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Abstract
We describe a multi-domain, conversational test set developed
for IBM’s Superhuman speech recognition project and our 2002
benchmark system for this task. Through the use of multi-
pass decoding, unsupervised adaptation and combination of hy-
potheses from systems using diverse feature sets and acous-
tic models, we achieve a word error rate of 32.0% on data
drawn from voicemail messages, two-person conversations and
multiple-person meetings.

1. Introduction
The goal of IBM’s Superhuman speech recognition project [1,
2] is to develop a domain-independent speech recognition sys-
tem that matches or exceeds human performance across the full
range of possible application domains, acoustic conditions and
speaker characteristics. To foster work toward this admittedly
aggressive objective, we have defined a test set comprising con-
versational American English material drawn from a number
of application domains and set a goal of achieving annual 25%
relative improvements in word error rate on this test set.

In this paper, we describe the components of our “Superhu-
man” test corpus, then describe our 2002 benchmark system for
the corpus. To deal with the broad range of material present in
the test set, we employed a recognition strategy based on multi-
ple passes of recognition interleaved with unsupervised acoustic
model adaptation and on combination of recognition hypotheses
from systems using disparate feature sets and acoustic models.
We describe the basic techniques used in the benchmark system
for signal processing, acoustic modeling, adaptation, and lan-
guage modeling, then we describe the architecture of the recog-
nition system and present the performance of the system on the
Superhuman test corpus at various stages of processing.

2. A multi-domain conversational test set
We had a number of goals in mind when we designed the test
set. First, the test set had to cover a reasonably broad range of
conversational applications and contain data representing key
challenges to reliable recognition including various forms of
acoustic interference, speech from non-native speakers, and a
large recognition vocabulary. Second, the test set had to in-
clude at least one component that is readily available to other
researchers to facilitate comparisons between our recognizers
and those developed externally. Third, the test set needed to be
reasonably small, to facilitate rapid turnaround of experiments
on it. For all experiments reported here, we used a test set com-
posed of the following five parts.

swb98 The Switchboard portion of the 1998 Hub 5e eval-
uation set, comprising 113 minutes of audio. The data are col-
lected from two-person conversations between strangers on a
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signed topic. A variety of telephone channels and regional
ts are represented in the data.
tg An initial release of the Bmr007 meeting from the

Meeting corpus [3, 4], comprising 95 minutes of audio.
ata are collected from eight speakers wearing either lapel
phones or close-talking headsets. This meeting involved
speakers: five native speakers of American English (two
es and three males) and three non-native speakers (all
). The primary challenge in this test set is the presence

ckground speech in many of the utterances. The crosstalk
em is especially severe for speakers recorded using lapel
phones.
c1 30 minutes of audio from a call center. The data are col-

from customer service representatives (CSRs) and cus-
s calling with service requests or problems. The primary
nge in this test is acoustic interference: a combination
nlinear distortion from speech compression, background
from both the CSR and customer sides, and intermittent
on the channel which are played to remind the customer
e call is being recorded.

c2 34 minutes of audio from a second call center. The
dings are from a different center than the cc1 test set, but

similar subject matter and have similar, poor acoustics.
data set has no information associating speakers with sets
erances, which poses problems for speaker and channel
ation.
m Test data from the IBM Voicemail corpus, comprising
inutes of audio. This material was previously reported on
E-VM1 test set [5], and is a superset of the test data in the

mail Corpus Part I and Part II distributed by the LDC. Un-
e other tests, the voicemail data are conversational mono-

s. The acoustic quality of the data are generally quite high,
gh loud clicks caused by the speaker hanging up at the
f some messages can pose problems for feature normal-
n — especially normalization of c0 based on the maxi-
value of c0 within an utterance. This test set also has no
ation associating speakers with sets of utterances.

3. Signal processing
ystems in this work use either Mel-frequency cepstral co-
nt (MFCC) or perceptual linear prediction (PLP) features

features. The MFCC features are based on a bank of
el filters spanning 0–4.0 kHz. The PLP features are based
bank of 18 Mel filters spanning 0.125–3.8 kHz and use a
order autoregressive analysis to model the auditory spec-
Both feature sets are based on an initial spectral analysis
ses 25-ms. frames smoothed with a Hamming window, a
s. frame step, and adds the equivalent of 1 bit of noise to
wer spectra as a form of flooring. Both feature sets also
mputed using periodogram averaging to reduce the vari-



ance of the spectral estimates. The final recognition feature set
for all systems in this work are generated by concatenating raw
features from nine consecutive frames and projecting to a 60-
dimensional feature space. The projection is a composition of
a discriminant projection (either linear discriminant analysis or
heteroscedastic discriminant analysis [6]) and a diagonalizing
transform [7, 8].

