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Abstract
Phonetic Class-based Speaker Verification (PCBV) is a natu-
ral refinement of the traditional single Gaussian Mixture Model
(Single GMM) scheme. The aim is to accurately model the
voice characteristics of a user on a per-phonetic class basis. The
paper describes briefly the implementation of a representation
of the voice characteristics in a hierarchy of phonetic classes.
We present a framework to easily study the effect of the mod-
eling on the PCBV. A thorough study of the effect of the mod-
eling complexity, the amount of enrollment data and noise con-
ditions is presented. It is shown that Phoneme-based Verifica-
tion (PBV), a special case of PCBV, is the optimal modeling
scheme and consistently outperforms the state-of-the-art Single
GMM modeling even in noisy environments. PBV achieves � �
to � � � relative error rate reduction while cutting the speaker
model size by � 
 � and CPU by � 
 � .

1. Introduction
Improvements in speaker verification performance can come
from several different sources: feature extraction, modeling,
score normalization, multi-modal cues, etc. Historically, the
modeling scheme has involved maximum a poteriori (MAP)
adaptation [1] of a background [2] (cohort [3] or world [4])
model with user speech to create the speaker model. The un-
derlying model was usually a Single GMM [3] that covers all
phonetic events (classes). Let us define, for the purpose of this
paper, a phonetic class as representing phonetic events sharing
common (linguistic) properties. Examples of phonetic classes
are: consonnants, vowels, phonemes, states of the HMMs rep-
resenting phonemes. The canonical modeling scheme has been
refined along two main axis: per-channel and per-phonetic class
modeling. These two sets of techniques are in fact the incar-
nation of the same goal: representing the acoustic space as
accurately as possible. The per-channel modeling [5, 6] in-
volves the presence of a set of background models (channel-
and gender- dependent) that represent impostor population on a
given channel (in this paper we use the term “channel” to de-
scribe any combination of acoustic channel and gender). This
technique is most powerful in noisy environments and in cross-
channel verification attempts. The per-phonetic class modeling
[7, 8, 9] uses cues like frame-level phonetic alignment from an
automatic speech recognizer to perform verification on a per-
phoneme basis before recombining scores in one way or an-
other. This technique is most powerful in clean conditions.

This paper will be centered on a few themes. We will first
describe a flexible framework to investigate PCBV. We investi-
gate the modeling granularity to find the optimal units (phonetic
classes) for speaker verification performance. We then present
a study on the effect of the amount of enrollment data. Next,
we’ll report preliminary results on data sharing in the context of
PCBV. The last part will report verification results across sev-
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Hierarchical representation of speaker
models

mplementation is based on a tree-like structure that repre-
acoustic events that are to be modeled; the acoustic events
series of frames that are given a phonetic class label by a
er-independent speech recognizer [10].

e 1: Example of tree-like structure. Each node is defined
de# : classes (#gaussians), where node# is the internal
number, classes are the labels of the collection of phonetic
s represented by that node and #gaussians is the number
ssians for the GMM specific to each phonetic class.

ach node of the tree (Fig. 1) represents a GMM of variable
lexity; the per-channel modeling [5, 6] is performed at the
level enabling transformations of class � � between chan-
The GMMs used in this work are mixtures of gaussians
iagonal covariances. Granularity of the representation of
oustic space by the tree can be adjusted by selecting the
ling level (see Fig. 1). For example, modeling level 1 uses
1 and 2 only; the GMM associated to node 2 is formed by
g gaussians from the GMMs at nodes 3, 4 and 5. Terminal
(for example node 1) are propagated to subsequent levels;
MM associated to node 1 is also present at level 2 (it is

d). This procedure ensures a) that all classes are covered
levels and b) that the total number of gaussians present
y given level is constant; this is a compact way to repre-
phonetic class-based speaker model. This representation
acoustic space by a tree of phonetic classes is a flexible

work for studying PCBV; by simply varying the model-
vel, we can study coarse to refined modeling very easily
keeping the total complexity of the underlying models

ant. In the above example, the same exact 25 gaussians
sed across all levels; they are assigned differently from
to level. Undesirable acoustic events (such as silence and
) can be discarded from any processing by omitting them

tree structure. Gaussian tying has been implemented to
parameter sharing.



