
AN ARCHITECTURE FOR RAPID DECODING OF LARGE VOCABULARY
CONVERSATIONAL SPEECH

George Saon, Geoffrey Zweig, Brian Kingsbury, Lidia Mangu and Upendra Chaudhari

IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598
e-mail:fgsaon,gzweig,bedk,mangu,uvcg@us.ibm.com
ABSTRACT

This paper addresses the question of how to design a large
vocabulary recognition system so that it can simultaneously
handle a sophisticated language model, perform state-of-
the-art speaker adaptation, and run in one times real time1

(1�RT). The architecture we propose is based on classi-
cal HMM Viterbi decoding, but uses an extremely fast ini-
tial speaker-independent decoding to estimate VTL warp
factors, feature-space and model-space MLLR transforma-
tions that are used in a final speaker-adapted decoding. We
present results on past Switchboard evaluation data that in-
dicate that this strategy compares favorably to published
unlimited-time systems (running in several hundred times
real-time). Coincidentally, this is the system that IBM fielded
in the 2003 EARS Rich Transcription evaluation.

1. INTRODUCTION

Although real-time large vocabulary speech recognition has
been a reality for a number of years, there is widespread
recognition that the technology has not yet been totally per-
fected, and the ongoing popularity of DARPA sponsored
Switchboard and Brodcast News transcription competitions
indicates the importance of the problem.

The designer of a real-time decoding system is faced
with a number of critical challenges. Among the many ques-
tions that must be answered are:� Type of search space ? (dynamically created or stati-

cally compiled)� Search strategy ? (stack-based or Viterbi-based)� Lattice rescoring or multi-pass decoding ?� Forms of speaker adaptation ?

Two important examples of significantly different real-time
systems are the IBM stack decoder [6], and AT&T’s WFST
submission to last year’s EARS competition (RT’02) [7].

1According to NIST specifications, the total execution time including
I/O has to be less than the duration of the speech signal.

The IBM system is based on a stack-search that dynami-
cally expands the search space at runtime. In this strategy,
a number of partial decoding paths exist on a stack. For a
given path, a fast-match prefix-tree is used to identify pos-
sible word-extensions, and then the candidates that are re-
turned are re-scored with a more detailed acoustic and lan-
guage model. Because the past word history is available in
the partial path, the system also exploits long-span acoustic
context, and conditions the acoustic realization of phoneson
those in the preceding words. This results in more detailed
acoustic models than typical triphone systems. A hierachi-
cal gaussian-evaluation strategy is used to reduce the time
spent evaluating the acoustic model. Taken together, these
design decisions lead to a system that is highly extensible
(due to the dynamic nature of the search).

An alternative strategy based on Viterbi decoding with
statically compiled decoding graphs has recently been pur-
sued at AT&T [5, 7]. In this strategy, the acoustic-context
model (decision-tree clustered triphones) is combined with
the language model and lexicon at “compile time” to pro-
duce a static decoding graph that is the same for every ut-
terance. The main advantage of this approach is that the
graph can be heavily optimized (e.g. through determiniza-
tion and minimization) in advance, so that minimal decod-
ing work is required at ”decode time”. The AT&T strategy
is distinctive in that it spends the bulk of its time doing the
initial speaker-independent decoding, and produces an en-
tire word-lattice to be used in subsequent steps. Speaker
compensation consists of VTLN and MLLR, and the initial
lattices are rescored with these speaker-adapted models and
a higher order language model.

The strategy that we explore in this paper combines the
use of static decoding graphs with state-of-the-art speaker
adaptation, and re-distributes the time available into an ex-
tremely fast speaker-independent decoding, followed by the
estimation of VTLN [8], FMLLR [1], and MLLR [4] trans-
formations, followed by a relatively time-consuming speaker-
adapted decoding. The decoding graphs we use are also
notable in that they use a full word of left-context in the
context model - i.e. the realization of a phone is sensitive to
all the other phones in the current word, and all the phones



of the previous word. The construction of such graphs in-
volves solving an NP-hard optimization problem, and in [9]
we have described heuristics for doing this. To speed up
the Gaussian computation, we have adopted a hierarchical
evaluation strategy and made use of the Streaming SIMD
Extension 2 instruction set of the Pentium 4 processor.

