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Abstract. We present a new method for aligning sentences with their translations
in a parallel bilingual corpus. Previous approaches have generally been based ei-
ther on sentence length or word correspondences. Sentence-length-based meth-
ods are relatively fast and fairly accurate. Word-correspondence-based methods
are generally more accurate but much slower, and usually depend on cognates or
a bilingual lexicon. Our method adapts and combines these approaches, achiev-
ing high accuracy at a modest computational cost, and requiring no knowledge of
the languages or the corpus beyond division into words and sentences.

1 Introduction

Sentence-aligned parallel bilingual corpora have proved very useful for applying ma-
chine learning to machine translation, but they usually do not originate in sentence-
aligned form. This makes the task of aligning such a corpus of considerable interest, and
a number of methods have been developed to solve this problem. Ideally, a sentence-
alignment method should be fast, highly accurate, and require no special knowledge
about the corpus or the two languages.

Kay and Röscheisen [1][2] developed an iterative relaxation approach to sentence
alignment, but it was not efficient enough to apply to large corpora. The first approach
shown to be effective at aligning large corpora was based on modeling the relation-
ship between the lengths of sentences that are mutual translations. Similar algorithms
based on this idea were developed independently by Brown, et al. [3] and Gale and
Church [4][5]. Subsequently, Chen [6] developed a method based on optimizing word-
translation probabilities which he showed gave better accuracy than the sentence-length-
based approach, but was “tens of times slower than the Brown and Gale algorithms” [6,
p. 15]. Wu [7] used a version of Gale and Church’s method adapted to Chinese along
with lexical cues in the form of a small corpus-specific bilingual lexicon to improve
alignment accuracy in text regions containing multiple sentences of similar length.
Melamed [8][9] also developed a method based on word correspondences, for which he
reported [8] sentence-alignment accuracy slightly better than Gale and Church. Simard
and Plamondon [10] developed a two-pass approach, in which a method similar to
Melamed’s identifies points of correspondence in the text that constrain a second-pass
search that uses a statistical translation model.

All these prior methods require particular knowledge about the corpus or the lan-
guages involved. The length-based methods require no special knowledge about the



languages, but the implementations of Brown et al. and Gale and Church require ei-
ther corpus-dependent anchor points, or prior alignment of paragraphs to constrain the
search. The word-correspondence-based methods of Chen and Melamed do not require
this sort of information about the corpus, but they either require an initial bilingual lex-
icon, or they depend on finding cognates in the two languages to suggest word corre-
spondences. Wu’s method also requires that the bilingual lexicon be externally supplied.
Simard and Plamondon’s approach relies on the existence of cognates for the first pass,
and a previously-trained word-translation model for the second pass.

We have developed a hybrid sentence-alignment method, using previous sentence-
length-based and word-correspondence-based models, that is fast, very accurate, and
requires only that the corpus be separated into words and sentences. In a direct compar-
ison with a length-based model that is a slight modification of Brown et al.’s, we find
our hybrid method has a precision error rate 5 to 13 times smaller, and a recall error
rate 5 to 38 times smaller. Moreover, the ratio of the computation times required for our
method, vs. the length-only-based method, is less than 3 for easy to align material and
seems to asymptotically approach 1 as the material becomes harder to align, which is
when our advantage in precision and recall is greatest.

2 Description of the Algorithm

Our algorithm combines techniques adapted from previous work on sentence and word
alignment in a three-step process. We first align the corpus using a modified version of
Brown et al.’s sentence-length-based model. We employ a novel search-pruning tech-
nique to efficiently find the sentence pairs that align with highest probability without the
use of anchor points or larger previously aligned units. Next, we use the sentence pairs
assigned the highest probability of alignment to train a modified version of IBM Trans-
lation Model 1 [11]. Finally, we realign the corpus, augmenting the initial alignment
model with IBM Model 1, to produce an alignment based both on sentence length and
word correspondences. The final search is confined to the minimal alignment segments
that were assigned a nonnegligible probability according to the initial alignment model,
which reduces the size of the search space so much that this alignment is actually faster
than the initial alignment, even though the model is much more expensive to apply to
each segment.