2.1. Training of the background model

For a given channel, the set of GMMs representing the terminal
node’s classes to be modeled are trained using the speech rec-
ognizer to align each frame in an utterance to the corresponding
GMM at the highest level (level 2 in our Figure 1 example) of
the tree. The collection of these frames are used to train the
GMM for that given node using standard vector quantization
followed by expectation-maximization techniques [5, 6].

2.2. Enrollment and verification

Both the enrollment and verification procedures use a two-pass
approach [5, 6]. The first pass is common to both and is used to
identify the current channel. The frame-level alignments from
the recognizer are used to score the relevant GMM at the given
modeling level for the current phonetic class; this is done for
each channel. The selected channel is the one with the highest
likelihood.

The second pass of the enrollment procedure uses the frame-
level phonetic alignments to MAP adapt the corresponding back-
ground model GMM at a given modeling level for the selected
channel with the current frame [5, 6]. Sufficient statistics from
the accumulated frames for all gaussians of all GMMs for the
current modeling level, are saved as the speaker model. Note
that the size of the speaker model (complexity) does not depend
on the modeling level.

The second pass of the verification procedure also uses the
frame-level phonetic alignments to score the relevant GMMs on
the selected channel with the current frame. A likelihood ratio
scoring scheme is used; and thus the speaker model as well as
the background model are scored.

Let � � � � be the frame-level phonetic alignment given by the
recognizer; it states that at time � the frame was aligned to class� . Also, let us define � 	 � � and 
� 	 � � as the speaker and back-
ground models at modeling level � for channel � . Then the like-
lihood ratio scoring is expressed as

� � � � � 	 � � � � � � � � � � � � 	 � � � ! � � � � � � � 
� 	 � � �
� �% ' ( * � � � � � - ( � � 	 � �. 0 ( 1 � ! � � � � � - ( � 
� 	 � �. 0 ( 1 � 3 (1)

where � � 6 - 7 9 - 7 9 < < < 9 - = 9 @ is the set of feature vectors ex-
tracted from the utterance and � 	 � �. , 
� 	 � �. are respectively the
GMMs representing the user (speaker model) and background
model at level � , for channel � and class � . The modeling level is
set a priori and the channel is identified on-the-fly as explained
above. Finally, the likelihood ratio score is compared to an over-
all threshold A to accept/reject the attempt; the value of A sets
the operating point of the system.

3. Experiments and testset description
The experiments conducted for this study cover three languages
of North America: English, Canadian French and Spanish. A
language specific background model is trained for each of them.
The data covers a variety of channels conditions. The base-
line experiment (state-of-the-art Single GMM for all phonetic
classes) is expressed by using a degenerate tree: it has a sin-
gle level and a single node for all speech phones in the target
language.

The trees used in the experiments were similar for all three
languages. It was composed of five levels and inspired from lin-
guistic properties [11]. Level 0 has a single node for all speech
events. Level 1 segregates frames in vowels, consonants and
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guage baseline PCBV PCBV #train.
#gaussians #phones in #gauss. utts

phone set per phone
lish 200 40 5 37k
ch 200 38 5 98k

nish 200 23 9 79k

1: Description of complexity of modeling for different
ages and amount of training data used for the background
l (all channel pooled). Each language has between 6 and 8
els including landline, cellular, etc. for each gender. Note
e complexities of the models are roughly equivalent.

ontinuants. For level 2, the segragation is finer: front
ls, mid vowels, back vowels, voiced/unvoiced fricatives,
ates, etc. The next level (level 3) has a phone per node.
y, the last level (level 4) represents each states of each
s.
total of 8 test sets were used in the evaluation of the

rmance of our implementation of PCBV (see Table 2).
are all set-up to exercise verification in the text-dependent
e with a maximum of three repetitions of the password in
ment and one in verification. The average duration of the
ords is B � seconds.