2. SYSTEM OVERVIEW

The operation of our system comprises the following steps
depicted in figure 1: (1) segmentation of the audio into
speech and non-speech segments, (2) speaker independent
decoding of the speech segments, (3) alignment-based vo-
cal tract length normalization of the acoustic features, (4)
alignment-based estimation of one maximum likelihood fea-
ture space transformation per conversation side, (5) alignment-
based estimation of one MLLR transformation per speaker
and (6) speaker adapted decoding using MMIE-SAT trained
acoustic models transformed through MLLR. Next, we de-
scribe each of the steps in more detail.

segmentation
Speech/non-speech

0.11xRT

SA decoding

SI decoding

VTLN

FMLLR

MLLR

Speech

Words

0.01xRT

0.02xRT

0.04xRT

0.04xRT

0.63xRT

Figure 1: System diagram. Dashed lines indicate that the
FMLLR and MLLR steps rely on the 1-best output of the
speaker independent decoding. Runtimes are reported on a
Linux Pentium 4 3.0GHz, 1.0Gb machine and are exclusive
of the feature computation and various data motion steps
(which together account for 0.12�RT).

2.1. Segmentation

There are two main reasons for segmenting the audio prior
to decoding. First, segmenting the data and eliminating the
non-speech segments reduces the computational load dur-
ing recognition. For instance, if we consider the RT’02
test set, the speech amounts to 6 hours of stereo recorded,
two-channel conversations. Processing the channels inde-
pendently without segmentation would result in a 12 hours
signal length whereas eliminating the silence regions on one
channel (when the other channel is active) halves the amount
of data to be considered for further processing. Second, all
the acoustic models are trained on segmented data. It is
therefore desirable to segment the test data for consistency
reasons. For example, the amount of silence varies a lot
between segmented and unsegmented speech and this can
adversely affect the cepstral mean and variance normaliza-
tion.

We use an HMM-based segmentation procedure very
similar to the one described in [3]. Speech and non-speech
segments are each modeled by five-state, left-to-right HMMs
with no skip states. The output distributions in each HMM
are tied across all states in the HMM, and are modeled with
a mixture of diagonal-covariance Gaussian densities. The
segmentation is performed using a log-space Viterbi decod-
ing algorithm that can operate on very long conversation
sides. A segment-insertion penalty is used during decod-
ing to control the number and duration of the hypothesized
speech segments. Following the decoding, the hypothesized
segments are extended by an additional 50 frames to capture
any low-energy segments at the boundaries of the speech
segments and to provide sufficient acoustic context for the
speech recognizer. The feature vectors used are the same as
for the speaker independent decoding and are described in
the next subsection.

2.2. Front-end

Speech is coded into 25 ms frames, with a frame-shift of 10
ms. Each frame is represented by a feature vector of 24 Mel
frequency-warped cepstral coefficients for the speaker inde-
pendent decoding and by 13 VTL-warped perceptual linear
prediction cepstral coefficients for the speaker adapted de-
coding. For both feature sets, we perform spectral flooring
by adding the equivalent of one bit of additive noise to the
power spectra prior to Mel binning, and use periodogram
averaging to smooth the power spectra. Every 9 consecu-
tive cepstral frames are spliced together and projected down
to 60 dimensions using LDA. The range of this transforma-
tion is further diagonalized by means of a maximum likeli-
hood linear transform. Prior to splicing and projection, the
cepstra are mean- and variance-normalized on a per-side ba-
sis, with the exception of0, which is normalized on a per-
utterance basis.



Number of SI SA
leaves 4.0K 4.6K
Gaussians 168K 158K

Table 1: Number of context-dependent acoustic units and
Gaussians for the speaker independent and speaker adapted
models.