Our method is simliar to Wu’s [7] in that it uses both sentence length and lexical
correspondences to derive the final alignment, but since the lexical correspondences
are themselves derived automatically, we require no externally supplied lexicon. We
discuss each of the steps of our approach in more detail below.

2.1 Sentence-Length-Based Alignment

Brown et al. [3] assume that every parallel corpus can be aligned in terms of a sequence
of minimal alignment segments, which they call “beads”, in which sentences align 1-to-
1, 1-to-2, 2-to-1, 1-to-0, or 0-to-1.1 The alignment model is a generative probabilistic

1 This assumption fails occasionally when there is an alignment of 2-to-2 or 3-to-1, etc. This
is of little concern, however, because it is sufficient for our purposes to extract the 1-to-1



model for predicting the lengths of the sentences composing sequences of such beads.
The model assumes that each bead in the sequence is generated according to a fixed
probability distribution over bead types, and for each type of bead there is a submodel
that generates the lengths of the sentences composing the bead.

For the 1-to-0 and 0-to-1 bead types, there is only one sentence in each bead, and the
lengths of those sentences are assumed to be distributed according a model based on the
observed distribution of sentence lengths in the text in the corresponding language. For
all the other beads types (1-to-1, 2-to-1, and 1-to-2), the length(s) of the sentence(s) of
the first (source) language are assumed to be distributed according to the same model
used in the 1-to-0 case, and the total length of the sentence(s) of the second (target)
language in the bead is assumed to be distributed according to a model conditioned
on the total length of the sentence(s) of the source language in the bead. Brown et al.
assume that the logarithm of the ratios of the lengthl t of the sentence(s) of the target
language to the lengthls of the corresponding sentence(s) of the source language varies
according to a Gaussian distribution with mean� and variance� 2,

P (ltjls) = � exp(�((log(lt=ls)� �)t=2�2)) ; (1)

where� is chosen to makeP (ltjls) sum to 1 for positive integer values oflt.
The major difference between our sentence-length-based alignment model and that

of Brown et al. is in how the conditional probabilityP (l tjls) is estimated. Our model
assumes thatlt varies according to a Poisson distribution whose mean is simplyls times
the ratior of the mean length of sentences of the target language to the mean length of
sentences of the source language:

P (ltjls) = exp(�lsr)(lsr)
lt=(lt!) : (2)

The idea is that each word of the source language translates into some number of words
in the target language according to a Poisson distribution, whose mean can be estimated
simply as the ratio of the mean sentence lengths in the two languages. This model is
simple to estimate because it has no hidden parameters, whereas at least the variance� 2

needs to be estimated iteratively using EM in Brown et al.’s Gaussian model. Moreover,
when we compared the two models on several thousand sentences of hand-aligned data,
we found that the Poisson distribution actually fit the data slightly better than the best-
fitting Gaussian distribution of the form used by Brown et al.

There are a few other minor differences between the two models. Brown et al. es-
timate marginal distributions of sentence lengths in the two languages using the raw
relative frequencies in the corpus to estimate the probabilities of the lengths of shorter
sentences, and smooth the estimates for the lengths of longer sentences by fitting to the
tail of a Poisson distribution. In contrast, we simply use the raw relative frequencies to
estimate the probability of every observed sentence length. This only affects the esti-
mates for particularly long, and therefore rare, sentence lengths, which should have no
appreciable effect on the performance of the model. We also found that the performance
of the model was rather insensitive to the exact values of the probabilities assigned to

alignments, which account for the vast majority of most parallel corpora and are in practice
the only alignments that are currently used for training machine translation systems.



the various bead types, so we simply chose rough values close to those reported by
Brown et al. and Gale and Church, rather than tuning them by re-estimation as Brown
et al. do. We experimented with initializing the model with these values and iteratively
re-estimating to the optimal values for our data, but we never saw a significant differ-
ence in the output of alignment as a result of re-estimating these parameters. Finally,
Brown et al. also include paragraph boundary beads in their model, which we omit, in
part because paragraph boundary information was not present in our data.