me true sp. impostor Note
trials trials

1 117688 13671 10-digits telephone #
2 2610 9669 10-digits account #
1 1787 15334 Company names
1 100341 14321 10-digits telephone #
2 47759 47474 8-digits account #
1 47499 47499 City names, dates, names
1 49759 49851 8-digits account #
1 45036 44810 City names, dates, names

2: Description of the test sets used in this study. The
of the test sets are coded as follow: language task where
nguage is E for English, F for Canadian French, etc. and
s d for digits and t for text.

Modeling granularity

let’s explore the different modeling levels at which the
round model can be trained (Section 2.1) to find the op-
units (phonetic classes) for speaker verification perfor-

e.
e have used the Canadian French test sets for this study.

ave trained background models at each level from 0 to 4
tree. For each of these (training levels), we ran the veri-
n varying the level at which the enrollment and verifica-
as performed. Recall that, by construction, a background

l trained at a given level can be tested at that level, as well
levels above in the regression tree. Table 3 shows the

rmance as well as the corresponding training and testing
. Note that the overall best performance is at the phone
(level 3): just statistically different from the performance
el 4. The other interesting fact is that the optimal perfor-
e for the background model trained at level 4 (state level)
esting level 3 (phone level). These results seem to indicate
he phone level is optimal. The general features of Table
the result of two opposing tendencies. On one hand, the



0 1 2 3 4
0 6.3
1 6.0 5.8
2 6.2 6.0 5.5
3 6.4 6.0 5.4 4.8
4 6.8 6.3 5.6 5.0 5.2

Table 3: Performance (in % EER) as a function of modeling
level. Level for training of the background model is the first
column, while the level for testing is the first line.

finer the modeling gets (high modeling level), the more accurate
and restricted our description of the acoustic space is. On the
other hand, the more restricted our modeling gets, the less data
sharing we have (a frame being used to train several gaussians).
Another avenue to explain the behavior between level 3 and 4
is the reliability of the boundaries between classes: boundaries
between phones are a) less frequent than between states and b)
likely more reliable; leading to better performance.

3.2. Effect of the amount of enrollment data

Speaker verification is a task that operates in what can be called
a “data-starved” paradigm for the enrollment of the speaker
models. Studying the effect of the amount of enrollment data
on the performance of the verification system at different mod-
eling levels for the PCBV is relevant.

We have also used the Canadian French test sets for this
study. The experiments were run with a background model
trained at the level 4 of the tree (the state level) to strenghten
the claims in Section 3.1.

The results shown in Figure 2 are average Equal Error Rates
(EERs) across the 3 test sets for an average of 7.94, 5.30, 2.67,
1.33 and 0.89 seconds for enrollment.
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Figure 2: EERs as a function of the modeling level for different
amount of enrollment data.

The features of the curves in Fig. 2 are similar to those de-
scribed in the preceding Section. Also, note that these features
are consistent across enrollment conditions: the phone level per-
forms better regardless of the amount of enrollment data.

In Fig. 2, we see that the performance degrades as the
amount of enrollment data diminishes; that is not a surprise.
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urprise comes from the evidence that the optimal model-
vel is, for all of these conditions, the phone level (level 3).
lso shows that all levels of modeling, from Single GMM
0) to state level (level 4), are affected in roughly the same
y the reduction of the amount of enrollment data.