2.3. Acoustic models

The recognition system uses a phonetic representation of
the words in the vocabulary. Each phone is modeled with
a 3-state left-to-right HMM. Further, we identify the vari-
ants of each state that are acoustically dissimilar by asking
questions about the phonetic context (within an 11-phone
window) in which the state occurs. The questions are ar-
ranged hierarchically in the form of a decision tree, and its
leaves correspond to the basic acoustic units that we model.
The output distributions for the leaves are given by a mix-
ture of at most 128 diagonal covariance Gaussian compo-
nents. The exact number of Gaussians for each leaf was
determined using the Bayesian Information Criterion. Ta-
ble 1 summarizes the number of leaves and the number of
60-dimensional Gaussians for the speaker-independent and
SAT models. The acoustic training data for the SAT models
comprises 247 hours of Switchboard, 18 hours of Callhome,
18 hours of Switchboard cellular data and an additional 80
hours of Switchboard data provided by BBN.

2.4. Speaker compensation

An initial speaker-independent (SI) decoding of the data
produces hypotheses and forced alignments that are used
to estimate frequency warping factors for VTLN decoding.
There are 20 different warp scales allowing for a�20%
stretching of the frequency axis. Jacobian compensation
is performed by adding the log-determinant of the outer-
product of the warped cepstra to the average frame log-
likelihood. The Viterbi alignments from the SI decoding are
used again to estimate one affine feature-space maximum-
likelihood linear regression (FMLLR) transform for each
conversation side. This FMLLR transform maps the VTL-
warped test data to a canonical SAT feature space. The SI
alignments are re-used a third time to estimate one MLLR
transform per speaker. In order to accelerate the compu-
tations, all three compensation algorithms detect speaker
changes on the fly, reinitialize the sufficient statistics au-
tomatically and minimize the amount of I/O by reading all
static information at the beginning of the execution and by
writing a minimum amount of data per speaker (VTL warp
scale, FMLLR and MLLR matrices). Another common char-
acteristic is the use of the Intel Math Kernel Library (an
efficient implementation of BLAS for Pentium) wherever

Number of SI SA
ngrams 0.2M 3.3M
states 0.6M 9.6M
arcs 1.7M 23.9M

Table 2: Number of n-grams, states and arcs for the speaker
independent and speaker adapted decoding graphs.

vector and matrix operations occur.

2.5. Viterbi decoding on static FSM graphs

Both the speaker independent and speaker adapted decod-
ings operate on static FSM decoding graphs [5]. These
FSMs are obtained by successively expanding the words in
an n-gram language model in terms of their pronunciation
variants, the phonetic sequences of these variants and the
context dependent acoustic realizations of the phones. We
have shown recently in [9] that it is possible to handle a
whole word of cross-word acoustic context to the left by ef-
ficiently factorizing the sets of arcs between word pronunci-
ation variants and left context dependent pronunciation vari-
ants using arc minimization techniques. In conjunction with
these arc minimization techniques, we use standard deter-
minization and minimization algorithms to further reduce
the size of the resulting graphs. In table 2 we show a com-
parison between the graph sizes of the speaker independent
and speaker adapted decodings. The main difference lies
in the choice of the language model: for the SI decoding
we opted for a bigram LM whereas the final decoding step
uses a 4-gram LM. The latter was trained on the follow-
ing corpora: 3M words of Switchboard, 58M words from
web scripts publicly available from the University of Wash-
ington, 3M Broadcast news words relevant to Switchboard
topics and 7M words of AP newswire.

By analyzing the runtimes of the two decoding steps in
figure 1, one can see that the SI decoding is 6 times faster.
This has to do mainly with the tightness of the pruning pa-
rameters and less with the size of the decoding graphs. The
main pruning threshold is the maximum number of active
states (or hypotheses) per frame. This parameter was set to
500 for the speaker independent decoding and to 3500 for
the speaker adapted decoding. In figure 2, we illustrate the
influence of the number of active states on the word error
rate and run-time factor (RTF) for the speaker adapted de-
coding on the RT’02 test data.