Our intention in making these modifications to the model of Brown et al. is not to
improve its accuracy in sentence alignment, and we certainly do not claim to have done
so. In fact, we believe that the differences are so slight that the models should perform
comparably. The practical difference between the two models is that because ours has
no hidden parameters, we don’t need to use EM or any other iterative parameter re-
estimation method, which makes our variant much faster to use in practice.

Search Issues The standard approach to solving alignment problems is to use dynamic
programming (DP). In an exhaustive DP alignment search, one iteratively computes
some sort of cost function for all possible points of correspondence between the two
sequences to be aligned. For the sentence alignment problem, the number of such points
is approximately the product of the numbers of sentences in each language; so it is
clearly infeasible to do an exhaustive DP search for a large corpus. The search must
therefore be pruned in some way, which is the approach we have followed, as have
Brown et al., Gale and Church, and Chen. Our method of pruning, however, is novel
and has proved quite effective.

Notice that unless there are extended segments of one language not corresponding
to anything in the other language, the true points of correspondence should all be close
to proportionately the same distance from the beginning of each text. For example, the
only way a point 30% of the way along the text in the source language would be likely
to correspond to a point 70% of the way along the text in the target language is if
there were some major insertions and/or deletions in one or both of the texts. Following
Melamed, we think of the set of possible points of correspondence as forming a matrix,
and the set of points closest to proportionately the same distance from the beginning of
each text as “the main diagonal”.

Our pruned DP search starts by doing an exhaustive search, but only in a narrow
fixed-width band around the main diagonal. Unless there are extended segments of one
language not corresponding to anything in the other language, the best alignment of
the two texts will usually fall within this band. But how do we know whether this is
the case? Our heuristic is to look at an approximate best alignment within the band,
and find the point where it comes closest to one of the boundaries of the band. If the
approximate best alignment never comes closer than a certain minimum distance from
the boundaries of the band, we assume that the best alignment within the band is actually
the best possible alignment, and the search terminates. Otherwise, we widen the band
and iterate. While we have no proof that this heuristic will always work, we have never
seen it commit a search error in practice. Our conjecture is that if the search band is too
narrow to contain the true best alignment, the constrained best alignment will basically
be a random walk in those regions where the true best alignment is excluded. If the



size of the excluded regions of the true best alignment is large, the probability of this
random walk never coming close to a boundary is small.

In this phase of our algorithm, the main goal is to find all the high-probability 1-to-1
beads to use for training a word-translation model. We find these beads by performing
the forward-backward probability computation, as described by Rabiner [12], using the
initial search described above as the forward pass. To speed up the backward pass of
this search, we start by considering only points that have survived the first pass pruning,
and we further prune out (and do not extend) any of these points that receive a very low
total probability in the backward pass.

2.2 Word-Translation Model

In the next phase of our algorithm, we use the highest probability 1-to-1 beads from the
initial alignment to train a word-translation model. We use a threshold of 0.99 proba-
bility of correct alignment to ensure reliable training data, and in our experiments this
makes use of at least 80% of the corpus. For our word-translation model, we use a
modified version of the well-known IBM Translation Model 1 [11].

The general picture of how a target language sentencet is generated from a source
language sentences consisting ofl words,s1 : : : sl, in the IBM translation models is as
follows: First, a lengthm is selected fort. Next, for each word position int, a generating
word ins (including the null words0) is selected. Finally, for each pair of a position int
and its generating word ins, a target language word is chosen to fill the target position.
Model 1 makes the assumptions that all possible lengths fort (less than some arbitrary
upper bound) have a uniform probability�; all possible choices of the source language
generating words are equally likely; and the probabilitytr(t j jsi) of the generated target
language word depends only on the generating source language word—which Brown
et al. show yields

P (tjs) =
�

(l + 1)m

mY

j=1

lX

i=0

tr(tj jsi) : (3)

We make two minor modifications in Model 1 for the sake of space efficiency. The
translation probabilities for rare words can be omitted without much loss, since they
will hardly ever be used. Therefore, to prune the size of our word-translation model,
we choose a minimum number of occurrences for a word to be represented distinctly
in the model, and map all words with fewer occurrences into a single token prior to
computing the word-translation model. For each language, we set the threshold to be
the maximum count per word that is sufficient to result in 5000 distinct words of that
language, subject to an absolute minimum for the threshold of 2 occurrences per word.