Effect of tying

ying of gaussians enables data sharing during the train-
the background models and during the enrollment of the

er models. In this initial study, we wanted to test two ex-
s of data sharing during the training of the background
ls, as well as two conditions of data starving during enroll-
of the speaker models. We’ll use two background models
s Section to represent two extremes: Constrained is PBV
d at the phone level and Unconstrained is a Single GMM
ed at level 0). The tying is determined a posteriori by cal-
ng the top N most likely gaussians (out of all available
ians) to represent each phone. Figure 3 shows that the op-

10 100

Number of tied gaussians per phone

Constrained - 3 reps
Constrained - 1 reps

Unconstrained - 3 reps
Unconstrained - 1 reps

e 3: Performance as a function of the number of tied gaus-
in the phone-level GMMs on the F d1 test set. Perfor-
e is shown for two different amount of enrollment data
and three repetitions of the password, respectively 2.67
.94 seconds)

performance (across number of tied gaussians) is indepen-
f the way the background model was trained. The optimal
er of tied gaussians is around 15 for the Constrained case,
as it is 200 (all gaussians) for the Unconstrained case. The
al performance, however, never beats the best PBV (with-
ing) performance which are 6.04% and 7.36% for three
ne repetition of the password during enrollment. The gen-
hape of the curves are not dependent on the amount of en-
ent data (they are only shifted up in the case of low amount
ollment data). For the Constrained case, the optimal per-
nce being around 15 tied gaussians seems to indicate that
mber of gaussians to support each phone is not constant.

ave investigated that without success; however our tests
limited to verification without online-adaptation [12, 13]
might change the conclusion in that case. We defer fur-

iscussion on all of these topics to another report.



3.4. Results across multiple databases and languages

For the rest of this paper, we are going to concentrate on the
PCBV at level 3 (PBV) since it gives the best performance
across levels. Experiments were conducted on the test sets pre-
sented (Table 2) above for the baseline system and the PBV
system. We also added experiments to the baseline system with
background models trained with a sub-set of the original train-
ing set (“specialized” Single GMM); that sub-set was selected
to match as closely as possible the target lexicon (digits only
training set for a target digits test set, etc.). This is an easy
way of introducing lexical information (or constraints) within
the Single GMM scheme.

Name Single Specialized PBV
GMM single GMM (level 3)

E d1 3.17 3.30 3.13
E d2 3.92 3.53 3.42
E t1 2.53 2.33 2.81
F d1 2.67 2.52 2.17
F d2 7.61 6.37 6.15
F t1 8.51 8.15 6.21
S d1 3.76 3.62 2.88
S t1 5.10 5.48 4.51

Table 4: Results %EER.

From Table 4, we can see that the average error rate reduc-
tion across all test sets is around � � � relative when the training
sets of the background models are identical (Single GMM com-
pared to PBV). When we compare PBV with the “specialized”
Single GMM results, the error rate reduction is more modest,
but still roughly � � relative. The important point to note here
is that since we are operating in the text-dependent mode of ver-
ification, our lexicon is constant between enrollment and veri-
fication and thus not all of the phones are enrolled. This leads
to a lower average size of the speaker models: a � � � reduction
in speaker model size. Also, since a preliminary alignment is
done by the recognizer, this leads to 	 
 � improvements in CPU
for the verification part alone (ignoring the CPU to generate the
alignments).

4. Discussion and conclusion
We have broken down the results across all test sets and aver-
aged the error rate reduction (on EER between the Single GMM
and PBV) as a way to gain insight on the source of the improve-
ment.

Matched Mismatched
All data 16% 11%
Male 21% 19%
Female 14% 13%
Landline 18% 18%
Cellular 17% 14%

Table 5: Relative improvements between Single GMM and
PBV (level 3) on different breakdowns of the data.

From Table 5, we see that PBV improves performance in
matched conditions (matched conditions are when enrollment
and verification are done on the same channel, as determined by
the system). Surprisingly, the improvement is more important
for males than for females. The improvements also seem to be
consistent across noise (channel) conditions.
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e have presented a framework to easily study phonetic
based verification. It has been shown that the phoneme
of modeling (PBV) is optimal in a wide range of enroll-
conditions. We report gains with PBV ranging between

� � � over the state-of-the-art Single GMM with a sub-
al reduction of speaker model size and CPU load. We have
oted that the improvements from PBV are most spectacu-
matched conditions, for males and/or new languages.
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