. VanInwegen. The Mahine-Assisted Proof of Programming Language Proper-ties. PhD thesis, University of Pennsylvania, May 1996.17. D. von Oheimb and T. Nipkow. Mahine-heking the Java spei�ation: Provingtype-safety. In J. Alves-Foss, editor, Formal Syntax and Semantis of Java, volume1532 of Leture Notes in Computer Siene, pages 119{156. Springer Verlag, 1999.18. Andrew K. Wright and Matthias Felleisen. A syntati approah to type soundness.Information and Computation, 115(1):38{94, 1994.