In principle, Model 1 will assign a translation probability to every possible pair
consisting of one of the remaining words from each language, provided the words both
occur in at least one aligned sentence pair. The vast majority of these, however, will
not represent true translation pairs and therefore contribute little to determining correct
sentence alignment. Therefore, our second modification to Model 1 is that, in accumu-
lating fractional counts in each iteration of EM after the first, any fractional count for
a word-translation pair in a given sentence that is not greater than would be obtained
by making a totally random choice is not added to the count for that translation pair.



For example, if a source language sentence contains 10 words (including the null word)
and the existing model assigns to one of those words a fractional count not greater than
0.1 for generating a particular word in the target language sentence, we don’t include
that fractional count in the total count for that word-translation pair. To maintain the in-
tegrity of the model, we assign these fractional counts to the pair involving the null word
instead. We find this reduces the size of the model by close to 90% without significantly
impacting the performance of the resulting model.

We train our modified version of Model 1 by carrying out 4 iterations of EM as
described by Brown, et al. [11], which we found to be an upper bound on the number
of iterations needed to minimize the entropy of held out data.

2.3 Word-Correspondence-Based Alignment

For the final sentence-alignment model we use the framework of our initial sentence-
length-based model, but we modify it to use IBM Model 1 in addition to the initial
model. The modified model assumes that bead types and sentence lengths are gener-
ated according to the same probability distributions used by the sentence-length-based
model, but we multiply the probability estimate based on these features by an estimated
probability for the actual word sequences composing each bead, based on the instance
of Model 1 that we have estimated from the initial alignment.

For the single sentence in a 1-to-0 or 0-to-1 bead, each word is assumed to be gen-
erated independently according to the observed relative unigram frequencyf u of the
word in the text in the corresponding language. For all the other beads types (1-to-1,
2-to-1, and 1-to-2), the words of the sentence(s) of the source language are assumed
to be generated according to the same model used in the 1-to-0 case; and the words of
the sentence(s) of the target language in the bead are assumed to be generated depend-
ing on the words of the source language, according to the instance of Model 1 that we
have estimated from the initial alignment of the corpus. In applying Model 1, we omit
the factor corresponding to the assumption of uniform distribution of target sentence
lengths, since we have already accounted for sentence length by incorporating our orig-
inal alignment model. For example, ifs is a source sentence of lengthl, t is a target
sentence of lengthm, andP1�1(l;m) is the probability assigned by the initial model to
a sentence of lengthl aligning 1-to-1 with a sentence of lengthm, then our combined
model will estimate the probability of a 1-to-1 bead consisting ofs andt as

P (s; t) =
P1�1(l;m)

(l + 1)m
(

mY

j=1

lX

i=0

tr(tj jsi))(

lY

i=1

fu(si)) : (4)

Simard and Plamondon [10] also base their second pass on IBM Model 1. However,
because they essentially useonly Model 1—without embedding it in a more general
framework, as we do—they have no way to assign probabilities to 1-to-0 and 0-to-1
beads. Hence their model has no way to accomodate deletions or insertions, which they
conjecture results in the low precision they observe on many of their test corpora [10,
p. 77].