Prior to the projection to the final, 60-d recognition fea-
ture space, the raw features are normalized. Three different
normalization schemes are used by different systems in this
work: (1) utterance-based mean normalization of all features;
(2) utterance-based mean normalization of all features except
c0 and max. normalization of c0; and (3) side-based mean and
variance normalization of all features except c0 and max. nor-
malization of c0. In max. normalization of c0, the maximum
value of c0 within an utterance is subtracted from c0 for all
frames in the utterance. The estimate of variance is based solely
on frames for which c0 exceeds a threshold with respect to the
maximum value of c0 in the utterance. This is intended to en-
sure that the variance is computed only from speech frames.

4. Acoustic modeling
We use an alphabet of 45 phones to represent words in the
lexicon. Each phone is modeled as a three-state, left-to-right
hidden Markov model (HMM). Acoustic variants of the HMM
states are identified using decision trees that ask questions about
the surrounding phones within an 11-phone context window
(±5 phones around the current one). Systems may employ
word-internal context, in which variants are conditioned only
on phones within the current word, or left context, in which
variants are conditioned on phones within the current and the
preceding words.

The majority of the systems described in this work model
the leaves of the phonetic decision trees using mixtures of
diagonal-covariance Gaussian distributions that are trained us-
ing maximum-likelihood estimation (MLE). Subject to a con-
straint on the maximum number of Gaussians assigned to a leaf,
the number of mixture components used to model a leaf is cho-
sen to maximize the Bayesian Information Criterion (BIC),

F (θ) = logP (Xs|s, θ) − λ

2
|θ|log(Ns) (1)

where P (Xs|s, θ) is the total likelihood of the data points Xs

that align to leaf s under model θ, Ns is the number of such
points, and |θ| is the total number of parameters in model θ. The
overall size of an acoustic model may be adjusted by changing
the weight on the BIC penalty term, λ. The acoustic models
for all recognizers are trained on 247 hours of Switchboard data
and 18 hours of Callhome English data.

Two systems described in this work employ alternative
acoustic models. One system models leaves using mixtures of
diagonal-covariance Gaussian distributions that are discrimina-
tively trained using maximum mutual information estimation
(MMIE). In our MMIE training, we collect counts by running
the forward-backward algorithm on a statically compiled de-
coding graph, using beam pruning to constrain the size of the
search space [9]. This lets us exploit technology developed
for fast decoding of conversational speech [10] for fast MMIE
training as well. The second system models leaves with SPAM
(subspace precision and means) models [11, 12]. SPAM mod-
els provide a framework for interpolating between diagonal-
covariance and full-covariance Gaussian mixture models in
terms of model complexity and model accuracy. Unlike the
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Canonical acoustic models

se two feature-space transformations, vocal tract length
alization (VTLN) [13] and maximum-likelihood feature-
regression (FMLLR) [14], in an adaptive-training frame-
to train canonical acoustic models. The goal of canon-
raining is to reduce variability in the training data due
aker- and channel-specific factors, thereby focusing the
tic model on variability related to linguistic factors. At
me, the feature-space transforms are estimated in an unsu-
sed fashion, using results from earlier decoding passes.
ur implementation of VTLN uses a set of 21 warp factors
over a ±20% linear rescaling of the frequency axis. The

frequency warping is applied prior to Mel binning in the
e computation. The VTLN warp factor for a speaker is
n to maximize the likelihood of frames that align to vow-
d semivowels under a voicing model that uses a single,
ovariance Gaussian per context-dependent state. Approxi-
Jacobian compensation of the likelihoods is performed by
g the log determinant of the sum of the outer products of
arped cepstra to the average frame log-likelihood.
he FMLLR transformation is an affine transformation of
atures in the final, 60-d recognition feature space that
izes the likelihood of a speaker’s data under an acous-

odel. FMLLR is equivalent to constrained maximum-
hood linear regression (MLLR) [14], where the MLLR
orm is applied to both the means and covariances of the
tic model. In the remainder of the paper, we will refer to
ical models that use VTLN features as VTLN models and
onical models that use VTLN features and an FMLLR

ormation as SAT models.