The second pruning threshold has to do with the max-
imum number of evaluated Gaussians per frame. First, we
perform a top-down LBG clustering of all the mixture com-
ponents in the system using a Gaussian likelihood metric
until we reach 2048 clusters (Gaussians). At runtime, we
evaluate all the 2048 components for every frame and then



30

30.5

31

31.5

32

32.5

33

33.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

W
E

R
 (

%
)

RTF

wer-rtf.dat

Figure 2: Word error rate versus real-time factor for the
speaker-adapted decoding on the RT’02 test data.

only evaluate those Gaussians which map to one of the topN clusters for a particular frame.N is set to 20 for the
speaker independent decoding and to 110 for the speaker
adapted decoding.

In addition to the previously mentioned hierarchical like-
lihood scheme, the following techniques were found bene-
ficial for accelerating the Gaussian evaluation part of the
decoder. First, we made use of the Streaming SIMD2 Ex-
tension 2 of the Pentium 4 processor through the C++ wrap-
per classes provided by the Intel compiler. This is similar in
spirit to [2] although here we used floating point SIMD in-
structions directly as opposed to scaling and integerizingthe
code as was proposed before. These instructions operate on
four floating point numbers in parallel and their use resulted
in a 30% speed-up over a straightforward loop-unrolled im-
plementation of the likelihood calculation. The second ma-
jor speed improvement came from sorting the Gaussians ac-
cording to the top-level cluster indices. Then, the way the
likelihood is computed can be written as follows:

for clusterfrom 1 to 2048
for framefrom 1 to T

if isactive[cluster][frame]then
for gaussianfrom first[cluster]to last[cluster]

likelihood(gaussian, frame)

The benefit from sorting the Gaussians based on the top-
level cluster index is now apparent. The Gaussians accessed
in the innermost loop are stored contiguously in memory
thus minimizing the number of cache misses. Sorting the
Gaussians and using this algorithm resulted in an additional
40% speed-up in the likelihood evaluation.

2Single Instruction Multiple Data.

System SI VTLN FMLLR MLLR
WER 50.3% 34.1% 30.5% 30.1%

Table 3: Word error rates on the reference segmentation.

2.6. System performance

The experiments were conducted on the RT’02 test data
which consists of 60 conversations (120 speakers) totaling
6 hours of speech. After segmentation, the average amount
of data per speaker is roughly 3 minutes. Table 3 indicates
the word error rates on the reference (manual) segmentation
after the various processing steps (in the 1�RT system, only
the first and the last decoding step are actually performed).
When tested on the automatic segmentation, the speaker-
adapted word error rate increased to 31.9%.

3. REFERENCES

[1] M. J. F. Gales. Maximum likelihood linear transfor-
mations for HMM-based speech recognition. Techni-
cal Report CUED/F-INFENG, 1997.

[2] S. Kanthak, K. Schuetz, H. Ney. Using SIMD Instruc-
tions For Fast Likelihood Calculation in LVCSR. In
Proc. ICASSP’00, Istanbul, 2000.

[3] B. Kingsbury, G. Saon, L. Mangu, M. Padmanabhan
and R. Sarikaya. Robust speech recognition in noisy
environments: the IBM 2001 SPINE evaluation sys-
tem. In Proc. ICASSP’02, Orlando, 2002.

[4] C. J. Leggetter and P. C. Woodland. Speaker adapta-
tion of HMMs using linear regression. Technical Re-
port CUED/F-INFENG, 1994.

[5] M. Mohri, F. Perreira and M. Riley. Weighted fi-
nite state transducers in speech recognition. In ISCA
ITRW ASR’00, Paris, 2000.

[6] M. Novak and M. Picheny. Speed improvement of
the tree-based time asynchronous search. In Proc. IC-
SLP’00, Beijing, 2000.

[7] M. Riley, E. Bocchieri, A. Ljolje and M. Saraclar. The
AT&T 1x real-time Switchboard speech-to-text sys-
tem. In Proc. NIST RT’02 Workshop, 2002.

[8] S. Wegman, D. McAllaster, J. Orloff, and B. Peskin,
”Speaker normalization on conversational telephone
speech”, In Proc. ICASSP’96, 1996.

[9] G. Zweig, G. Saon and F. Yvon. Arc Minimiza-
tion in Finite State Decoding Graphs with Cross-Word
Acoustic Context. In Proc. ICSLP’02, Denver, 2002.