Since our hybrid alignment model incorporating IBM Model 1 is much more ex-
pensive to apply to a bead than our original sentence-length-based model, if we were



Table 1. Results for Manual 1 data

Alignment ProbabilityNumberNumberNumberPrecision Recall
Method Threshold Right Wrong Omitted Error Error

Hand-Aligned NA 9842 1 6 0.010% 0.061%
Length Only 0.5 9832 28 16 0.284% 0.162%
Length+Words 0.5 9846 5 2 0.051% 0.020%
Length+Words 0.9 9839 3 9 0.030% 0.091%

Table 2. Results for Manual 2 data

Alignment ProbabilityNumberNumberNumberPrecision Recall
Method Threshold Right Wrong Omitted Error Error

Hand-Aligned NA 17276 5 99 0.029% 0.570%
Length Only 0.5 17304 18 71 0.104% 0.409%
Length+Words 0.5 17361 2 14 0.012% 0.081%
Length+Words 0.9 17316 1 59 0.006% 0.340%

to start the alignment search over from scratch, generating the final alignment would
be very slow. We limit the search, however, to the set of possible points of correspon-
dence receiving nonnegligible probability estimates in the initial sentence-length-based
alignment. Since these are only a small fraction (on the order of 10% or less) of all
the possible points correspondence explored in the initial alignment search, this greatly
speeds up the final alignment search. In practice, the final alignment search takes less
time than the initial alignment search—far less in some cases.

3 Results

We have evaluated our method on data from two English-language computer software
manuals and their Spanish translations, for which we were able to obtain hand align-
ments of 1-to-1 beads for comparison. The automatic and hand alignments were in close
enough agreement that we were able to have all the differences examined by a fluent
bilingual. In some cases we found the hand alignment to be in error and the automatic
alignment to be correct. For the purposes of our analysis we assume that every align-
ment pair that the automatic and hand alignments agree on is correct, and that all the
correct alignment pairs are found either by the hand alignment or automatic alignment.

Our evaluation metrics are precision error and recall error for 1-to-1 sentence align-
ments. We follow Brown et al. [3, pp. 175–176] in using precision error (which they
simply call “error”) on 1-to-1 beads (which they call “ef-beads”) as an evaluation met-
ric. Because we have complete hand alignments for the 1-to-1 beads for all our test data,
however, we are also able to measure recall error, which many previous studies have not
been able to estimate.

Our results on data from Manual 1 are shown in Table 1, and results from Manual 2
are shown in Table 2. For each manual, we compare results for four different align-
ments: hand alignment, alignment based on sentence length only at the 0.5 probability



threshold, alignment based on sentence length and word correspondence at the 0.5 prob-
ability threshold, and alignment based on sentence length and word correspondence at
the 0.9 probability threshold. The probability threshold refers to a cut-off based on the
probability assigned to an alignment by application of the forward-backward probability
computation as discussed in Section 2.1. Since we are able to estimate this probability,
rather than simply computing the most probable overall alignment sequence, we can
tune the precision/recall trade-off depending on where we decide to set our threshold
for accepting an alignment pair.

Examining the results in Tables 1 and 2 shows that both the precision and recall
error rates for all alignments are well under 1.0%, but that recall error and precision
error are considerably lower for our hybrid model than for the alignment based only on
sentence length. At the probability threshold of 0.5, for Manual 1 the precision error
was 5.6 times lower and the recall error was 8.0 times lower for the hybrid method, and
for Manual 2 the precision error was 9.0 times lower and the recall error was 5.1 times
lower for the hybrid method. For Manual 1 the precision and recall error for the hybrid
method (at either the 0.5 or 0.9 probability threshold) were almost as good as on the
hand-aligned data, and for Manual 2 the error rates were actually better for data aligned
by the hybrid method than for the hand-aligned data.

We believe that the data we have used in these experiments is representative of much
of the sort of parallel data one might encounter as training data for machine translation.
However, it turns out to be fairly easy data to align, as indicated by the low error rates
of both forms of automatic alignment that we applied, and by the fact that the highest
probability initial alignments deviated from the main diagonal by at most 6 positions in
the case of the data from Manual 1 and at most 13 positions in the case of the data from
Manual 2. To test how well the algorithms perform on more difficult data, we applied
both the method based only on sentence length and the hybrid method to versions of
the Manual 1 data, from which single blocks of 50, 100, and 300 sentences had been
deleted from one side of the corpus at a randomly chosen point.