Acoustic model adaptation

st time, we also use (MLLR) adaptation [15] of model
s to further adapt the recognition system to the specific
er and environment. Systems that use diagonal Gaussian
re acoustic models perform two rounds of MLLR. The
ound estimates one MLLR transform for all speech models
ne MLLR transform for all non-speech models, and new
nition hypotheses are generated with the adapted models.
second round, multiple MLLR transforms are estimated
a regression tree and a count threshold of 5000 to cre-

transform for a regression class. The system using SPAM
ls performs a single round of adaptation in which a single
R transform for all models and a new FMLLR transform
timated.

. Language modeling and recognition
lexicon design

data used to train the language models consist of 3M
hboard words, 16M Broadcast News words, 1M Voice-
ords and 600K call center words. For the initial rescoring
word internal lattices we used a 4-way interpolated lan-
model, each of the components being a back-off 3-gram

sing modified Kneser-Ney smoothing [16]. The mixture
ts (0.45*Swb + 0.25*BN + 0.15*VM + 0.2*CC) are op-

ed on a held-out set containing 5% of each of the train-
orpora. For the final rescoring of the left-context lattices
gram mixture components are replaced with 4-gram lan-



Test Perplexity Perplexity OOV
set 3gm LM 4gm LM rate (%)

swb98 94.16 90.08 0.3
mtg 146.45 142.58 0.7
cc1 111.69 106.42 0.3
cc2 52.95 49.30 0.1
vm 94.66 89.32 1.1

Table 1: Perplexities and OOV rates across different test sets

guage models, keeping the mixture weights the same. The 34K
word vocabulary used in our experiments consists of all the
high-count words from our training corpora. The pronuncia-
tion dictionary consists of 37K entries, yielding a ratio of 1.09
pronunciations per word in the vocabulary. Table 1 shows the
perplexities and the out-of-vocabulary (OOV) rates for each of
the five test sets.

6. Recognition process and performance
Recognition of data using the 2002 IBM Superhuman speech
recognition system proceeds as follows:

P1 Speaker-independent decoding. The system uses mean-
normalized MFCC features and an acoustic model com-
prising 4078 left context-dependent states and 171K
mixture components. Decoding is performed using
IBM’s rank-based stack decoding technology [17].

P2 VTLN decoding. VTLN warp factors are estimated for
each speaker using forced alignments of the data to the
recognition hypotheses from P1, then recognition is per-
formed with a VTLN system that uses mean-normalized
PLP features and an acoustic model comprising 4440 left
context-dependent states and 163K mixture components.
Decoding is performed using IBM’s rank-based stack de-
coder. In the cc2 and vm test sets, which have no speaker
information, VTLN warp factors are estimated for indi-
vidual utterances.

P3 Lattice generation. Initial word lattices are gener-
ated with a SAT system that uses mean-normalized
PLP features and an acoustic model comprising 3688
word-internal context-dependent states and 151K mix-
ture components. FMLLR transforms are computed us-
ing recognition hypotheses from P2. The lattices are
generated with a Viterbi decoder. The lattices are then
expanded to trigram context, rescored with a trigram lan-
guage model and pruned. In the cc2 and vm test sets,
which have no speaker information, FMLLR transforms
are estimated for individual utterances.

P4 Acoustic rescoring with large SAT models. The lattices
from P3 are rescored with five different SAT acoustic
models and pruned. The acoustic models are as follows:

A An MMIE PLP system comprising 10437 left
context-dependent states and 623K mixture com-
ponents. This system uses max.-normalization of
c0 and side-based mean and variance normaliza-
tion of all other raw features.

B An MLE PLP system identical to the system of
P4A, except for the use of MLE training of the
acoustic model.
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C An MLE PLP system comprising 10450 left
context-dependent states and 589K mixture com-
ponents. This system uses mean normalization of
all raw features.

D A SPAM MFCC system comprising 10133 left
context-dependent states and 217K mixture com-
ponents. The SPAM models use a 120-
dimensional basis for the precision matrices. This
system uses mean normalization of all raw fea-
tures.

E An MLE MFCC system comprising 10441 left
context-dependent states and 600K mixture com-
ponents. This system uses max.-normalization of
c0 and mean normalization of all other raw fea-
tures.

The FMLLR transforms for each of the five acoustic
models are computed from the one-best hypotheses in
the lattices from P3. FMLLR transforms are estimated
for individual utterances in the vm test set, but on the
cc2 test set a single FMLLR transform is estimated from
all utterances. The vm test set contains many long ut-
terances [18], and the FMLLR estimation procedure has
sufficient data, even with very large acoustic models. We
found that the cc2 test set contained only very short ut-
terances, and the FMLLR procedure failed to converge
on many utterances with the large acoustic models.

Acoustic model adaptation. Each of the five acous-
tic models are adapted using one-best hypotheses from
their respective lattices generated in P4: no cross-
system adaptation is performed. As described above,
the systems using Gaussian mixture acoustic models are
adapted using two sets of MLLR transforms, while the
SPAM acoustic model is adapted using an FMLLR trans-
form and an MLLR transform. The lattices from P3 are
rescored using the adapted acoustic models and pruned.
As in P4, transforms are estimated for individual utter-
ances in the vm test set, but are estimated globally for
the cc2 test set.

4-gram rescoring. Each of the five sets of lattices from
P5 are rescored and pruned using a 4-gram language
model.

Confusion network combination. Each of the five sets
of lattices from P6 are processed to generate confusion
networks [19], then a final recognition hypothesis is gen-
erated by combining the confusion networks for each ut-
terance.

erformance of the various recognition passes on the test
summarized in Table 2.

7. Conclusions
nable recognition performance can be obtained on a broad

le of conversational American English tasks using acous-
dels trained only on Switchboard and Callhome data. The

s on the mtg set illustrate this point most strongly, for nei-
he acoustic models nor the language models are trained on
ng data. This supports the observation that “Switchboard
resentative of the acoustic-phonetic and stylistic proper-
of conversational American English [20].
ulti-pass decoding with unsupervised adaptation and

ination of disparate systems are effective techniques



pass swb98 mtg cc1 cc2 vm all
P1 42.5 62.2 67.8 47.6 35.4 51.1
P2 38.7 53.7 56.9 44.1 31.7 45.0
P3 36.0 44.6 46.6 40.1 28.0 39.1
P4A 31.5 39.4 41.7 38.2 26.7 35.5
P4B 32.3 40.0 41.3 39.0 26.7 35.9
P4C 32.5 40.2 42.1 39.9 27.0 36.3
P4D 31.7 40.3 42.6 37.6 25.8 35.6
P4E 33.0 40.5 43.4 38.8 26.9 36.5
P5A 30.9 38.3 39.4 36.9 26.1 34.3
P5B 31.5 38.5 39.4 37.0 26.5 34.6
P5C 31.6 38.7 41.0 39.4 26.8 35.5
P5D 30.8 39.0 41.1 36.7 25.6 34.6
P5E 32.1 38.9 41.8 36.8 26.4 35.2
P6A 30.4 38.0 38.9 36.5 25.7 33.9
P6B 31.0 38.3 38.9 36.4 25.8 34.1
P6C 31.2 38.4 40.1 38.9 26.3 35.0
P6D 30.4 38.6 40.8 36.3 25.5 34.3
P6E 31.5 38.5 41.6 35.9 25.7 34.6
P7 29.0 35.0 37.9 33.6 24.5 32.0

Table 2: Word error rates (%) for the components of the 2002
Superhuman test set and the overall, average error rate for the
corpus. For passes where multiple systems are used (P4–6), the
best error rate for a test component is highlighted.

for achieving good recognition performance on diverse data
sources. On this test set, they can reduce the overall error rate
from 51.1% to 32.0%.

While system combination can provide consistent gains
in recognition performance, they are relatively small for the
amount of computation incurred. Had we used only the MMIE
PLP system and performed consensus decoding instead of con-
fusion network combination in P7, the overall error rate on the
test would increase to 33.1%.

8. Future work
Because the Superhuman project is expected to continue for the
rest of the decade, we must be concerned about “training on the
test set.” That is, through continued benchmarking and opti-
mization on one test set, we may overspecialize our recognition
systems. We believe that the broad range of material included in
the test set mitigates, but does not eliminate, this problem. We
therefore plan to add new components to the test set over the
course of the project. This year we will begin benchmarking
on an hour of material from the MALACH (multilingual access
to large spoken archives) project [21]. The MALACH material
is drawn from interviews with Holocaust survivors, and con-
tains a high incidence of emotional speech, accented speech,
age-related coarticulations, and disfluencies.