The results of this experiment are shown in Table 3, for the 0.5 probability threshold.
Examining these results shows that as the size of the deletion increases, the precision
and recall error rates for the alignment based only on sentence length also increase,
but the error rates for hybrid method remain essentially constant. The advantage of the
hybrid method thus increases to the point that, on the data with 300 sentences deleted,
the precision error is 13.0 times lower and the recall error is 37.4 times lower than with
the sentence-length-only-based method.

These substantial deletions stress the search strategy as well as the alignment mod-
els, since they force the initial search to examine a much wider band around the main
diagonal to find the optimal alignment. We show the effect on the total time to compute
the alignments in Table 4. Of necessity, the forward pass time of the sentence-length-
only-based alignment increases at least in proportion to the maximum deviation of the
best alignment from the main diagonal. If the width of the search band is doubled on
every iteration, then the total search time should be no more than twice the time of the
last iteration, and the width of the search band should be no more than twice the maxi-
mum deviation of the best alignment from the main diagonal. This means it should be
possible to carry out the iterative first pass search in time proportional to the length of



Table 3. Results for Manual 1 data with deletions

Sentences Alignment NumberNumberNumberPrecision Recall
Deleted Method Right Wrong Omitted Error Error

0 Length Only 9832 28 16 0.284% 0.162%
50 Length Only 9761 30 39 0.306% 0.398%
100 Length Only 9677 30 73 0.309% 0.749%
300 Length Only 9368 52 187 0.552% 1.967%
0 Length+Words 9846 5 2 0.051% 0.020%
50 Length+Words 9796 6 4 0.061% 0.041%
100 Length+Words 9747 5 3 0.051% 0.031%
300 Length+Words 9550 4 5 0.042% 0.052%

Table 4. Alignment time (in seconds) for deletion experiments

SentencesFirst Pass Length Model 1 Length+Wordstotal
Deleted IterationsAlign Time Train Time Align Time Total

0 1 161 131 155 447
50 3 686 133 195 1013
100 5 1884 128 281 2293
300 7 4360 125 555 5040

the corpus times the size of the maximum deviation of the best alignment from the main
diagonal. This seems roughly consistent with the increasing times for sentence-length-
only-based alignment as the number of sentences deleted goes from 50 to 300.

Naturally, the time to train IBM Model 1 is essentially independent of the diffi-
culty of the initial alignment. What is particularly striking, however, is that the time
to perform the final alignment goes up much more slowly than the time to perform
the initial alignment, due to its restriction to evaluation of points of alignment receiving
nonnegligible probability in the initial alignment. As the difficulty of the alignment task
increases in these experiments, the ratio of the time to perform the complete alignment
process to the time to perform the initial alignment decreases from 2.8 to 1.2, with every
indication that it should asymptotically approach 1.0. Thus for difficult alignment tasks,
we gain the error reduction of the hybrid method at almost no additional relative cost.

4 Conclusions

It was perhaps first shown by Chen [6] that word-correspondence-based models can be
used to produce higher-accuracy sentence alignment than sentence-length-based models
alone. The main contribution of this work is to show how get the benefit of those higher
accuracy models with only a modest additional computational cost, and without the
use of anchor points, cognates, a bilingual lexicon—or any other knowledge about the
corpus other than its division into words and sentences. In accomplishing this, we have
made the following novel contributions to the statistical models and the search strategies
used:



1. Modification of Brown et al.’s [3] sentence-length-based model to use Poisson dis-
tributions, rather than Gaussians, so that no hidden parameters need to be iteratively
re-estimated.

2. A novel iterative-widening search method for alignment problems, based on detect-
ing when the current best alignment comes near the edge of the search band, which
eliminates the need for anchor points.

3. Modification of IBM Translation Model 1, eliminating rare words and low proba-
bility translations to reduce the size of the model by 90% or more.

4. Use of the probabilities computed by a relatively cheap initial model (the sentence-
length-based model) to dramatically reduce the search space explored by a second
more accurate, but more expensive model (the word-correspondence-based model).
While this idea has been used in such fields as speech-recognition and parsing, it
seems not to have been used before in bilingual alignment.
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