9. Acknowledgments
We are grateful to the International Computer Science Institute
for providing us with the meeting data.

10. References
[1] M. Padmanabhan and M. Picheny, “Towards superhuman

speech recognition,” in Proc. ASR Workshop, 2000.

[2] J. Huang, M. Picheny, and B. Ramabhadran, “Multi-

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
domain robust speech recognition,” in Proc. DARPA
SPINE Workshop, 2001.

A. Janin et al., “The ICSI Meeting corpus,” in ICASSP,
2003.

http://www.icsi.berkeley.edu/speech/mr

M. Padmanabhan et al., “Automatic speech recognition
performance on a voicemail transcription task,” IEEE
Transactions on Speech and Audio Processing, vol. 10,
no. 7, pp. 433–442, October 2002.

G. Saon et al., “Maximum likelihood discriminant feature
spaces,” in ICASSP, 2000.

R. A. Gopinath, “Maximum likelihood modeling with
Gaussian distributions for classification,” in ICASSP,
1998.

M. J. F. Gales, “Semi-tied full-covariance matrices
for hidden Markov models,” Tech. Rep. CUED/F-
INFENG/TR287, Cambridge University Engineering De-
partment, 1997.

J. Huang et al., “Improvements to the IBM Hub 5e sys-
tem,” in Proc. NIST RT-02 Workshop, April 2002.

G. Saon et al., “An architecture for rapid decoding of
large vocabulary conversational speech,” submitted to Eu-
rospeech, 2003.

S. Axelrod et al., “Large vocabulary conversational
speech recognition with a subspace constraint on inverse
covariance matrices,” submitted to Eurospeech, 2003.

S. Axelrod, R. A. Gopinath, and P. Olsen, “Modeling with
a subspace constraint on inverse covariance matrices,” in
ICSLP, 2002.

S. Wegman et al., “Speaker normalization on conversa-
tional telephone speech,” in ICASSP, 1996.

M. J. F. Gales, “Maximum likelihood linear transforma-
tions for HMM-based speech recognition,” Tech. Rep.
CUED/F-INFENG/TR291, Cambridge University Engi-
neering Department, 1997.

C. J. Leggetter and P. C. Woodland, “Maximum likeli-
hood linear regression for speaker adaptation of continu-
ous density hidden Markov models,” Computer Speech
and Language, vol. 9, pp. 171–185, 1995.

S. F. Chen and J. Goodman, “An empirical study of
smoothing techniques for language modeling,” Computer
Speech and Language, vol. 13, no. 4, pp. 359–393, 1999.

L. R. Bahl et al., “Robust methods for using context-
dependent features and models in a continuous speech rec-
ognizer,” in ICASSP, 1994.

M. Padmanabhan et al., “Issues involved in voicemail data
collection,” in Proc. DARPA Broadcast News Transcrip-
tion and Understanding Workshop, 1998.

L. Mangu, E. Brill, and A. Stolcke, “Finding consensus
in speech recognition: word error minimization and other
applications of confusion networks,” Computer Speech
and Language, vol. 14, no. 4, pp. 373–400, 2000.

E. Shriberg, A. Stolcke, and D. Baron, “Observations on
overlap: Findings and implications for automatic process-
ing of multi-party conversation,” in Eurospeech, 2001.

B. Ramabhadran, J. Huang, and M. Picheny, “Towards
automatic transcription of large spoken archives - English
ASR for the MALACH project,” in ICASSP, 2003.


	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	New Search
	Next Search Hit
	Previous Search Hit
	Search Results
	------------------------------
	Also by Brian Kingsbury
	Also by Lidia Mangu
	Also by George Saon
	Also by Geoffrey Zweig
	Also by Scott Axelrod
	Also by Vaibhava Goel
	Also by Karthik Visweswariah
	Also by Michael Picheny
	------------------------------

	headREa1: EUROSPEECH 2003 - GENEVA
	pagenumber1881: 1881
	headREa2: EUROSPEECH 2003 - GENEVA
	Radio: 
	pagenumber1882: 1882
	headREa3: EUROSPEECH 2003 - GENEVA
	pagenumber1883: 1883
	headREa4: EUROSPEECH 2003 - GENEVA
	pagenumber1884: 1884


